欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (02): 157-165.doi: 10.3724/SP.J.1006.2020.91048

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

小麦品种扬麦16赤霉病抗扩展QTL定位及分析

胡文静1,张勇1,陆成彬1,王凤菊2,刘金栋2,蒋正宁1,王金平2,朱展望2,徐小婷2,郝元峰2,何中虎2,3,高德荣1,*()   

  1. 1 江苏里下河地区农业科学研究所 / 农业农村部长江中下游小麦生物学与遗传育种重点实验室, 江苏扬州 225007
    2 国家小麦改良中心 / 中国农业科学院作物科学研究所, 北京 100081
    3 国际玉米小麦改良中心(CIMMYT)中国办事处, 北京 100081
  • 收稿日期:2019-07-22 接受日期:2019-09-26 出版日期:2020-02-12 网络出版日期:2019-10-09
  • 通讯作者: 高德荣
  • 作者简介:E-mail: huren2008@126.com
  • 基金资助:
    本研究由国家自然科学基金项目(31901544);国家现代农业产业技术体系建设专项(CARS-03-03B);国家现代农业产业技术体系建设专项(CARS-3-2-11);国家重点研发计划项目(2017YFD0100801);国家重点研发计划项目(2017YFD0101802);江苏省自然科学基金项目资助(BK20171279)

Mapping and genetic analysis of QTLs for Fusarium head blight resistance to disease spread in Yangmai 16

HU Wen-Jing1,ZHANG Yong1,LU Cheng-Bin1,WANG Feng-Ju2,LIU Jin-Dong2,JIANG Zheng-Ning1,WANG Jin-Ping2,ZHU Zhan-Wang2,XU Xiao-Ting2,HAO Yuan-Feng2,HE Zhong-Hu2,3,GAO De-Rong1,*()   

  1. 1 Lixiahe Institute of Agriculture Sciences / Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Yangzhou 225007, Jiangsu, China
    2 National Wheat Improvement Center / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3 CIMMYT-China Office, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2019-07-22 Accepted:2019-09-26 Published:2020-02-12 Published online:2019-10-09
  • Contact: De-Rong GAO
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31901544);China Agriculture Research System(CARS-03-03B);China Agriculture Research System(CARS-3-2-11);the National Key Research and Development Program of China(2017YFD0100801);the National Key Research and Development Program of China(2017YFD0101802);the Natural Science Foundation of Jiangsu Province(BK20171279)

摘要:

扬麦系列品种赤霉病抗性在世界范围内得到重视, 但其抗性遗传机制尚不清楚。扬麦16是近年来大面积推广的抗赤霉病品种, 本研究以扬麦16与中麦895杂交构建的174个双单倍体(double haploid lines, DH)系为材料, 于2017—2019年连续3年对该群体采用单花滴注进行赤霉病抗扩展鉴定。利用660K SNP芯片构建高密度遗传图谱, 共检测到6个抗性QTL, 分别位于2DL、3BL、4BS、4DS、5BL和6AS染色体上。除4BS位点外, 其他5个抗性等位基因均来源于扬麦16。QFhb.yaas-4DSQFhb.yaas-6AS均在多年被检测到, 可解释8.8%~15.0%的表型变异; QFhb.yaas-2DLQFhb.yaas-3BL仅在1年被检测到, 分别解释10.5%和14.7%的表型变异; QFhb.yaas-5BL和来源于中麦895的QFhb.yaas-4BS仅在1年被检测到且效应仅为6.4%和8.3%。QTL效应分析结果表明, 相较于单个位点, 多个抗性QTL的聚合可显著降低赤霉病严重度。扬麦16抗赤霉病QTL将为揭示扬麦品种抗性遗传机制及开发相应分子标记奠定基础。

关键词: 小麦, 赤霉病, QTL, 标记辅助育种

Abstract:

