欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (8): 1291-1300.doi: 10.3724/SP.J.1006.2020.94169

• 研究简报 • 上一篇    

大豆生物钟基因GmLNK1/2GmRVE4/8GmTOC1 CRISPR/Cas9组织表达分析及敲除靶点的鉴定

甘卓然,石文茜,黎永力,侯智红,李海洋,程群,董利东,刘宝辉,芦思佳()   

  1. 广州大学生命科学学院, 广东广州 510006
  • 收稿日期:2019-11-07 接受日期:2020-03-24 出版日期:2020-08-12 网络出版日期:2020-04-07
  • 通讯作者: 芦思佳
  • 作者简介:E-mail: gggzzr@126.com
  • 基金资助:
    国家自然科学基金项目(31771815);国家自然科学基金项目(31701445);作物遗传与种质创新国家重点实验室开放课题(ZW201901)

Identification of CRISPR/Cas9 knockout targets and tissue expression analysis of circadian clock genes GmLNK1/2, GmRVE4/8, and GmTOC1 in soybean

GAN Zhuo-Ran,SHI Wen-Qian,LI Yong-Li,HOU Zhi-Hong,LI Hai-Yang,CHENG Qun,DONG Li-Dong,LIU Bao-Hui,LU Si-Jia()   

  1. School of Life Sciences, Guangzhou University, Guangzhou 510006, Guangdong, China
  • Received:2019-11-07 Accepted:2020-03-24 Published:2020-08-12 Published online:2020-04-07
  • Contact: Si-Jia LU
  • Supported by:
    National Natural Science Foundation of China(31771815);National Natural Science Foundation of China(31701445);State Key Laboratory of Crop Genetics & Germplasm Enhancement (ZW201901)(ZW201901)

摘要:

生物钟基因能够参与调控植物的整个生命进程, 对提高作物产量具有重要的作用。LNK1 (NIGHT LIGHT- INDUCIBLE AND CLOCK-REGULATED 1)、LNK2、RVE4 (REVEILLE 4)、RVE8 (REVEILLE 8)和TOC1 (TIMING OF CAB EXPRESSION 1)是植物中重要的生物钟基因。本研究利用BLAST同源比对和进化树分析的方法分别鉴定AtLNK1AtLNK2AtRVE4AtRVE8AtTOC1在大豆中的同源基因, 通过qRT-PCR实验证明这些生物钟基因在大豆根、茎、叶等组织中均有表达。成功构建这些基因的CRISPR/Cas9敲除载体, 并利用大豆根毛转化体系成功鉴定出13个基因的CRISPR/CAS9有效靶点。为进一步获得稳定的大豆突变体材料及研究其生物钟基因的功能提供了理论基础。

关键词: 大豆, 基因敲除, 生物钟基因, CRISPR/Cas9

Abstract:

Circadian clock genes play an important role in improving crop yield. LNK1, LNK2, RVE4, RVE8, and TOC1 are important circadian clock genes in plants. Homologous genes of AtLNK1, AtLNK2, AtRVE4, AtRVE8, and AtTOC1 in soybean were found by evolutionary tree analysis. These genes were expressed in soybean roots, stems and leaves. The knockout vectors of these genes were successfully constructed by using CRISPR/Cas9 gene editing technology. Transformation system of soybean root hair and RT-PCR were used to identify 13 genes targets effectively. The results of this study provide important target informations for further obtaining soybean mutant materials, and a foundation for further studying the function of circadian clock genes.

