欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (12): 1970-1978.doi: 10.3724/SP.J.1006.2020.04010

• 耕作栽培·生理生化 • 上一篇    下一篇

5个工业大麻品种对5种重金属污染土壤的修复潜力

许艳萍1,2(), 杨明2, 郭鸿彦2, 杨清辉1,*()   

  1. 1云南农业大学农学与生物技术学院, 云南昆明 650201
    2云南省农业科学院经济作物研究所, 云南昆明 650205
  • 收稿日期:2020-01-13 接受日期:2020-08-19 出版日期:2020-09-04 网络出版日期:2020-09-25
  • 通讯作者: 杨清辉
  • 基金资助:
    国家自然科学基金项目(31660351);国家现代农业产业技术体系(麻类作物)建设专项(CARS-19-E05)

Phytoremediation potential of five industrial hemp varieties on five heavy metal polluted soils

Yan-Ping XU1,2(), Ming YANG2, Hong-Yan GUO2, Qing-Hui YANG1,*()   

  1. 1College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
    2Industrial Crop Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China
  • Received:2020-01-13 Accepted:2020-08-19 Published:2020-09-04 Published online:2020-09-25
  • Contact: Qing-Hui YANG
  • Supported by:
    National Natural Science Foundation of China(31660351);China Agriculture Research System for Bast and Leaf Fiber Crops(CARS-19-E05)

摘要:

为探究不同工业大麻品种在苗期与工艺成熟期对铅(Pb)、锌(Zn)、铜(Cu)、镉(Cd)与砷(As)的富集和转运能力。本研究以5个主栽工业大麻品种为试验材料, 开展云南矿区重金属污染农田修复试验。结果表明, 5个工业大麻品种积累5种重金属的能力均较强。根系对5种重金属的富集在工艺成熟期高于苗期; 茎叶对重金属Pb、As和Cd的富集在工艺成熟期高于苗期, 但对Cu、Zn的富集却表现为苗期高于工艺成熟期。转移系数表明, 在苗期, 茎叶对5种重金属的转运系数均>1, 说明其对5种重金属的转运能力均较强; 在工艺成熟期, 5个工业大麻品种的茎叶对Pb、As和Cd的转运能力较强, 对Cu、Zn的转运能力较弱。5个工业大麻品种在工艺成熟期对Pb、As、Cu、Cd和Zn的绝对富集量存在差异, 分别为431.65~644.29、365.14~624.25、180.65~194.06、15.13~24.40、540.07~684.27 g hm -2, 云麻1号和云麻5号对Pb、As、Cd、Zn的绝对富集量最高, 显著高于其他品种。综上所述, 云麻1号和云麻5号富集转运系数和修复效率均高于云麻2号、云麻3号和云麻4号。因此云麻1号和云麻5号为5种重金属的富集能力最强潜力品种, 适宜在云南重金属污染地区推广种植, 为当地土壤重金属污染治理提供了理论参考和技术依据。

关键词: 工业大麻, 重金属, 修复潜力

Abstract:

Uptake and translocation of lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), and arsenic (As) in industrial hemp genotypes were investigated at seedling and physiological maturity, in order to provide an insight for phytoremediation of mining soils in Yunnan. The experiment was conducted using five main varieties of industrial hemp viz., Yunma (ym)1, ym2, ym3, ym4, and ym5 under mining areas of Yunnan. Results showed that uptake and translocation of Pb, Zn, Cu, Cd, and As in all hemp genotypes were high at the seedling stage. Accumulation of Pb, Zn, Cu, Cd, and As contents in hemp roots were higher at physiological maturity as compared to seedling stage. However, comparing to seedling stage, Pb, As, and Cd contents in stems and leaves were higher at physiological maturity stage. Translocation factor coefficients of hemp stem and leaf to all heavy metals were more than 1.0 at seedling stage. At physiological maturity stage, translocation of Pb, As and Cd in stems and leaves of all hemp varieties were higher compared with Cu and Zn. The accumulated contents of Pb, As, Cu, Cd, and Zn in plants were 31.65-644.29, 365.14-624.25, 180.65-194.06, 15.13-24.40, and 540.07-684.27 g hm -2, respectively. However, highest contents of Pb, As, Cd, and Zn were observed in hemp variety Yunma 1 and Yunma 5, which suggested that these two varieties had significantly higher metal accumulation and translocation compared to other varieties. In conclusion, the bioconcentration ratios, translocation factor and phytoremediation ability of hemp variety Yunma 1 and Yunma 5 were higher than those of Yunma 2, Yunma 3, and Yunma 4. These results showed that both Yunma 1 and Yunma 5 were potential candidates for remediation of heavy metal polluted areas in Yunnan.

