欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (11): 1764-1769.doi: 10.3724/SP.J.1006.2019.82066

• 研究简报 • 上一篇    

节水抗旱稻恢复系的抗褐飞虱分子标记辅助选育及抗性评价

张安宁1,2,刘毅1,2,王飞名1,谢岳文2,孔德艳1,聂元元3,张分云1,毕俊国1,余新桥1,刘国兰1,罗利军1,2,*()   

  1. 1 上海市农业生物基因中心, 上海 201106
    2 华中农业大学植物科学技术学院, 湖北武汉 430070
    3 江西省超级水稻研究发展中心, 江西南昌 330200
  • 收稿日期:2018-12-20 接受日期:2019-06-12 出版日期:2019-11-12 网络出版日期:2019-07-09
  • 通讯作者: 罗利军
  • 作者简介:E-mail: zan@sagc.org.cn
  • 基金资助:
    基金:本研究由上海市种业发展项目(2019-02-08-00-08-F01110);上海市科技兴农重点攻关(2018-02-08-00-08-F01553);国家重点研发计划(2017YFD0100304)

Pyramiding and evaluation of brown planthopper resistance genes in water-saving and drought-resistance restorer line

ZHANG An-Ning1,2,LIU Yi1,2,WANG Fei-Ming1,XIE Yue-Wen2,KONG De-Yan1,NIE Yuan-Yuan3,ZHANG Fen-Yun1,BI Jun-Guo1,YU Xin-Qiao1,LIU Guo-Lan1,LUO Li-Jun1,2,*()   

  1. 1 Shanghai Agrobiological Gene Center, Shanghai 201106, China
    2 College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    3 Jiangxi Super Rice Research and Development Center, Nanchang 330200, Jiangxi, China
  • Received:2018-12-20 Accepted:2019-06-12 Published:2019-11-12 Published online:2019-07-09
  • Contact: Li-Jun LUO
  • Supported by:
    This study was supported by the Shanghai Seed Industry Development Project(2019-02-08-00-08-F01110);the Shanghai Agriculture Applied Technology Development Program(2018-02-08-00-08-F01553);the National Key Research and Development Program of China(2017YFD0100304)

摘要:

褐飞虱是水稻的主要害虫之一, 利用水稻抗褐飞虱基因培育抗虫品种是目前公认最经济有效、环境友好的策略。本研究利用水稻功能基因组已克隆的抗褐飞虱基因, 通过分子标记辅助选择和常规回交育种相结合的方法, 将抗褐飞虱基因Bph6Bph9Bph14Bph15单独和聚合导入到节水抗旱稻恢复系旱恢3号, 获得了一系列含有单基因、双基因、三基因和四基因的改良系。采用标准苗期集团筛选法进行褐飞虱抗性鉴定, 评价这些基因在旱恢3号背景下的效应及相互作用。表明单基因改良系中, Bph9的抗性最强, 且Bph9 > Bph6 > Bph15 > Bph14; 在聚合改良系中, 抗性均优于单基因改良系, 四基因聚合改良系的抗性最强, 不同基因型组合的抗性效应是Bph6+Bph9+Bph14+Bph15 > Bph6+Bph9 > Bph6+Bph9+Bph14 > Bph6+Bph9+Bph15 > Bph6+Bph14+Bph15 > Bph9+Bph14+Bph15 > Bph14+Bph15。在自然条件下, 改良系与旱恢3号在株高、有效穗和千粒重等农艺性状上差异不显著, 其他性状与旱恢3号相仿或略差。本试验表明单独和聚合导入Bph6Bph9Bph14Bph15基因能显著提高节水抗旱稻恢复系的褐飞虱抗性, 这4个基因的加性效应明显, 可为今后节水抗旱稻抗褐飞虱育种提供理论依据和材料基础。

关键词: 育种, 褐飞虱, 抗性基因, 分子标记辅助选择, 抗性评价, 节水抗旱稻

Abstract:

The brown planthopper (Nilaparvata lugens St?l, BPH) is the most serious pest threat to rice production across Asia. Increasing host-plant resistance is the most economical and ecological strategy for controlling this pest. The objective of this study was to survey the resistance effects of different R genes to brown planthopper, reveal its influence on agronomic traits, and provide insights into molecular breeding of rice with resistance to brown planthopper. In this research, the brown planthopper R genes Bph6, Bph9, Bph14, and Bph15 were introgressed into the water-saving and drought-resistant rice restorer line ‘Hanhui 3’ through marker-assisted backcrossing scheme. The standard seedling group screening method was used to identify the resistance of the improved lines. Among single-gene improved lines, the order of the R genes effects was Bph9 > Bph6 > Bph15 > Bph14, and among pyramiding improved lines, that was Bph6+Bph9+Bph14+Bph15 > Bph6+Bph9 > Bph6+Bph9+Bph14 > Bph6+Bph9+Bph15 > Bph6+Bph14+Bph15 > Bph9+Bph14+Bph15 > Bph14+Bph15. Furthermore, the survey of agronomic traits demonstrated that there were no significant differences between the 11 improved lines and recurrent parent ‘Hanhui 3’ in plant height, panicle number per plant and 1000-grain weight. These results suggest that the introgression of Bph6, Bph9, Bph14, and Bph15 genes by molecular marker-assisted selection technology could enhance the resistance to brown planthopper and improve breeding efficiency.

Key words: breeding, brown planthopper, resistance gene, marker-assisted selection, resistance evaluation, water-saving and drought-resistance rice

图1

抗褐飞虱恢复系的选育"

图2

抗褐飞虱基因的分子标记检测 A: 检测Bph6; B: 检测Bph9; C: 检测Bph14; D: 检测Bph15。M: D2000 marker; P1: 旱恢3号; P2: 供体; 1~11: 改良系18R1~18R11。"

表1

苗期抗褐飞虱鉴定结果"

编号
No.
鉴定编号
Identification no.
基因型
Genotype
抗性表现
Resistance performance
抗性级别
Resistance level#
18R1 18FS30 Bph6 2.60±0.81 抗虫 R
18R2 18FS72 Bph9 2.40±0.35 抗虫 R
18R3 18FS32 Bph14 5.20±0.76 中抗 MR
18R4 18FS71 Bph15 4.30±0.97 中抗 MR
18R5 18FS86 Bph6+Bph9 1.10±0.21 高抗 HR
18R6 18FS83 Bph14+Bph15 1.93±0.41 高抗 HR
18R7 18FS90 Bph6+Bph9+Bph14 1.27±0.27 高抗 HR
18R8 18FS88 Bph6+Bph9+Bph15 1.50±0.38 高抗 HR
18R9 18FS92 Bph6+Bph14+Bph15 1.60±0.31 高抗 HR
18R10 18FS94 Bph9+Bph14+Bph15 1.70±0.35 高抗 HR
18R11 18FS97 Bph6+Bph9+Bph14+Bph15 0.53±0.24 高抗 HR
旱恢3号 Hanhui 3 18FS26 8.93±0.07 高感 HS
TN1 8.80±0.12 高感 HS

表2

改良品系的主要农艺性状"