Key words: soybean, gene knockout, clock gene, CRISPR/Cas9

表1

基因靶点引物列表"

靶点引物
Target primer
引物序列
Primer sequence (5°-3°)
靶点对应基因
Target of gene
LNK1T1F gtcaGGAGACAAGTGTGTGGTGG GmLNK1a, GmLNK1b
LNK1T1R aaacCCACCACACACTTGTCTCC GmLNK1a, GmLNK1b
LNK1T2F gtcaAGAGGAGTTCTGCTGGCTC GmLNK1a, GmLNK1b
LNK1T2R aaacGAGCCAGCAGAACTCCTCT GmLNK1a, GmLNK1b
LNK1T3F attgCTTGGGAGACAAGTGTGTGG GmLNK1c, GmLNK1d
LNK1T3R aaacCCACACACTTGTCTCCCAAG GmLNK1c, GmLNK1d
LNK1T4F attgAGACTTTGAAGATGTTGAC GmLNK1c, GmLNK1d
LNK1T4R aaacGTCAACATCTTCAAAGTCT GmLNK1c, GmLNK1d
LNK2T1F gtcaACATAATATGGGGTGAAGG GmLNK2a, GmLNK2b
LNK2T1R aaacCCTTCACCCCATATTATGT GmLNK2a, GmLNK2b
LNK2T2F gtcaAAACTGATCAGGGTTCCCT GmLNK2c, GmLNK2d
LNK2T2R aaacAGGGAACCCTGATCAGTTT GmLNK2c, GmLNK2d
LNK2T3F attgTTTGATTGGAACGACGAAG GmLNK2a, 2b, 2c, 2d
LNK2T3R aaacCTTCGTCGTTCCAATCAAA GmLNK2a, 2b, 2c, 2d
LNK2T4F attgTCATATTGTGCCTTATCCGG GmLNK2c, GmLNK2d
LNK2T4R aaacCCGGATAAGGCACAATATGA GmLNK2c, GmLNK2d
RVE48T1F gtcaCTTCCCTGCTGATGAATGC GmRVE4/8b, GmRVE4/8c
RVE48T1R aaacGCATTCATCAGCAGGGAAG GmRVE4/8b, GmRVE4/8c
RVE48T2F gtcaTCATCCCATGTGACATACCC GmRVE4/8a, GmRVE4/8d
RVE48T2R aaacGGGTATGTCACATGGGATGA GmRVE4/8a, GmRVE4/8d
RVE48T3F attgCAGCTTTGCGCTTTGGACG GmRVE4/8b, GmRVE4/8c
RVE48T3R aaacCGTCCAAAGCGCAAAGCTG GmRVE4/8b, GmRVE4/8c
RVE48T4F attgAAGCTTTGCGCTTAGGCCG GmRVE4/8a, GmRVE4/8d
RVE48T4R aaacCGGCCTAAGCGCAAAGCTT GmRVE4/8a, GmRVE4/8d
TOC1T1F gtcaCGATTCCAAGAGTTCTCAAG GmTOC1a, GmTOC1b
TOC1T1R aaacCTTGAGAACTCTTGGAATCG GmTOC1a, GmTOC1b
TOC1T2F gtcaGTGATGTCCGCACAAGATG GmTOC1a, GmTOC1b
TOC1T2R aaacCATCTTGTGCGGACATCAC GmTOC1a, GmTOC1b
TOC1T3F attgGTGGGAATAATAGTAAGAG GmTOC1c, GmTOC1d
TOC1T3R aaacCTCTTACTATTATTCCCAC GmTOC1c, GmTOC1d
TOC1T4F attgTTGTAAAGTGCTTGAGGCT GmTOC1c, GmTOC1d
TOC1T4R aaacAGCCTCAAGCACTTTACAA GmTOC1c, GmTOC1d

表2

萌发培养基与根诱导培养基"

培养基类型
Medium type
药品名称
Name of the medicine
药品用量
Medicine
dosage
萌发培养基
Germination medium
B5盐 B5 salt mixture
蔗糖 Sucrose (g L-1) 20
琼脂 Agar (g L-1) 8
发根培养基
Rooting medium
MS合成盐 MS salt mixture
蔗糖 Sucrose (g L-1) 30
2-(4-吗啉)乙磺酸 MES 0.6
琼脂 Agar (g L-1) 8
头孢霉素 Cef (mg L-1) 250
羧苄青霉素 Car (mg L-1) 250