Key words: industrial hemp, heavy metals, remediation potential

图1

不同工业大麻品种不同时期根系重金属的含量 A: 根系Pb含量; B: 根系As含量; C: 根系Cu的含量; D: 根系Cd的含量; E: 根系Zn的含量。ym1: 云麻1号; ym2: 云麻2号; ym3: 云麻3号; ym4: 云麻4号; ym5: 云麻5号。图中不同字母表示在0.05水平上的差异显著。"

图2

不同工业大麻品种不同时期茎叶重金属的含量 A: 茎叶Pb含量; B: 茎叶As含量; C: 茎叶Cu的含量; D: 茎叶Cd的含量; E: 茎叶Zn的含量。ym1: 云麻1号; ym2: 云麻2号; ym3: 云麻3号; ym4: 云麻4号; ym5: 云麻5号。图中不同字母表示在0.05水平上的差异显著。"

表1

苗期重金属在不同器官的富集系数(BCF)"

品种
Variety
Pb As Cu Cd Zn

Root
茎叶
Stem and leaf

Root
茎叶
Stem and leaf

Root
茎叶
Stem and leaf

Root
茎叶
Stem and leaf

Root
茎叶
Stem and leaf
ym1 0.09 a 0.27 a 0.05 b 0.39 a 0.28 c 0.73 a 0.05 c 1.20 a 0.34 b 0.74 a
ym2 0.08 a 0.22 c 0.08 ab 0.41 a 0.32 a 0.81 a 0.09 c 0.93 a 0.40 a 0.61 a
ym3 0.08 a 0.24 b 0.08 ab 0.42 a 0.30 bc 0.83 a 0.03 c 0.96 a 0.38 a 0.69 a
ym4 0.09 a 0.19 d 0.10 a 0.28 b 0.33 a 0.86 a 0.18 b 0.78 a 0.37 a 0.62 a
ym5 0.09 a 0.26 ab 0.09 a 0.42 a 0.31 ab 0.82 a 0.30 a 1.15 a 0.40 a 0.77 a

表2

苗期重金属在不同器官的转运系数(TF)"

品种
Variety
Pb茎叶/根
Pb TF in stem and leaf/root
As茎叶/根
As TF in stem and leaf/root
Cu茎叶/根
Cu TF in stem and leaf/root
Cd茎叶/根
Cd TF in stem and leaf/root
Zn茎叶/根
Zn TF in stem and leaf/root
ym1 2.93 a 8.68 a 2.65 a 24.88 ab 2.19 a
ym2 2.78 a 5.22 bc 2.53 a 13.81 bc 1.55 b
ym3 2.86 a 5.83 b 2.81 a 32.53 a 1.83 ab
ym4 2.18 b 2.94 c 2.64 a 5.48 c 1.66 ab
ym5 2.93 a 4.96 bc 2.69 a 3.84 c 1.92 ab

表3

工艺成熟期重金属在不同器官的富集系数(BCF)"

品种
Variety
Pb As Cu Cd Zn

Root
茎叶
Stem and leaf

Root
茎叶
Stem and leaf

Root
茎叶
Stem and leaf

Root
茎叶
Stem and leaf

Root
茎叶
Stem and leaf
ym1 0.22 a 0.26 a 0.15 c 0.51 a 0.32 b 0.24 b 0.65 b 0.92 a 0.42 c 0.45 b
ym2 0.13 c 0.27 a 0.37 a 0.30 c 0.32 b 0.28 a 0.81 ab 0.90 a 0.48 bc 0.65 a
ym3 0.15 bc 0.19 ab 0.23 b 0.36 bc 0.39 ab 0.29 a 0.63 b 0.52 b 0.55 ab 0.42 b
ym4 0.19 ab 0.22 ab 0.36 a 0.41 b 0.48 a 0.26 ab 1.09 a 0.80 a 0.58 ab 0.44 b
ym5 0.17 bc 0.18 b 0.31 a 0.48 a 0.46 ab 0.24 b 0.49 b 0.74 a 0.51 a 0.45 b

表4

工艺成熟期重金属在不同器官的转运系数(TF)"

品种
Variety
Pb茎叶/根
Pb TF of stem and leaf/root
As茎叶/根
As TF of stem and leaf/root
Cu茎叶/根
Cu TF of stem and leaf/root
Cd茎叶/根
Cd TF of stem and leaf/root
Zn茎叶/根
Zn TF of stem and leaf/root
ym1 1.21 b 3.30 a 0.76 ab 1.52 ab 1.08 b
ym2 2.02 a 0.77 b 0.89 a 1.20 ab 1.36 a
ym3 1.23 b 1.74 b 0.74 ab 0.91 ab 0.77 d
ym4 1.23 b 1.05 b 0.56 b 0.77 b 0.76 d
ym5 1.03 b 1.48 b 0.54 b 1.77 a 0.88 c

