作物学报 ›› 2020, Vol. 46 ›› Issue (8): 1291-1300.doi: 10.3724/SP.J.1006.2020.94169
• 研究简报 • 上一篇
甘卓然,石文茜,黎永力,侯智红,李海洋,程群,董利东,刘宝辉,芦思佳()
GAN Zhuo-Ran,SHI Wen-Qian,LI Yong-Li,HOU Zhi-Hong,LI Hai-Yang,CHENG Qun,DONG Li-Dong,LIU Bao-Hui,LU Si-Jia()
摘要:
生物钟基因能够参与调控植物的整个生命进程, 对提高作物产量具有重要的作用。LNK1 (NIGHT LIGHT- INDUCIBLE AND CLOCK-REGULATED 1)、LNK2、RVE4 (REVEILLE 4)、RVE8 (REVEILLE 8)和TOC1 (TIMING OF CAB EXPRESSION 1)是植物中重要的生物钟基因。本研究利用BLAST同源比对和进化树分析的方法分别鉴定AtLNK1、AtLNK2、AtRVE4、AtRVE8和AtTOC1在大豆中的同源基因, 通过qRT-PCR实验证明这些生物钟基因在大豆根、茎、叶等组织中均有表达。成功构建这些基因的CRISPR/Cas9敲除载体, 并利用大豆根毛转化体系成功鉴定出13个基因的CRISPR/CAS9有效靶点。为进一步获得稳定的大豆突变体材料及研究其生物钟基因的功能提供了理论基础。
[1] | 田志喜, 刘宝辉, 杨艳萍, 李明, 姚远, 任小波, 薛勇彪. 大豆分子设计育种成果与展望. 中国科学院院刊, 2018,33:915-922. |
Tian Z X, Liu B H, Yang Y P, Li M, Yao Y, Ren X B, Xue Y B. Update and prospect of soybean molecular module-based designer breeding in China. Bull Chin Acad Sci, 2018,33:915-922 (in Chinese with English abstract). | |
[2] |
Li M W, Xin D, Gao Y, Li K P, Fan K, Muñoz N B, Yung W S, Lam H M. Using genomic information to improve soybean adaptability to climate change. J Exp Bot, 2017,68:1823-1834.
doi: 10.1093/jxb/erw348 pmid: 27660480 |
[3] | Raju S K K, Shao M R, Sanchez R, Xu Y Z, Sandhu A, Graef G, Mackenzie S. An epigenetic breeding system in soybean for increased yield and stability. Plant Biotechnol J, 2018,16:1836-1847. |
[4] | Inoue K, Araki T, Endo M. Circadian clock during plant development. J Plant Res, 2018,131:59-66. |
[5] |
McClung C R. Plant circadian rhythms. Plant Cell, 2006,18:792-803.
doi: 10.1105/tpc.106.040980 pmid: 16595397 |
[6] |
Lu S, Zhao X, Hu Y, Liu S, Nan H, Li X, Fang C, Cao D, Shi X, Kong L, Su T, Zhang F, Li S, Wang Z, Yuan X, Cober E R, Weller J L, Liu B, Hou X, Tian Z, Kong F. Natural variation at the soybean J locus improves adaptation to the tropics and enhances yield. Nat Genet, 2017,49:773-779.
doi: 10.1038/ng.3819 pmid: 28319089 |
[7] |
Inoue K, Araki T, Endo M. Circadian clock during plant development. J Plant Res, 2018,131:59-66.
pmid: 29134443 |
[8] |
Green R M, Tobin E M. Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proc Natl Acad Sci USA, 1999,96:4176-4179.
pmid: 10097183 |
[9] |
Bendix C, Marshall C M, Harmon F G. Circadian clock genes universally control key agricultural traits. Mol Plant, 2015,8:1135-1152.
pmid: 25772379 |
[10] |
Gray J A, Shalit-Kaneh A, Chu D N, Hsu P Y, Harmer S L. The REVEILLE clock genes inhibit growth of juvenile and adult plants by control of cell size. Plant Physiol, 2017,173:2308-2322.
doi: 10.1104/pp.17.00109 pmid: 28254761 |
[11] |
Xie Q, Wang P, Liu X, Yuan L, Wang L, Zhang C, Li Y, Xing H, Zhi L, Yue Z, Zhao C, McClung C R, Xu X. LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator. Plant Cell, 2014,26:2843-2857.
