作物学报 ›› 2021, Vol. 47 ›› Issue (3): 394-404.doi: 10.3724/SP.J.1006.2021.01024
靳义荣1(), 刘金栋2(), 刘彩云1, 贾德新1, 刘鹏1,*(), 王雅美2,*()
JIN Yi-Rong1(), LIU Jin-Dong2(), LIU Cai-Yun1, JIA De-Xin1, LIU Peng1,*(), WANG Ya-Mei2,*()
摘要:
氮元素在粮食作物生长和发育过程起着不可替代的作用。发掘氮素利用效率相关基因对于提升小麦产量、减少环境污染具有重要意义。植株根系构型(root system architecture, RSA)代表着根系的结构及空间造型, 显著受氮素水平影响。本研究在正常供氮和缺氮两种氮素水平下, 对160份来自黄淮冬麦区和北部冬麦区普通小麦品系的根系构型相关性状 (总根长、总根表面积、总根体积、平均根直径和根尖数)进行统计, 并结合小麦660K SNP (single nucleotide polymorphism)芯片基因分型数据对根系相关性状的相对值进行全基因组关联分析, 以期发掘氮素利用效率相关位点。本研究检测到34个与氮素利用效率显著关联的SNP位点, 可解释6.9%~15.4%的表型变异。关联位点在所有染色体均有分布, 主要集中于1A、2B、3B、5B、6A、6B和7A染色体。11个位点与已报道位点重叠或接近, 其他23个位点可能为新的位点。另外, 在3B染色体上发现一个编码E3泛素连接酶的候选基因。
[1] | Chen J G, Zhang Y, Tan Y W, Zhang M, Zhu L L, Xu G H, Fan X R. Agronomic nitrogen-use efficiency of rice can be increased by drivingOsNRT2.1 expression with the OsNAR2.1 promoter. Plant Biotechnol J, 2016,14:1705-1715. |
[2] |
Sandrine R, Alain G, Laurence L. Signal interactions in the regulation of root nitrate uptake. J Exp Bot, 2014,65:5509-5517.
pmid: 25165146 |
[3] |
Maccaferri M, El-Feki W, Nazemi G, Salvi S, Canè M A, Colalongo M C, Stefanelli S, Tuberosa R. Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. J Exp Bot, 2016,67:1161-1178.
pmid: 26880749 |
[4] | Kabir M R, Liu G, Guan P F, Wang F, Khan A A, Ni Z F, Yao Y Y, Hu Z R, Xin M M, Peng H R. Mapping QTLs associated with root traits using two different populations in wheat (Triticum aestivum L.). Euphytica, 2015,206:175-190. |
[5] | de Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X. Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci, 2007,12:474-481. |
[6] | Bishopp A, Lynch J P. The hidden half of crop yields. Nat Plants, 2015,1:15117. |
[7] |
Paez-Garcia A, Motes C M, Scheible W R, Chen R, Blancaflor E B, Monteros M J. Root traits and phenotyping strategies for plant improvement. Plants, 2015,4:334-355.
doi: 10.3390/plants4020334 pmid: 27135332 |
[8] |
Osmont K S, Sibout R, Hardtke C S. Hidden branches: developments in root system architecture. Annu Rev Plant Biol, 2007,58:93-113.
pmid: 17177637 |
[9] |
Liu J D, He Z H, Rasheed A, Wen W E, Yan J, Zhang P Z, Wan Y X, Zhang Y, Xie C J, Xia X C. Genome-wide association mapping of black point reaction in common wheat (Triticum aestivum L.). BMC Plant Biol, 2017,17:220.
pmid: 29169344 |
[10] |
Dong Y, Liu J D, Zhang Y, Geng H W, Awais R, Xiao Y G, Cao S H, Fu L P, Yan J, Wen WW, Zhang Y, Jing R L, Xia X C, He Z H. Genome-wide association of stem water soluble carbohydrates in bread wheat. PLoS One, 2016,11:e0164293.