表3

靶点检测引物"

靶点检测引物
Target primer
引物序列
Primer sequence (5°-3°)
靶点检测引物
Target primer
引物序列
Primer sequence (5°-3°)
SP3 GTCGTGCTCCACATGTTGACCGG LNK2cT4&2R TCCTGAGGTTAGTAGTTCTCCACT
SP1 GAAGTTATTGCATCTATGTCGGG LNK2dT3F CTCTCCGTCGCCGTTATAGCA
LNK1aF TGACGCCAGGGTATCTTAAA LNK2dT3R ACCAAACGAAGCACGAACA
LNK1aR TCTCCATGTGTGTGTTTTGGTA LNK2dT4&2F GGTGGTGGAGGGAGAAGATGAG
LNK1bF CTCAGGGTAGGGAGGACTTG LNK2dT4&2R AGACACTTATTGCCGCTACAACTG
LNK1bR CGGTAAAGTTGAGCCTTGGT RVE4/8aF ACAGCTCTTCAGCTAGGTGTT
LNK1cF TCATATAGTGCCCCATGCCA RVE4/8aR GAGGAGAGGGGGTATGGGTT
LNK1cR AGTTCTATAGCAGCTCATGACA RVE4/8bF AGCGAAGAACTCTGCAATCCA
LNK1dF GCCCGATCATTGCTTCAAGAG RVE4/8bR CTACCACCTTGGGCCGAAAT
LNK1dR AGTTCTATAGCAGCTCGTGGC RVE4/8cF TTCGAAGCCATGCTCAGAAG
LNK2aT3F GAATTCGGCGATGTGTGAGC RVE4/8cR CCAGCAACAAGGTTCGTAGT
LNK2aT3R ACAGCTACACAAAGACACACA RVE4/8dF TTCGTTGGTCATCTTGCTGGT
LNK2aT1F CCGTCCAAGGAGATTGTCACTGA RVE4/8dR CTGGACATGGCCTTCTGTGT
LNK2aT1R TCCTGAGGTAGGTAGTTCTCCACT TOC1aF TCCCTCAACGATGCTG
LNK2bT3F TGATGGAGTGCGTTTCTCTG TOC1aR GCCTCCGTCTCCACAT
LNK2bT3R CCCTGATTTTCCTGGCGTAA TOC1bF TTGAGCAAGTCCAGGGTT
LNK2bT1F CCGTCCAAGGAGATTGTCACTGA TOC1bR ATGGCTGTGATGGTAACTCG
LNK2bT1R TCCTGAGGTAGGTAGTTCTCCACT TOC1cF CTCTAACTAACTATCCAGACCCTA
LNK2cT3F TTCTCCGTCGATCAGTGAAGTG TOC1cR ATGGCTGGTGGGTTGA
LNK2cT3R GCTAAGAGTCACGCCTCCTTG TOC1dF TACGCCCTCCCTCTTT
LNK2cT4&2F CGTGATGCCAAATTAGTTGGGTAT TOC1dR GGGACTTGGGAAATACA

图1

同源性比对 A: AtLNK1与GmLNK1a、GmLNK1b、GmLNK1c、GmLNK1d氨基酸序列对比; B: AtLNK2与GmLNK2a、GmLNK2b、GmLNK2c、GmLNK2d氨基酸序列对比; C: AtTOC1与GmTOC1a、GmTOC1b、GmTOC1c、GmTOC1d氨基酸序列对比; D: AtRVE4、AtRVE8与GmRVE4/8a、GmRVE4/8b、GmRVE4/8c、GmRVE4/8d氨基酸序列对比。"