Fusarium head blight (FHB) resistance of Yangmai wheat cultivars has been paid much attention, but the underlying genetic mechanism is unclear. In recent years, Yangmai 16 is a predominant wheat cultivar durably resistant to FHB in production. A population of 174 double haploid lines (DH) produced by crossing Yangmai 16 (YM16) with the susceptible cultivar Zhongmai 895 (ZM895) was evaluated for FHB response using point inoculation from 2017 to 2019. The DH population was genotyped with wheat 660K SNP array and a high-density genetic map was constructed. Six resistance QTLs were detected, and among them, five were from the resistant parent Yangmai 16 and one from Zhongmai 895. QFhb.yaas-4DS and QFhb.yaas-6AS were detected at least in two years, explaining 8.8% to 15.0% of the phenotypic variances, respectively. QFhb.yaas-2DL and QFhb.yaas-3BL were detected only in one year, accounting for 10.5% and 14.7% of the phenotypic variances. QFhb.yaas-5BL and QFhb.yaas-4BS were detected in one year, too, accounting for 6.4% and 8.3% of the phenotypic variances, respectively. Pyramiding of multiple resistant loci with large effects (>10%) is an effective approach to increase FHB resistance. The QTLs identified from Yangmai 16 in the present study will provide a starting point for genetic studies of other Yangmai cultivars, and the QTLs closely linked to markers will be useful for marker-assisted selection in wheat FHB improvement.

Key words: Triticum aestivum, Fusarium head blight, QTL, marker-assisted breeding

表1

扬麦16/中麦895 DH群体、亲本和对照的赤霉病严重度"

年份
Year
亲本 Parents (%) 对照 CK (%) DH群体 DH population
扬麦16
Yangmai 16
中麦895
Zhongmai 895
苏麦3
Sumai 3
周麦18
Zhoumai 18
平均值
Mean (%)
标准差
SD
最大值
Max. (%)
最小值
Min. (%)
峰度
Kurt.
偏度
Skew.
遗传力
Hereditability
2017 14.2 A 58.7 B 5.2 A 60.2 B 29.1 18.9 83.7 3.4 0.2 0.9 0.67
2018 17.9 A 65.0 B 5.6 A 62.3 B 53.5 19.9 100.0 6.6 -0.7 -0.2 0.74
2019 23.3 A 69.7 B 6.1 A 70.1 B 49.5 18.1 89.8 10.3 -0.5 0.1 0.82

图1

扬麦16/中麦895 DH群体赤霉病严重度频次分布(2017-2019) 横坐标代表病小穗率, 纵坐标代表相关病小穗率范围内的家系数目。"

表2

扬麦16/中麦895 DH 群体抗赤霉病QTL定位"

QTL 年份
Year
物理位置
Physical position (Mb)
遗传位置
Genetic position (cM)
标记区间
Marker interval
LOD 贡献率
PVE (%)
加性效应#
Add#
QFhb.yaas-2DL 2017 512.7-532.0 49.6 AX_111765614-AX_109738482 4.7 10.5 -6.1
QFhb.yaas-3BL 2019 637.1-647.2 138.6 AX_94528202-AX_109001202 8.9 14.7 -6.9
QFhb.yaas-4DS 2017 27.1-33.1 61.9 AX_109962849-AX_111071805 5.6 13.7 -7.2
2018 18.3-19.3 54.7 AX_111311200-AX_89421921 4.4 8.8 -5.9
2019 15.9-16.6 53.7 AX_94558069-AX_95150762 6.2 9.5 -5.6
QFhb.yaas-5BL 2018 587.1-588.8 138.7 AX_94646656-AX_109853998 3.2 6.4 -5.0
QFhb.yaas-6AS 2018 12.0-12.4 64.9 AX_109294414-AX_108848013 4.6 9.5 -6.2
2019 12.0-12.4 65.0 AX_109294414-AX_108848013 8.9 15.0 -7.1
QFhb.yaas-4BS 2018 82.7-91.3 14.7 AX_110472183-AX_94859572 4.1 8.3 5.8