pmid: 27802269 |
[11] |
Rasheed A, Xia X C, Ogbonnaya F, Mahmood T, Zhang Z, Mujeeb-Kazi A M, He Z H. Genome-wide association for grain morphology in synthetic hexaploid wheats using digital imaging analysis. BMC Plant Biol, 2014,14:12.
pmid: 24400634 |
[12] | Guo J, Shi W P, Zhang Z, Cheng J Y, Sun D Z, Yu J, Li X L, Guo P Y, Hao C Y. Association of yield-related traits in founder genotypes and derivatives of common wheat (Triticum aestivum L.). BMC Plant Biol, 2018,18:387. |
[13] |
Maccaferri M, Ricci A, Salvi S, Milner S G, Noli E, Martelli P L, Casadio R, Akhunov E, Scalabrin S, Vendramin V, Ammar K, Blanco A, Desiderio F, Distelfeld A, Dubcovsky J, Fahima T, Faris J, Korol A, Massi A, Mastrangelo A M, Morgante M, Pozniak C, N’Diaye A, Xu S, Tuberosa R. A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnol J, 2015,13:648-663.
doi: 10.1111/pbi.12288 pmid: 25424506 |
[14] | Bulli P, Zhang J, Chao S, Chen X, Pumphrey M. Genetic architecture of resistance to stripe rust in a global winter wheat germplasm collection. G3: Genes Genom Genet, 2016,8:2237-2253. |
[15] |
Lian X M, Xing Y Z, Yan H, Xu C G, Li XH, Zhang Q F. QTL for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theor Appl Genet, 2005,112:85-96.
pmid: 16189659 |
[16] | An D G, Su J Y, Liu Q Y, Zhu Y G, Tong Y P, Li M J, Jing R L, Lin B, Li Z S. Mapping QTL for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant Soil, 2006,284:73-84. |
[17] |
Quarrie S A, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusić D, Waterman E, Weyen J, Schondelmaier J, Habash Z D, Farmer P, Saker L, Clarkson D T, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M C, Hollington P A, Aragués R, Royo A, Dodig D. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs from grain yield across a range of environments. Theor Appl Genet, 2005,110:865-880.
pmid: 15719212 |
[18] |
Fontaine J X, Ravel C, Pageau K, Heumez E, Dubois F, Hirel B. A quantitative genetic study for elucidating the contribution of glutamine synthetase, glutamate dehydrogenase and other nitrogen-related physiological traits to the agronomic performance of common wheat. Theor Appl Genet, 2009,119:645-662.
doi: 10.1007/s00122-009-1076-4 pmid: 19513687 |
[19] | Cui F, Fan X, Zhao C, Zhang W, Chen M, Ji J, Li J. A novel genetic map of wheat: utility for mapping QTL for yield under different nitrogen treatments. BMC Genet, 2014,15:57. |
[20] | Hoagland D R, Arnon D I. The water-culture method for growing plants without soil. California Agric Exp Station Circular, 1950,347:1-32. |
[21] |
Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W L. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984,81:8014-8018.
pmid: 6096873 |
[22] |
Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006,172:1165-1177.
doi: 10.1534/genetics.105.044586 pmid: 16079235 |
[23] | Kump K L, Bradbury P J, Wisser R J, Buckler E S, Belcher A R, Oropeza-Rosas M A, Balint-Kurti P J. Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet, 2011,43:163. |
[24] | Zhu C, Gore M, Buckler E S, Yu J. Status Prospects of association mapping in plants. Plant Genome, 2008,1:5-20. |
[25] |
Poland J A, Bradbury P J, Buckler E S, Nelson R. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA, 2011,108:6893-6898.
pmid: 21482771 |
[26] | Hao C Y, Wang Y Q, Chao S M, Li T, Liu H X, Wang L F, Zhang X Y. The iSelect 9K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat. Sci Rep (UK), 2017,4:41247. |
[27] |
Wang Y M, Hou J, Liu H, Li T, Wang K, Hao C Y, Liu H, Zhang X Y. TaBT1, affecting starch synthesis and thousand kernel weight, underwent strong selection during wheat improvement. J Exp Bot, 2019,70:1497-511.