编号
No.
基因型
Genotype
株高
Plant height (cm)
单株有效穗
Panicles
per plant
穗长
Panicle length
(cm)
每穗总粒数
Grains per
panicle
结实率
Grain fertility
(%)
千粒重
1000-Grain weight (g)
单株产量
Grain yield
per plant (g)
18R1 Bph6 121.00±1.00 13.67±3.21 21.49±0.58 200.30±2.84** 83.35±3.04 26.35±0.88 32.34±0.70*
18R2 Bph9 119.68±1.64 9.88±0.55 25.53±0.87** 202.65±5.16** 77.62±1.78 24.79±1.66 33.94±1.74
18R3 Bph14 129.00±6.24 10.00±4.00 24.88±1.80 199.98±7.81** 90.37±1.14 25.00±1.20 29.04±0.73**
18R4 Bph15 120.48±1.36 10.70±1.00 26.13±0.45** 200.22±3.20** 79.16±2.39 24.32±0.54 34.94±1.47
18R5 Bph6+Bph9 120.65±2.67 10.58±0.64 25.75±0.57** 201.66±2.29** 76.68±0.98* 24.44±1.58 31.99±3.46*
18R6 Bph14+Bph15 119.71±2.21 9.88±0.64 26.08±0.49** 198.87±7.43** 80.37±1.66 26.07±1.82 30.64±1.71**
18R7 Bph6+Bph9+Bph14 118.12±1.46 10.50±1.04 24.90±0.48* 194.34±2.80** 71.64±1.30** 26.21±1.12 34.90±0.71
18R8 Bph6+Bph9+Bph15 124.19±0.13 10.04±0.69 25.13±0.85* 205.54±5.21** 71.86±1.73** 24.44±0.88 32.75±2.89
18R9 Bph6+Bph14+Bph15 119.89±1.59 10.95±0.23 24.94±0.61* 200.59±4.13** 68.69±1.13** 24.87±1.73 36.47±1.04
18R10 Bph9+Bph14+Bph15 118.41±3.68 10.99±0.53 26.14±0.62** 201.56±2.44** 69.90±3.57** 26.53±0.52 31.19±1.82*
18R11 Bph6+Bph9+Bph14+Bph15 121.12±2.63 11.33±0.56 25.82±0.36** 200.79±6.06** 57.26±2.73** 26.40±1.21 30.38±1.89**
Hanhui 3 117.00±4.90 10.00±0.82 22.80±0.41 240.69±21.35 86.24±6.49 25.84±1.62 42.11±6.78
[1] Khush G S . What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol, 2005,59:1-6.
[2] Xue J, Zhou X, Zhang C X, Yu L L, Fan H W, Wang Z, Xu H J, Xi Y, Zhu Z R, Zhou W W, Pan P L, Li B L, Colbourne J K, Noda H, Suetsugu Y, Kobayashi T, Zheng Y, Liu S, Zhang R, Liu Y, Luo Y D, Fang D M, Chen Y, Zhan D L, Lyu X D, Cai Y, Wang Z B, Huang H J, Cheng R L, Zhang X C, Lou Y H, Yu B, Zhuo J C, Ye Y X, Zhang W Q, Shen Z C, Yang H M, Wang J, Bao Y Y, Cheng J A . Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biol, 2014,15:521.
[3] 姜辉, 林荣华, 刘亮, 瞿唯钢, 陶传江 . 稻飞虱的危害及再猖獗机制. 昆虫知识, 2005,42:612-615.
Jiang H, Lin R H, Liu L, Qu W G, Tao C J . Planthoppers damage to rice and the resurgence mechanism. Chin Bull Entomol, 2005,42:612-615 (in Chinese with English abstract).
[4] Heong K L, Hardy B . Planthoppers: New Threats to the Sustainability of Intensive Rice Production Systems in Asia. Los Baños (Philippines): International Rice Research Institute, 2009. pp 401-428.
[5] Hu J, Xiao C, He Y . Recent progress on the genetics and molecular breeding of brown planthopper resistance in rice. Rice, 2016,9:30.
[6] Huang Z, He G, Shu L, Li X, Zhang Q . Identification and mapping of two brown planthopper resistance genes in rice. Theor Appl Genet, 2001,102:929-934.
[7] Guo J P, Xu C X, Wu D, Zhao Y, Qiu Y F, Wang X X, Ou-Yang Y D, Cai B D, Liu X, Jing S L, Shang-Guan X X, Wang H Y, Ma Y H, Hu L, Wu Y, Shi S J, Wang W L, Zhu L L, Xu X, Chen R Z, Feng Y Q, Du B, He G C . Bph6 encodes an exocyst-localized protein and confers broad resistance to planthoppers in rice. Nat Genet, 2018,50:297-306.