表5

工业大麻对重金属的绝对富集量"

时期
Stage
品种
Variety
Pb As Cu Cd Zn
苗期
Seeding stage
ym1 43.59 a 27.83 a 31.61 b 2.13 a 96.20 a
ym2 29.10 c 23.51 b 26.56 c 1.32 b 63.61 e
ym3 32.18 b 22.79 b 26.93 c 1.38 b 71.32 d
ym4 21.98 d 16.55 c 13.63 d 1.35 b 22.71 c
ym5 42.84 a 29.88 a 34.41 a 2.05 a 92.87 b
工艺成熟期
Physiological maturity stage
ym1 644.29 a 624.25 a 194.06 a 24.40 a 669.15 a
ym2 431.65 d 365.14 c 179.67 a 16.64 b 560.11 b
ym3 477.83 c 393.77 c 197.21 a 15.13 b 577.06 b
ym4 440.33 d 371.86 c 180.65 a 16.35 b 540.07 b
ym5 535.77 b 550.76 b 180.94 a 22.60 a 684.27 a
[1] 刘月莉, 伍钧, 唐亚, 杨刚, 祝亮 . 四川甘洛铅锌矿区优势植物的重金属含量. 生态学报, 2009,29:2020-2026.
Liu Y L, Wu J, Tang Y, Yang G, Zhu L . An investigation of heavy-metal concentration in dominant plant species in a zinc lead mining area in Ganluo County of Sichuan province. Acta Ecol Sin, 2009,29:2020-2026 (in Chinese with English abstract).
[2] 程先锋, 宋婷婷, 陈玉, 魏永明, 沈金祥, 齐武福 . 滇西兰坪铅锌矿区土壤重金属含量的高光谱反演分析. 岩石矿物学杂志, 2017,36(1):60-69.
Cheng X F, Song T T, Chen Y, Wei Y M, Shen J X, Qi W F . Retrieval and analysis of heavy metal content in soil based on measured spectra in the Lanping Zn-Pb mining area, western Yunnan Province. Acta Petrol Mineral, 2017,36(1):60-69 (in Chinese with English abstract).
[3] 戴睿, 李燕燕, 杨少辉 . 土壤重金属治理方案浅析. 技术与市场, 2010,17(7):18.
Dai R, Li Y Y, Yang S H . Analysis of soil heavy metal control scheme. Technol Markets, 2010,17(7):18 (in Chinese).
[4] 冯凤玲, 成杰民, 王德霞 . 蚯蚓在植物修复重金属污染土壤中的应用前景. 土壤通报, 2006,37:809-814.
Feng F L, Cheng J M, Wang D X . Application of earthworm in remediation of heavy metal contaminated soil. Chin J Soil Sci, 2006,37:809-814 (in Chinese with English abstract).
[5] Bona E, Marsano F, Cavaletto M . Proteomic characterization of copper stress response in Cannabis sativa roots. Proteomics, 2007,7:1121-1130.
doi: 10.1002/pmic.200600712 pmid: 17352425
[6] 串丽敏, 赵同科, 郑怀国, 赵静娟, 张晓静 . 土壤重金属污染修复技术研究进展. 环境科学与技术, 2014,37(增刊2):213-222.
Chuan L M, Zhao T K, Zheng H G, Zhao J J, Zhang X J . Research advances in remediation of heavy metal contaminated soils. Environ Sci Technol, 2014,37(S2):213-222 (in Chinese with English abstract).
[7] Macek T, Mackova M, Kas J . Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv, 2000,18:23-34.
doi: 10.1016/s0734-9750(99)00034-8 pmid: 14538117
[8] Huang J W, Chen J J, Breti W R, Cunningham S D . Phytoremediation of lead-contaminated soils: role of syntchetic chelate in lead phytoextraction. Environ Sci Technol, 1997,31:800-805.
doi: 10.1021/es9604828
[9] 刘威, 束文圣, 蓝崇钰 . 宝山堇菜(Viola baoshanensis): 一种新的镉超富集植物. 科学通报, 2003,48:2046-2049.
Liu W, Shu W S, Lan C Y . Viola baoshanensis: a new hyperaccumulator of cadmium. Chin Sci Bull, 2003,48:2046-2049 (in Chinese).
[10] Salt D E, Prince R C, Pickering I J, Raskin I . Mechanisms of cadmium mobility and accumulation in Indian Mustards. Plant Physiol, 1995,10:1427-1433.