图2

扬麦16/中麦895 DH群体抗赤霉病QTL定位情况 连锁群右边是标记名称, 左边是遗传位置(CM)。红色、蓝色和绿色分别代表2017、2018和2019年定位到的QTL, QTL右边对应LOD值。"

表3

扬麦16/中麦895 DH 群体中存在不同稳定赤霉病抗扩展QTL家系的赤霉病严重度情况"

QTL组成
QTL combination
家系数
Number of lines
最小值
Minimum
最大值
Maximum
平均
Mean
标准差
Standard deviation
方差
Variance
None 46 26.1 88.0 54.3 A 13.7 187.6
QFhb.yaas-4DS 62 18.6 71.3 43.2 B 13.1 172.0
QFhb.yaas-6AS 28 18.9 78.8 44.8 B 16.4 269.6
QFhb.yaas-4DS+QFhb.yaas-6AS 38 9.9 57.4 32.3 C 11.2 126.5

表4

扬麦16/中麦895 DH群体中存在不同赤霉病抗扩展QTL家系的赤霉病严重度情况"

QTL数
Number of QTL
家系数
Number of lines
平均PSS (100%)#
Average of PSS (100%)#
不同PSS范围内的家系数目 Number of lines in different PSS range
0-25 25-50 50-75 75-100
0 7 67.1 A 0 0 6 1
1 46 53.8 B 1 15 28 2
2 65 41.8 C 8 38 19 0
3 46 36.9 CD 10 29 7 0
4 10 30.5 D 2 8 0 0

图3

DH家系所含QTL数目与其平均赤霉病严重度的关系 PSS (percentage of scabbed spikelets)代表赤霉病严重度。"