doi: 10.1105/tpc.114.126573 |
[12] |
Müller N A, Zhang L, Koornneef M Jiménez-Gómez J M. Mutations in EID1 and LNK2 caused light-conditional clock deceleration during tomato domestication. Proc Natl Acad Sci USA, 2015,115:7135-7140.
doi: 10.1073/pnas.1801862115 pmid: 29789384 |
[13] |
Müller N A, Wijnen C L, Srinivasan A, Ryngajllo M, Ofner I, Lin T, Ranjan A, West D, Maloof J N, Sinha N R, Huang S, Zamir D, Jiménez-Gómez J M. Domestication selected for deceleration of the circadian clock in cultivated tomato. Nat Genet, 2016,48:89-93.
doi: 10.1038/ng.3447 pmid: 26569124 |
[14] | 高耀辉, 马斌, 肖凤洁, 魏光普. CRISPR/Cas9系统在园林植物中的研究展望. 北方园艺, 2019, (15):133-140. |
Gao Y H, Ma B, Xiao F J, Wei G P. Prospect of research on CRISPR/Cas9 system in garden plants. Nor Hortic, 2019, (15):133-140 (in Chinese with English abstract). | |
[15] | 暴会会, 尹竹君, 王少坤, 马瑞红, 谢俊俊, 张杰, 杨正安. CRISPR-Cas9系统在蔬菜育种上应用研究进展. 江西农业学报, 2019,31(7):38-44. |
Bao H H, Yin Z J, Wang S K, Ma R H, Xie J J, Zhang J, Yang Z A. Research advances in application of CRISPR/Cas9 system in vegetable breeding. Acta Agric Jiangxi, 2019,31(7):38-44 (in Chinese with English abstract). | |
[16] |
Zhang J, Zhu Z, Yue W, Li J, Chen Q, Yan Y, Lei A, Hua J. Establishment of CRISPR/Cas9 mediated knock-in system for porcine cells with high efficiency. Appl Biochem Biotechnol, 2019,189:26-36.
doi: 10.1007/s12010-019-02984-5 pmid: 30859452 |
[17] |
Lin C Y, Su Y H. Genome editing in sea urchin embryos by using a CRISPR/Cas9 system. Dev Biol, 2016,409:420-428.
doi: 10.1016/j.ydbio.2015.11.018 pmid: 26632489 |
[18] |
Cai Y, Wang L, Chen L, Wu T, Liu L, Sun S, Wu C, Yao W, Jiang B, Yuan S, Han T, Hou W. Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant Biotechnol J, 2020,18:298-309.
doi: 10.1111/pbi.13199 pmid: 31240772 |
[19] |
Bao A, Chen H, Chen L, Chen S, Hao Q, Guo W, Qiu D, Shan Z, Yang Z, Yuan S, Zhang C, Zhang X, Liu B, Kong F, Li X, Zhou X, Tran L P, Cao D. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol, 2019,19:131.
doi: 10.1186/s12870-019-1746-6 pmid: 30961525 |
[20] |
Do P T, Nguyen C X, Bui H T, Tran L T N, Stacey G, Gillman J D, Zhang Z J, Stacey M G. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biol, 2019,19:311.
doi: 10.1186/s12870-019-1906-8 pmid: 31307375 |
[21] | 曾栋昌, 马兴亮, 谢先荣, 祝钦泷, 刘耀光. 植物CRISPR/Cas9多基因编辑载体构建和突变分析的操作方法. 中国科学: 生命科学, 2018,48:783-794. |
Zeng D C, Ma X L, Xie X R, Zhu Q L, Liu Y G. A protocol for CRISPR/Cas9-based multi-gene editing and sequence decoding of mutant sites in plants. Sci Sin Vitae, 2018,48:783-794 (in Chinese with English abstract). | |
[22] | 侯智红, 吴艳, 程群, 董利东, 芦思佳, 南海洋, 甘卓然, 刘宝辉. 利用CRISPR/Cas9技术创制大豆高油酸突变系. 作物学报, 2019,45:839-847. |
Hou Z H, Wu Y, Cheng Q, Dong L D, Lu S J, Nan H Y, Gan Z R, Liu B H. Creation of high oleic acid soybean mutation plants by CRISPR/Cas9. Acta Agron Sin, 2019,45:839-847 (in Chinese with English abstract). | |
[23] |
Cheng Q, Dong L D, Gao T J, Liu T F, Li N H, Wang L, Chang X, Wu J J, Xu P F, Zhang S Z. The bHLH transcription factor GmPIB1 facilitates resistance to Phytophthora sojae in Glycine max. J Exp Bot, 2018,69:2527-2541.