[8] Zhao Y, Huang J, Wang Z Z, Jing S L, Wang Y, Ou-Yang Y D, Cai B D, Xin X F, Liu X, Zhang C X, Pan Y F, Ma R, Li Q F, Jiang W H, Zeng Y, Shang-Guan X X, Wang H Y, Du B, Zhu L L, Xu X, Feng Y Q, He S Y, Chen R Z, Zhang Q F, He G C . Allelic diversity in an NLR gene Bph9 enables rice to combat planthopper variation. Proc Natl Acad Sci USA, 2016,113:12850-12855.
[9] 陈英之, 陈乔, 孙荣科, 杨朗, 黄凤宽, 黄大辉, 韦素美, 张月雄, 刘丕庆, 李容柏 . 改良水稻对稻褐飞虱的抗性研究. 西南农业学报, 2010,23:1099-1106.
Chen Y Z, Chen Q, Sun R K, Yang L, Huang F K, Huang D H, Wei S M, Zhang Y X, Liu P Q, Li R B . Improvement of rice resistance to brown planthoppers. Southwest China J Agric Sci, 2011,23:1099-1106 (in Chinese with English abstract).
[10] 胡杰, 杨长举, 张庆路, 高冠军, 何予卿 . 基因聚合改良杂交稻组合的稻飞虱田间抗性表现. 应用昆虫学报, 2011,48:1341-1347.
Hu J, Yang C J, Zhang Q L, Gao G J, He Y Q . Resistance of pyramided rice hybrids to brown planthoppers. Chin J Appl Entomol, 2011,48:1341-1347 (in Chinese with English abstract).
[11] 李进波, 夏明元, 戚华雄, 何光存, 万丙良, 查中萍 . 水稻抗褐飞虱基因Bph14Bph15的分子标记辅助选择. 中国农业科学, 2006,39:2132-2137.
Li J B, Xia M Y, Qi H X, He G C, Wan B L, Zha Z P . Marker-assisted selection for brown planthopper (Nilaparvata lugens Stål) resistance gene Bph14 and Bph15 in rice. Sci Agric Sin, 2006,39:2132-2137 (in Chinese with English abstract).
[12] 李进波, 万丙良, 夏明元, 戚华雄, 石华胜, 辛复林 . 抗褐飞虱水稻品种的培育及其抗性表现. 应用昆虫学报, 2011,48:1348-1353.
Li J B, Wan B L, Xia M Y, Qi H X, Shi H S, Xin F L . Breeding of the brown planthopper resistant rice varieties. Chin J Appl Entomol, 2011,48:1348-1353 (in Chinese with English abstract).
[13] 罗世友, 陈红萍, 吴小燕, 胡兰香, 熊换金, 邓伟, 汪雨萍, 席建才, 喻凤, 陈明亮, 肖叶青, 陈大洲 . 应用分子标记辅助选育抗褐飞虱水稻恢复系. 分子植物育种, 2015,13:2404-2415.
Luo S Y, Chen H P, Wu X Y, Hu L X, Xiong H J, Deng W, Wang Y P, Xi J C, Yu F, Chen M L, Xiao Y Q, Chen D Z . Breeding restorer lines resistance to brown planthopper by marker-assisted selection. Mol Plant Breed, 2015,13:2404-2415 (in Chinese with English abstract).
[14] 罗利军, 梅捍卫, 余新桥, 刘鸿艳, 冯芳君 . 节水抗旱稻及其发展策略. 科学通报, 2011,56:804-811.
Luo L J, Mei H W, Yu X Q, Liu H Y, Feng F J . Water-saving and drought-resistance rice and its development strategy. Chin Sci Bull, 2011,56:804-811 (in Chinese with English abstract).
[15] 聂元元, 李霞, 毛凌华, 赵洪阳, 万鹏, 李瑶 . 节水抗旱稻在江西的试验示范及推广. 杂交水稻, 2018,33(2):38-39.
Nie Y Y, Li X, Mao L H, Zhao H Y, Wan P, Li Y . Experimental demonstration and extension of water-saving and drought-resistant rice in Jiangxi. Hybrid Rice, 2018,32(2):38-39 (in Chinese).
[16] 王震, 徐爱民, 朱敬乐, 赵洪阳 . 节水抗旱稻“旱优73”在蚌埠的示范表现及高产栽培技术. 安徽农学通报, 2018,24(2):42-44.
Wang Z, Xu A M, Zhu J L, Zhao H Y . Performance of water- saving and drought-resistant rice ‘Hanyou 73’ in Bengbu. Anhui Agric Sci Bull, 2018,24(2):42-44 (in Chinese).
[17] 柏秀芳, 贾琳, 胡超, 李柱, 周娟, 符建法, 贾先勇 . 节水抗旱稻在湖南的发展前景与策略. 湖南农业科学, 2016, ( 8):25-27.
Bai X F, Jia L, Hu C, Li Z, Zhou J, Fu J F, Jia X Y . Development prospect and strategies of water-saving and drought-resistance rice in Hunan. Hunan Agric Sci, 2016, ( 8):25-27 (in Chinese with English abstract).