[1] Buerstmayr H, Ban T, Anderson J A . QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed, 2009,128:1-26.
doi: 10.1111/pbr.2009.128.issue-1
[2] 吴佳文, 杨荣明, 朱凤, 田子华 . 2015 年江苏省小麦赤霉病发生特点与防控对策探讨. 中国植保导刊, 2016,36(10):31-34.
Wu J W, Yang R M, Zhu F, Tian Z H . The epidemic characteristics of wheat Fusarium head blight in Jiangsu province in 2015 and discussion of its control measures. China Plant Prot, 2016,36(10):31-34 (in Chinese).
[3] 张爱民, 阳文龙, 李欣, 孙家柱 . 小麦抗赤霉病研究现状与展望. 遗传, 2018,40:858-873.
Zhang A M, Yang W L, Li X, Sun J Z . Current status and perspective on research against Fusarium head blight in wheat. Hereditas, 2018,40:858-873 (in Chinese with English abstract).
[4] 史建荣, 刘馨, 仇剑波, 祭芳, 徐剑宏, 董飞, 殷宪超, 冉军舰 . 小麦中镰刀菌毒素脱氧雪腐镰刀菌烯醇污染现状与防控研究进展. 中国农业科学, 2014,47:3641-3654.
doi: 10.3864/j.issn.0578-1752.2014.18.012
Shi J R, Liu X, Qiu B, Ji F, Xu J H, Dong F, Yin X C, Ran J J . Deoxynivalenol contamination in wheat and its management. Sci Agric Sin, 2014,47:3641-3654 (in Chinese with English abstract).
doi: 10.3864/j.issn.0578-1752.2014.18.012
[5] Ren J D, Wang Z, Du Z Y, Chen M Z, Zhang Y B, Quan W, Wang Y J, Jiang X, Zhang Z J . Detection and validation of a novel major QTL for resistance to Fusarium head blight from Triticum aestivum in the terminal region of chromosome 7DL. Theor Appl Genet, 2019,132:241-255.
doi: 10.1007/s00122-018-3213-4 pmid: 30327846
[6] Yi X, Cheng J, Jiang Z, Hu W, Bie T, Gao D, Li D, Wu R, Li Y, Chen S, Cheng X, Liu J, Zhang Y, Cheng S . Genetic analysis of Fusarium head blight resistance in CIMMYT bread wheat line C615 using traditional and conditional QTL mapping. Front Plant Sci, 2018, 9: 573. .
doi: 10.3389/fpls.2018.00573 pmid: 29780395
[7] Su Z Q, Bernardo A, Tian B, Chen H, Wang S, Ma H X, Cai S B, Liu D T, Zhang D D, Li T, Trick H, St Amand P, Yu J M, Zhang Z Y, Bai G H . A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat Genet, 2019, .
doi: 10.1038/s41588-019-0546-0 pmid: 31873299
[8] Li G Q, Zhou J Y, Jia H Y, Gao Z X, Fan M, Luo Y J, Zhao P T, Xue S L, Li N, Yuan Y, Ma S W, Kong Z X, Jia L, An X, Jiang G, Liu W X, Cao W J, Zhang R R, Fan J C, Xu X W, Liu Y F, Kong Q Q, Zheng S H, Wang Y, Qin B, Cao S Y, Ding Y X, Shi J X, Yan H S, Wang X, Ran C F, Ma Z Q . Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat Genet, 2019,.
doi: 10.1038/s41588-019-0546-0 pmid: 31873299
[9] Li T, Luo M, Zhang D, Wu D, Li L, Bai G . Effective marker alleles associated with type 2 resistance to Fusarium head blight infection in fields. Breed Sci, 2016,66:350-357.
doi: 10.1270/jsbbs.15124 pmid: 27436944
[10] Jia H Y, Zhou J Y, Xue S L, Li G Q, Yan H S, Ran C F, Zhang Y D, Shi J X, Jia L, Wang X, Luo J, Ma Z Q . A journey to understand wheat Fusarium head blight resistance in the Chinese wheat landrace Wangshuibai. Crop J, 2018, 48-59.
[11] Arruda M P, Brown P, Brown-Guedira G, Krill A M, Thurber C, Merrill K R, Foresman B J, Kolb F L . Genome-wide association mapping of Fusarium head blight resistance in wheat using Genotyping-by-sequencing. Plant Genome, 2016, 9. .
doi: 10.3835/plantgenome2016.02.0021 pmid: 27902807
[12] Rasheed A, Wen W E, Gao F M, Zhai S N, Jin H, Liu J D, Guo Q, Zhang Y J, Dreisigacker S, Xia X C, He Z H . Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet, 2016,129:1843-1860.
doi: 10.1007/s00122-016-2743-x pmid: 27306516
[13] 张宏军, 宿振起, 柏贵华, 张旭, 马鸿翔, 李腾, 邓云, 买春艳, 于立强, 刘宏伟, 杨丽, 李洪杰, 周阳 . 利用Fhb1基因功能标记选择提高黄淮冬麦区小麦品种对赤霉病的抗性. 作物学报, 2018,44:505-511.
doi: 10.3724/SP.J.1006.2018.00505
Zhang H J, Su Z Q, Bai G H, Zhang X, Ma H X, Li T, Deng Y, Mai C Y, Yu L Q, Liu H W, Yang L, Li H J, Zhou Y . Improvement of resistance of wheat cultivars to Fusarium head blight in the Yellow-Huai rivers valley winter wheat zone with functional marker selection of Fhb1 gene. Acta Agron Sin, 2018,44:505-511 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00505