doi: 10.1093/jxb/ery103 pmid: 29579245 |
[24] | 解莉楠, 宋凤艳, 张旸. CRISPR/Cas9系统在植物基因组定点编辑中的研究进展. 中国农业科学, 2015,48:1669-1677. |
Xie L N, Song F Y, Zhang Y. Progress in research of CRISPR/Cas9 system in genome targeted editing in plants. Sci Agric Sin, 2015,48:1669-1677 (in Chinese with English abstract). | |
[25] |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012,337:816-821.
doi: 10.1126/science.1225829 pmid: 22745249 |
[26] |
Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet, 2011,45:273-297.
doi: 10.1146/annurev-genet-110410-132430 |
[27] |
Wiedenheft B, Sternberg S H, Doudna J A. RNA-guided genetic silencing systems in bacteria and archaea. Nature, 2012,482:331-338.
doi: 10.1038/nature10886 |
[28] |
Nekrasov V, Staskawicz B, Weigel D, Jones J D, Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol, 2013,31:691-693.
doi: 10.1038/nbt.2655 pmid: 23929340 |
[29] |
Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi J J, Qiu J L, Gao C. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol, 2013,31:686-688.
doi: 10.1038/nbt.2650 pmid: 23929338 |
[30] |
Li J F, Norville J E, Aach J, McCormack M, Zhang D, Bush J, Church G M, Sheen J. Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol, 2013,31:688-691.
doi: 10.1038/nbt.2654 pmid: 23929339 |
[31] |
Feng Z Y, Zhang B T, Ding W, Liu X D, Yang D L, Wei P L, Cao F Q, Zhu S H, Zhang F, Mao Y F, Zhu J K. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res, 2013,23:1229-1232.
doi: 10.1038/cr.2013.114 pmid: 23958582 |
[32] |
Miao J, Guo D, Zhang J, Huang Q, Qin G, Zhang X, Wan J, Gu H, Qu L J. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res, 2013,23:1233-1236.
doi: 10.1038/cr.2013.123 |
[33] |
Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks D P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res, 2013,41:e188.
doi: 10.1093/nar/gkt780 pmid: 23999092 |
[34] |
Jia H, Wang N. Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS One, 2014,9:e93806.
pmid: 24710347 |
[35] |
Fauser F, Schiml S, Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J, 2014,79:348-359.
doi: 10.1111/tpj.12554 pmid: 24836556 |
[36] | 梁丹, 吴宇轩, 李劲松. CRISPR-Cas9技术在干细胞中的应用. 生命科学, 2015,27(1):93-98. |
Liang D, Wu Y X, Li J S. Progress of CRISPR-Cas9 in stem cell research. Chin Bull Life Sci, 2015,27(1):93-98 (in Chinese with English abstract). | |
[37] |
Chen K, Gao C. Targeted genome modification technologies and their applications in crop improvements. Plant Cell Rep, 2014,33:575-583.
doi: 10.1007/s00299-013-1539-6 pmid: 24277082 |
[38] |
Curtin S J, Zhang F, Sander J D, Haun W J, Starker C, Baltes N J, Reyon D, Dahlborg E J, Goodwin M J, Coffman A P, Dobbs D, Joung J K, Voytas D F, Stupar R M. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiol, 2011,156:466-473.
doi: 10.1104/pp.111.172981 pmid: 21464476 |
[39] |
Cai Y, Chen L, Liu X, Sun S, Wu C, Jiang B, Han T, Hou W. CRISPR/Cas9-Mediated genome editing in soybean hairy roots. PLoS One, 2015,10:e0136064.
pmid: 26284791 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[9] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[10] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[11] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[12] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[13] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
[14] | 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752. |
[15] | 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790. |
|