[18] Jena K K, Hechanova S L, Verdeprado H, Prahalada G D, Kim S R . Development of 25 near-isogenic lines (NILs) with ten BPH resistance genes in rice (Oryza sativa L.): production, resistance spectrum, and molecular analysis. Theor Appl Genet, 2017,130:2345-2360.
[19] Xiao C, Hu J, Ao Y T, Cheng M X, Gao G J, Zhang Q L, He G C, He Y Q . Development and evaluation of near-isogenic lines for brown planthopper resistance in rice cv. 9311. Sci Rep, 2016,6:38159.
[20] Qiu Y F, Guo J P, Jing S L, Zhu L L, He G C . Development and characterization of japonica rice lines carrying the brown planthopper-resistance genes Bph12 and Bph6. Theor Appl Genet, 2012,124:485-894.
[21] 曾盖 . 利用MAS改良水稻两用核不育系的稻瘟病和褐飞虱抗性. 湖南农业大学硕士学位论文, 2017. pp 22-30.
Zeng G . Improving Blast and BPH Resistance of Dual-purpose Genic Sterile Rice Using Molecular Marker-assisted Selection. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2017. pp 22-30 (in Chinese with English abstract).
[22] 胡杰 . 水稻褐飞虱抗性基因的遗传定位和聚合效应分析. 华中农业大学博士学位论文, 湖北武汉, 2013. pp 85-92.
Hu J . Mapping and Pyramiding Brown Planthopper Resistance Genes in Rice. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2013. pp 85-92 (in Chinese with English abstract).
[23] 楼珏, 杨文清, 李仲惺, 罗天宽, 谢永楚, 郑国楚, 岳高红, 徐建龙, 卢华金 . 聚合稻瘟病、白叶枯病和褐飞虱抗性基因的三系恢复系改良效果的评价. 作物学报, 2016,42:31-42.
Lou J, Yang W Q, Li Z X, Luo T K, Xie Y C, Zheng G C, Yue G H, Xu J L, Lu H J . Evaluation of improvement effect of restorer lines on pyramiding genes resistant to rice blast, bacterial leaf blight and brown planthopper. Acta Agron Sin, 2016,42:31-42 (in Chinese with English abstract).
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[3] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[4] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[5] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[6] 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323.
[7] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[8] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
[9] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[10] 闻竞, 沈彦岐, 韩四平, 邢跃先, 张叶, 王梓钰, 李世界, 杨小红, 郝东云, 张艳. 玉米拟轮枝镰孢菌穗腐病抗性基因的挖掘[J]. 作物学报, 2020, 46(9): 1303-1311.
[11] 闫壮壮, 闫学慧, 石嘉, 孙凯, 虞江林, 张战国, 胡振邦, 蒋鸿蔚, 辛大伟, 李杨, 齐照明, 刘春燕, 武小霞, 陈庆山, 朱荣胜. 基于深度学习的大豆豆荚类别识别研究[J]. 作物学报, 2020, 46(11): 1771-1779.
[12] 翟胜男, 郭军, 刘成, 李豪圣, 宋健民, 刘爱峰, 曹新有, 程敦公, 李法计, 何中虎, 夏先春, 刘建军. 小麦类胡萝卜素合成途径关键基因Lcye功能分析[J]. 作物学报, 2020, 46(10): 1485-1495.
[13] 刘荣, 王芳, 方俐, 杨涛, 张红岩, 黄宇宁, 王栋, 季一山, 徐东旭, 李冠, 郭瑞军, 宗绪晓. 利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱[J]. 作物学报, 2020, 46(10): 1496-1506.
[14] 胡文静,张勇,陆成彬,王凤菊,刘金栋,蒋正宁,王金平,朱展望,徐小婷,郝元峰,何中虎,高德荣. 小麦品种扬麦16赤霉病抗扩展QTL定位及分析[J]. 作物学报, 2020, 46(02): 157-165.
[15] 张平,姜一梅,曹鹏辉,张福鳞,伍洪铭,蔡梦颖,刘世家,田云录,江玲,万建民. 通过分子标记辅助选择将耐储藏主效QTL qSS-9 Kas转入宁粳4号提高其种子贮藏能力[J]. 作物学报, 2019, 45(3): 335-343.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!