[11] 王激清, 张宝悦, 苏德纯 . 修复镉污染土壤的油菜品种的筛选及吸收累积特征研究: 高积累镉油菜品种的筛选(I). 河北北方学院学报: 自然科学版, 2005,21(1):58-61.
Wang J Q, Zhang B Y, Su D C . The study on selection of rape spices in phytoremediated cadmium contaminated soil and their cadmium absorbing characters: Selection of oilseed species with higher cadmium accumulation (I). J Hebei North Univ (Nat Sci Edn), 2005,21(1):58-61 (in Chinese with English abstract).
[12] 辛艳卫, 梁成华, 杜立宇, 吴岩, 张亚男 . 不同玉米品种对镉的富集和转运特性. 农业环境科学学报, 2017,36:839-846.
Xin Y W, Liang C H, Du L Y, Wu Y, Zhang Y N . Accumulation and translocation of cadmium in different maize cultivars. J Agro-Environ Sci, 2017,36:839-846 (in Chinese with English abstract).
[13] Linger P, Mussig J, Fischer H, Kobert J . Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential. Ind Crops Prod, 2002,16:33-42.
doi: 10.1016/S0926-6690(02)00005-5
[14] Marchiol L, Assolari S, Sacco P, Zerbi S . Phytoextraction of heavy metals by canola ( Brassica napus) and radish(Raphanus sativus) grown on multicontaminated soil. Environm Poll, 2004,132:21-27.
doi: 10.1016/j.envpol.2004.04.001
[15] Petr S, Sarka P, Radomíra V, Jing S, Tomas V . Accumulation of heavy metals using Sorghum sp. Chemosphere, 2014,104:15-24.
doi: 10.1016/j.chemosphere.2013.09.079
[16] Ghavri S V, Singh R P . Growth, biomass production and remediation of copper contamination by Jatropha curcas plant in industrial wasteland soil. Environ Biol, 2012,33:207-214.
[17] 黄树焘, 宋静, 骆永明, 余海波, 杨剑虹 . 铜陵杨山冲尾矿库能源植物生产示范基地的特征化. 广西农业科学, 2009,40:691-695.
Huang S T, Song J, Luo Y M, Yu H B, Yang J H . Characterization of production demonstraion base for energy plants in Yangshan Chong copper mine tailing reservoir of Tongling. Guangxi Agric Sci, 2009,40:691-695 (in Chinese with English abstract).
[18] 朱国辉, 罗思施, 李守思, 梁计南, 谢君 . 重金属污染土壤能源甘蔗品种筛选及蔗汁发酵的研究. 可再生能源, 2008,26(2):60-63.
Zhu G H, Luo S S, Li S S, Liang J N, Xie J . Varieties screening of energy sugarcane in heavy metal polluted soils and the study on ethanol fermentation. Renew Energy Resour, 2008,26(2):60-63 (in Chinese with English abstract).
[19] 环境保护部, 国土资源部. 全国土壤污染状况调查公报. 中国环保产业, 2014,36:1689-1692.
Environmental Protection Department, Ministry of Land and Resources. Bulletin of the national survey on soil pollution. China Environ Prot Ind, 2014,36:1689-1692 (in Chinese).
[20] 陈丽莉, 俄胜哲 . 中国土壤重金属污染现状及生物修复技术研究进展. 现代农业科学, 2009,16(3):139-140.
Chen L L, E S Z . Current situation of soil contamination by heavy metals and research advances on the bioremediation techniques in China. Modern Agric Sci, 2009,16(3):139-140 (in Chinese with English abstract).
[21] 代全林, 袁剑刚, 方炜, 杨中艺 . 玉米各器官积累Pb能力的品种间差异. 植物生态学报, 2005,29:992-999.
doi: 10.3773/j.issn.1005-264x.2005.6.020
Dai Q L, Yuan J G, Fang W, Yang Z Y . Differences of Pb accumulation among plant tissues of Zea mays varieties. Acta Phytoecol Sin, 2005,29:992-999 (in Chinese with English abstract).