图2

4个生物钟基因组织特异表达 A: GmLNK1a/b/c/d在W82中的组织特异表达; B: GmLNK2a/b/c/d在W82中的组织特异表达; C: GmTOC1a/b/c/d在W82中的组织特异表达; D: GmRVE4/8a/b/c/d在W82中的组织特异表达。"

图3

Cas9载体结构图 a: 靶点LNK1T1、LNK2T1、TOC1T1和RVE4/8T1; b: 靶点LNK1T2、LNK2T2、TOC1T2和RVE4/8T2; c: 靶点LNK1T3、LNK2T3、TOC1T3和RVE4/8T3; d: 靶点LNK1T4、LNK2T4、TOC1T4和RVE4/8T4。"

图4

发生编辑靶点的测序峰图 A: GmLNK1a的靶点LNK1T1、GmLNK1b的靶点LNK1T2、GmLNK1c的靶点LNK1T4和GmLNK1d的靶点LNK1T4突变情况; B: GmLNK2a的靶点LNK2T1、GmLNK2b的靶点LNK2T1、GmLNK2c的靶点LNK2T4和GmLNK2d的靶点LNK2T4突变情况; C: GmTOC1b的靶点TOC1T2、GmTOC1c的靶点TOC1T4和GmTOC1d的靶点TOC1T4突变情况; D: GmRVE4/8b的靶点RVE4/8T1和GmRVE4/8d的靶点RVE4/8T4突变情况。"