[14] Yu J B, Bai G H, Cai S B, Ban T . Marker-assisted characterization of Asian wheat lines for resistance to Fusarium head blight. Theor Appl Genet, 2006,113:308-320
doi: 10.1007/s00122-006-0297-z
[15] Stacey J, Isaac P G . Isolation of DNA from plants. Methods Mol Biol, 1994,28:9-15.
doi: 10.1385/0-89603-254-x:9 pmid: 8118521
[16] Cui F, Zhang N, Fan Xiao, Zhang W, Zhao C, Yang L, Pan R, Chen M, Han J, Zhao X, Ji J, Tong Y, Zhang H, Jia J, Zhao G, Li J . Utilization of a wheat 660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep, 2017, .
doi: 10.1038/s41598-019-56977-9 pmid: 31892747
[17] Stam P . Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J, 1993,3:739-744.
doi: 10.1111/j.1365-313X.1993.00739.x
[18] 王建康 . 数量性状基因的完备区间作图方法. 作物学报, 2009,35:239-245.
doi: 10.3724/SP.J.1006.2009.00239
Wang J K . Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin, 2009,35:239-245 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2009.00239
[19] Zhai S N, He Z H, Wen W E, Jin H, Liu J D, Zhang Y, Liu Z Y, Xia X C . Genome-wide linkage mapping of flour color-related traits and polyphenol oxidase activity in common wheat. Theor Appl Genet, 2016,129:377-394.
doi: 10.1007/s00122-015-2634-6 pmid: 26602234
[20] 李慧慧, 张鲁燕, 王建康 . 数量性状基因定位研究中若干常见问题的分析与解答. 作物学报, 2010,36:918-931.
Li H H, Zhang L Y, Wang J K . Analysis and answers to frequently asked questions in quantitative trait locus mapping. Acta Agron Sin, 2010,36:918-931 (in Chinese with English abstract).
[21] Srinivasachary, Gosman N, Steed A, Simmonds J, Leverington- Waite M, Wang Y, Snape J, Nicholson P . Susceptibility to Fusarium head blight is associated with the Rht-D1b semi-dwarfing allele in wheat. Theor Appl Genet, 2008,116:1145-1153.
doi: 10.1007/s00122-008-0742-2
[22] Srinivasachary, Gosman N, Steed A, Hollins T, Bayles R, Jennings P, Nicholson P . Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor Appl Genet, 2008,118:695-702.
doi: 10.1007/s00122-008-0930-0 pmid: 19034409
[23] Buerstmaye H, Ban T, Anderson J A . QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed, 2009,128:1-26.
doi: 10.1111/pbr.2009.128.issue-1
[24] Jaiswal V, Gahlaut V, Mathur S, Agarwal P, Khandelwal M K, Khurana J P, Tyagi A K, Balyan H S, Gupta P K . Identification of novel SNP in promoter sequence of TaGW2-6A associated with grain weight and other agronomic traits in wheat(Triticum aestivum L.). PLoS One, 2015,10:e0129400.
doi: 10.1371/journal.pone.0129400 pmid: 26076351
[25] Somers D J, Fedak G, Savard M . Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome, 2003,46:555-564.
doi: 10.1139/g03-033 pmid: 12897863
[26] 朱展望, 徐登安, 程顺和, 高春保, 夏先春, 郝元峰, 何中虎 . 中国小麦品种抗赤霉病基因Fhb1的鉴定与溯源. 作物学报, 2018,44:473-482.
doi: 10.3724/SP.J.1006.2018.00473
Zhu Z W, Xu D A, Cheng S H, Gao C B, Xia X C, Hao Y F, He Z H . Characterization of Fusarium head blight resistance gene Fhb1 and its putative ancestor in Chinese wheat germplasm. Acta Agron Sin, 2018,44:473-482 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2018.00473
[27] 程顺和, 张勇, 张伯桥, 高德荣, 吴宏亚, 陆成彬, 吕国锋, 王朝顺 . 小麦抗赤霉病育种2条技术路线的探讨. 扬州大学学报(农业与生命科学版), 2003,24(1):59-62.
Cheng S H, Zhang Y, Zhang B Q, Gao D R, Wu H Y, Lu C B, Lyu G F, Wang C S . Discussion of two ways of breeding scab resistance in wheat. J Yangzhou Univ (Agric Life Sci Edn), 2003,24(1):59-62 (in Chinese with English abstract).
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[9] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[10] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!