[22] 张丽红, 徐慧珍, 于青春, 李瑞敏, 马忠社, 曹峰, 李宏亮 . 河北清苑县及周边农田土壤及农作物中重金属污染状况与分析评价. 农业环境科学报, 2010,29:2139-2146.
Zhang L H, Xu H Z, Yu Q C, Li R M, Ma Z S . The investigation and evaluation of the heavy metal pollution in farmland soil and crop in the Qingyuan of Hebei, China. J Agro-Environ Sci, 2010,29:2139-2146 (in Chinese with English abstract).
[23] 邹素敏, 杜瑞英, 文典, 王富华, 张卫杰, 管颐雯 . 不同品种蔬菜重金属污染评价和富集特征研究. 生态环境学报, 2017,26:714-720.
Zou S M, Du R Y, Wen D, Wang F H, Zhang W J . Enrichment characteristics analysis and assessment on heavy metal contamination of different vegetables. Ecol Environ Sci, 2017,26:714-720 (in Chinese with English abstract).
[24] 顾继光 . 不同作物品种对重金属的积累特性及农产品品质安全. 中国科学院研究生院(沈阳应用生态研究所)博士学位论文, 辽宁沈阳, 2003.
Gu J G . Accumulative Characteristics of Heavy Metals by Crops and Quality Safety of Agricultural Products. PhD Dissertation of Institute of Applied Ecology Chinese Academy of Sciences (Shenyang Institute of Applied Ecology), Shenyang, Liaoning, China, 2003 (in Chinese with English abstract).
[25] 杨洋, 陈志鹏, 黎红亮, 廖柏寒, 曾清如 . 两种农业种植模式对重金属土壤的修复潜力. 生态学报, 2016,36:688-695.
doi: 10.5846/stxb201405040883
Yang Y, Chen Z P, Li H L, Liao B H, Zeng Q R . The potential two agricultural cropping patterns for heavy metals from soils. Acta Ecol Sin, 2016,36:688-695 (in Chinese with English abstract).
[26] 鲍桐, 廉梅花, 孙丽娜, 孙铁珩, 苏磊, 雷刚 . 重金属污染土壤植物修复研究进展. 生态环境, 2008,17:858-865.
Bao T, Lian M H, Sun L N, Sun T Y, Su L, Lei G . Research progress on phytoremediation of soils contaminated by heavy metals. Ecol Environ, 2008,17:858-865 (in Chinese with English abstract).
[27] Hammer D, Keller C . Phytoextraction of Cd and Zn with Thlaspi caerulescens in field trials. Soil Use Manage, 2003,19:144-149.
doi: 10.1111/j.1475-2743.2003.tb00295.x
[1] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻非生物逆境胁迫响应基因HCWRKY71表达分析及转化拟南芥[J]. 作物学报, 2021, 47(6): 1090-1099.
[2] 吕冬梅, 朱广龙, 王玥, 施雨, 卢发光, 任桢, 刘昱茜, 顾立峰, 卢海潼, Irshad Ahmad, 焦秀荣, 孟天瑶, 周桂生. 苗期重金属胁迫下蓖麻生长、生理和重金属积累效应[J]. 作物学报, 2021, 47(4): 728-737.
[3] 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274.
[4] 高世武,傅志伟,陈云,林兆里,许莉萍,郭晋隆. 甘蔗热带种金属硫蛋白家族基因的克隆及响应重金属胁迫的表达分析[J]. 作物学报, 2020, 46(02): 166-178.
[5] 汤文光,肖小平,张海林,黄桂林,唐海明,李超,刘胜利,汪柯. 轮耕对双季稻田耕层土壤养分库容及Cd含量的影响[J]. 作物学报, 2018, 44(01): 105-114.
[6] 袁连玉,陈应娟,魏旭,童华荣*. 茶树金属耐受蛋白基因CsMTP11的克隆及功能分析[J]. 作物学报, 2017, 43(05): 708-717.
[7] 王伟,宋雯,尹双义,徐辰武. 江苏省稻米重金属镉检测多级抽样最优试验方案的探讨[J]. 作物学报, 2014, 40(11): 2052-2056.
[8] 唐海明,汤文光,肖小平,罗尊长,张帆,汪柯,杨光立. 冬种黑麦草对6种水稻土重金属含量及晚稻不同器官重金属累积与分配的影响[J]. 作物学报, 2012, 38(06): 1121-1126.
[9] 汤文光, 唐海明, 罗尊长, 汪柯, 杨光立, 肖小平. 不同种植模式对稻田土壤重金属含量及晚稻稻米品质的影响[J]. 作物学报, 2011, 37(08): 1457-1464.
[10] 向言词,官春云,黄璜,严明理,彭秀花. 在铀尾渣污染土中壤添加磷对植物生长及积累重金属的影响[J]. 作物学报, 2010, 36(1): 154-162.
[11] 程旺大;张国平;姚海根;吴伟;汤美玲; 朱祝军; 徐民. 晚粳稻籽粒中As、Cd、Cr、Ni、Pb等重金属含量的基因型与环境效应及其稳定性[J]. 作物学报, 2006, 32(04): 573-579.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!