doi: 10.1093/jxb/erz032 pmid: 30753656 |
[28] | Chen X J, Min D H, Tauqeer A Y, Hu Y G. Genetic diversity, population structure and linkage disequilibrium in elite Chinese winter wheat investigated with SSR markers. PLoS One, 2012,7:e44510. |
[29] |
Ren D, Fang X, Jiang P, Zhang G, Hu J, Wang X, Wang H. Genetic architecture of nitrogen-deficiency tolerance in wheat seedlings based on a nested association mapping (NAM) population. Front Plant Sci, 2018,9:845.
doi: 10.3389/fpls.2018.00845 pmid: 29997636 |
[30] | 沈兴. 小麦氮营养特性的基因型差异及其遗传解析. 山东农业大学硕士学位论文, 山东泰安, 2018. pp 28-44. |
Shen X. Genotypic Differences and Genetic Analysis in Nitrogen Nutritional Characteristics of Wheat. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2018. pp 28-44 (in Chinese with English abstract). | |
[31] |
Craig A, Ewan R, Mesmar J, Gudipati V, Sadanandom A. E3 ubiquitin ligases and plant innate immunity. J Exp Bot, 2009,60:1123-1132.
doi: 10.1093/jxb/erp059 pmid: 19276192 |
[32] |
Park G G, Park J J, Yoon J M, Yu S N. An GH A RING finger E3 ligase gene, Oryza sativa Delayed Seed Germination 1 (OsDSG1), controls seed germination and stress responses in rice. Plant Mol Biol, 2010,74:467-478.
doi: 10.1007/s11103-010-9687-3 pmid: 20878348 |
[33] |
Semagn K, Babu R, Hearne S, Olsen M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed, 2014,33:1-14.
doi: 10.1007/s11032-013-9917-x |
[34] |
Rasheed A, Hao Y F, Xia X C, Khan A, Xu Y B, Varshney R K, He Z H. Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol Plant, 2017,10:1047-1064.
doi: 10.1016/j.molp.2017.06.008 pmid: 28669791 |
[35] |
Long Y M, Chao W S, Ma G J, Xu S S, Qi L L. An innovative SNP genotyping method adapting to multiple platforms and throughputs. Theor Appl Genet, 2016,130:597-607.
doi: 10.1007/s00122-016-2838-4 pmid: 27942775 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[3] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
[4] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[5] | 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137. |
[6] | 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214. |
[7] | 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238. |
[8] | 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123. |
[9] | 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261. |
[10] | 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274. |
[11] | 雷维, 王瑞莉, 王刘艳, 袁芳, 孟丽姣, 邢明礼, 徐璐, 唐章林, 李加纳, 崔翠, 周清元. 甘蓝型油菜容重及其相关性状的全基因组关联分析[J]. 作物学报, 2021, 47(11): 2099-2110. |
[12] | 谢磊, 任毅, 张新忠, 王继庆, 张志辉, 石书兵, 耿洪伟. 小麦穗发芽性状的全基因组关联分析[J]. 作物学报, 2021, 47(10): 1891-1902. |
[13] | 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502. |
[14] | 荐红举, 霍强, 高玉敏, 李阳阳, 谢玲, 魏丽娟, 刘列钊, 卢坤, 李加纳. 用全基因组关联分析筛选甘蓝型油菜叶片叶绿素含量候选基因[J]. 作物学报, 2020, 46(10): 1557-1565. |
[15] | 王艳,易军,高继平,张丽娜,杨继芬,赵艳泽,辛威,甄晓溪,张文忠. 不同叶龄蘖、穗氮肥组合对粳稻产量及氮素利用的影响[J]. 作物学报, 2020, 46(01): 102-116. |
|