[1] 田志喜, 刘宝辉, 杨艳萍, 李明, 姚远, 任小波, 薛勇彪. 大豆分子设计育种成果与展望. 中国科学院院刊, 2018,33:915-922.
Tian Z X, Liu B H, Yang Y P, Li M, Yao Y, Ren X B, Xue Y B. Update and prospect of soybean molecular module-based designer breeding in China. Bull Chin Acad Sci, 2018,33:915-922 (in Chinese with English abstract).
[2] Li M W, Xin D, Gao Y, Li K P, Fan K, Muñoz N B, Yung W S, Lam H M. Using genomic information to improve soybean adaptability to climate change. J Exp Bot, 2017,68:1823-1834.
doi: 10.1093/jxb/erw348 pmid: 27660480
[3] Raju S K K, Shao M R, Sanchez R, Xu Y Z, Sandhu A, Graef G, Mackenzie S. An epigenetic breeding system in soybean for increased yield and stability. Plant Biotechnol J, 2018,16:1836-1847.
[4] Inoue K, Araki T, Endo M. Circadian clock during plant development. J Plant Res, 2018,131:59-66.
[5] McClung C R. Plant circadian rhythms. Plant Cell, 2006,18:792-803.
doi: 10.1105/tpc.106.040980 pmid: 16595397
[6] Lu S, Zhao X, Hu Y, Liu S, Nan H, Li X, Fang C, Cao D, Shi X, Kong L, Su T, Zhang F, Li S, Wang Z, Yuan X, Cober E R, Weller J L, Liu B, Hou X, Tian Z, Kong F. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet, 2017,49:773-779.
doi: 10.1038/ng.3819 pmid: 28319089
[7] Inoue K, Araki T, Endo M. Circadian clock during plant development. J Plant Res, 2018,131:59-66.
pmid: 29134443
[8] Green R M, Tobin E M. Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proc Natl Acad Sci USA, 1999,96:4176-4179.
pmid: 10097183
[9] Bendix C, Marshall C M, Harmon F G. Circadian clock genes universally control key agricultural traits. Mol Plant, 2015,8:1135-1152.
pmid: 25772379
[10] Gray J A, Shalit-Kaneh A, Chu D N, Hsu P Y, Harmer S L. The REVEILLE clock genes inhibit growth of juvenile and adult plants by control of cell size. Plant Physiol, 2017,173:2308-2322.
doi: 10.1104/pp.17.00109 pmid: 28254761
[11] Xie Q, Wang P, Liu X, Yuan L, Wang L, Zhang C, Li Y, Xing H, Zhi L, Yue Z, Zhao C, McClung C R, Xu X. LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator. Plant Cell, 2014,26:2843-2857.
doi: 10.1105/tpc.114.126573
[12] Müller N A, Zhang L, Koornneef M Jiménez-Gómez J M. Mutations in EID1 and LNK2 caused light-conditional clock deceleration during tomato domestication. Proc Natl Acad Sci USA, 2015,115:7135-7140.
doi: 10.1073/pnas.1801862115 pmid: 29789384
[13] Müller N A, Wijnen C L, Srinivasan A, Ryngajllo M, Ofner I, Lin T, Ranjan A, West D, Maloof J N, Sinha N R, Huang S, Zamir D, Jiménez-Gómez J M. Domestication selected for deceleration of the circadian clock in cultivated tomato. Nat Genet, 2016,48:89-93.
doi: 10.1038/ng.3447 pmid: 26569124
[14] 高耀辉, 马斌, 肖凤洁, 魏光普. CRISPR/Cas9系统在园林植物中的研究展望. 北方园艺, 2019, (15):133-140.
Gao Y H, Ma B, Xiao F J, Wei G P. Prospect of research on CRISPR/Cas9 system in garden plants. Nor Hortic, 2019, (15):133-140 (in Chinese with English abstract).
[15] 暴会会, 尹竹君, 王少坤, 马瑞红, 谢俊俊, 张杰, 杨正安. CRISPR-Cas9系统在蔬菜育种上应用研究进展. 江西农业学报, 2019,31(7):38-44.
Bao H H, Yin Z J, Wang S K, Ma R H, Xie J J, Zhang J, Yang Z A. Research advances in application of CRISPR/Cas9 system in vegetable breeding. Acta Agric Jiangxi, 2019,31(7):38-44 (in Chinese with English abstract).
[16] Zhang J, Zhu Z, Yue W, Li J, Chen Q, Yan Y, Lei A, Hua J. Establishment of CRISPR/Cas9 mediated knock-in system for porcine cells with high efficiency. Appl Biochem Biotechnol, 2019,189:26-36.
doi: 10.1007/s12010-019-02984-5 pmid: 30859452
[17] Lin C Y, Su Y H. Genome editing in sea urchin embryos by using a CRISPR/Cas9 system. Dev Biol, 2016,409:420-428.
doi: 10.1016/j.ydbio.2015.11.018 pmid: 26632489
[18] Cai Y, Wang L, Chen L, Wu T, Liu L, Sun S, Wu C, Yao W, Jiang B, Yuan S, Han T, Hou W. Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant Biotechnol J, 2020,18:298-309.
doi: 10.1111/pbi.13199 pmid: 31240772
[19] Bao A, Chen H, Chen L, Chen S, Hao Q, Guo W, Qiu D, Shan Z, Yang Z, Yuan S, Zhang C, Zhang X, Liu B, Kong F, Li X, Zhou X, Tran L P, Cao D. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol, 2019,19:131.
doi: 10.1186/s12870-019-1746-6 pmid: 30961525
[20] Do P T, Nguyen C X, Bui H T, Tran L T N, Stacey G, Gillman J D, Zhang Z J, Stacey M G. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biol, 2019,19:311.
doi: 10.1186/s12870-019-1906-8 pmid: 31307375
[21] 曾栋昌, 马兴亮, 谢先荣, 祝钦泷, 刘耀光. 植物CRISPR/Cas9多基因编辑载体构建和突变分析的操作方法. 中国科学: 生命科学, 2018,48:783-794.
Zeng D C, Ma X L, Xie X R, Zhu Q L, Liu Y G. A protocol for CRISPR/Cas9-based multi-gene editing and sequence decoding of mutant sites in plants. Sci Sin Vitae, 2018,48:783-794 (in Chinese with English abstract).
[22] 侯智红, 吴艳, 程群, 董利东, 芦思佳, 南海洋, 甘卓然, 刘宝辉. 利用CRISPR/Cas9技术创制大豆高油酸突变系. 作物学报, 2019,45:839-847.
Hou Z H, Wu Y, Cheng Q, Dong L D, Lu S J, Nan H Y, Gan Z R, Liu B H. Creation of high oleic acid soybean mutation plants by CRISPR/Cas9. Acta Agron Sin, 2019,45:839-847 (in Chinese with English abstract).
[23] Cheng Q, Dong L D, Gao T J, Liu T F, Li N H, Wang L, Chang X, Wu J J, Xu P F, Zhang S Z. The bHLH transcription factor GmPIB1 facilitates resistance to Phytophthora sojae in Glycine max. J Exp Bot, 2018,69:2527-2541.
doi: 10.1093/jxb/ery103 pmid: 29579245
[24] 解莉楠, 宋凤艳, 张旸. CRISPR/Cas9系统在植物基因组定点编辑中的研究进展. 中国农业科学, 2015,48:1669-1677.
Xie L N, Song F Y, Zhang Y. Progress in research of CRISPR/Cas9 system in genome targeted editing in plants. Sci Agric Sin, 2015,48:1669-1677 (in Chinese with English abstract).
[25] Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337:816-821.
doi: 10.1126/science.1225829 pmid: 22745249
[26] Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet, 2011,45:273-297.
doi: 10.1146/annurev-genet-110410-132430
[27] Wiedenheft B, Sternberg S H, Doudna J A. RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012,482:331-338.
doi: 10.1038/nature10886
[28] Nekrasov V, Staskawicz B, Weigel D, Jones J D, Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol, 2013,31:691-693.
doi: 10.1038/nbt.2655 pmid: 23929340
[29] Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi J J, Qiu J L, Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol, 2013,31:686-688.
doi: 10.1038/nbt.2650 pmid: 23929338
[30] Li J F, Norville J E, Aach J, McCormack M, Zhang D, Bush J, Church G M, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol, 2013,31:688-691.
doi: 10.1038/nbt.2654 pmid: 23929339
[31] Feng Z Y, Zhang B T, Ding W, Liu X D, Yang D L, Wei P L, Cao F Q, Zhu S H, Zhang F, Mao Y F, Zhu J K. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 2013,23:1229-1232.
doi: 10.1038/cr.2013.114 pmid: 23958582
[32] Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu L J. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res, 2013,23:1233-1236.
doi: 10.1038/cr.2013.123
[33] Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks D P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res, 2013,41:e188.
doi: 10.1093/nar/gkt780 pmid: 23999092
[34] Jia H, Wang N. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One, 2014,9:e93806.
pmid: 24710347
[35] Fauser F, Schiml S, Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J, 2014,79:348-359.
doi: 10.1111/tpj.12554 pmid: 24836556
[36] 梁丹, 吴宇轩, 李劲松. CRISPR-Cas9技术在干细胞中的应用. 生命科学, 2015,27(1):93-98.
Liang D, Wu Y X, Li J S. Progress of CRISPR-Cas9 in stem cell research. Chin Bull Life Sci, 2015,27(1):93-98 (in Chinese with English abstract).
[37] Chen K, Gao C. Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep, 2014,33:575-583.
doi: 10.1007/s00299-013-1539-6 pmid: 24277082
[38] Curtin S J, Zhang F, Sander J D, Haun W J, Starker C, Baltes N J, Reyon D, Dahlborg E J, Goodwin M J, Coffman A P, Dobbs D, Joung J K, Voytas D F, Stupar R M. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol, 2011,156:466-473.
doi: 10.1104/pp.111.172981 pmid: 21464476
[39] Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, Han T, Hou W. CRISPR/Cas9-Mediated genome editing in soybean hairy roots. PLoS One, 2015,10:e0136064.
pmid: 26284791
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[14] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[15] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!