欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (3): 405-415.doi: 10.3724/SP.J.1006.2021.01049

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析

岳洁茹1,2,3(), 白建芳2,3(), 张风廷2,3, 郭丽萍2,3, 苑少华2,3, 李艳梅2,3, 张胜全2,3, 赵昌平2,3,*(), 张立平1,2,3,*()   

  1. 1北京农学院植物科学技术学院, 北京 102206
    2北京市农林科学院北京杂交小麦工程技术研究中心, 北京 100097
    3杂交小麦分子遗传北京市重点实验室, 北京 100097
  • 收稿日期:2020-06-12 接受日期:2020-10-14 出版日期:2021-03-12 网络出版日期:2020-10-28
  • 通讯作者: 赵昌平,张立平
  • 作者简介:岳洁茹, E-mail: 1041705041@qq.com;|白建芳, E-mail: baijianfang1313@yahoo.com
  • 基金资助:
    国家重点研发计划项目(2018YFD0100904);北京市优秀人才项目;北京市农林科学院杰出科学家项目资助(JKZX201907)

Cloning and potential function analysis of ascorbic peroxidase gene of hybrid wheat in seed aging

YUE Jie-Ru1,2,3(), BAI Jian-Fang2,3(), ZHANG Feng-Ting2,3, GUO Li-Ping2,3, YUAN Shao-Hua2,3, LI Yan-Mei2,3, ZHANG Sheng-Quan2,3, ZHAO Chang-Ping2,3,*(), ZHANG Li-Ping1,2,3,*()   

  1. 1College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
    2Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
    3Municipal Key Laboratory of the Molecular Genetics of Hybrid Wheat, Beijing 100097, China
  • Received:2020-06-12 Accepted:2020-10-14 Published:2021-03-12 Published online:2020-10-28
  • Contact: ZHAO Chang-Ping,ZHANG Li-Ping
  • Supported by:
    National Key Research and Development Program of China(2018YFD0100904);Beijing Excellent Talents Project;Outstanding Scientist Program of Beijing Academy of Agricultural and Forestry Sciences(JKZX201907)

摘要:

以BS型二系杂交小麦BS1453/11GF5135及其BS1453 (母本)、11GF5135 (父本)的种子为材料, 在BS1453/11GF5135中通过同源克隆获得抗坏血酸过氧化物酶基因TaAPX。该基因包含一个832 bp的ORF, 共编码277个氨基酸。通过进一步生信分析预测miRNA与TaAPX基因的互作关系, 发现TaAPX基因可能受miR396等抗逆及种子活力相关miRNAs的调控。另外通过蛋白互作预测分析, 发现APX蛋白主要与氧化还原相关的酶互作反应。通过对不同老化时间的父母本及杂交种的胚进行qPCR及酶活性分析, 发现TaAPX基因在杂交种及亲本中的表达趋势是先被诱导上调表达, 后下调表达, 但杂交种子内TaAPX基因的表达量在第7天才开始下降, 而亲本种子内TaAPX基因的表达量在第5天开始下降, 且miR396与TaAPX互为拮抗作用。随着老化时间的延长, 亲本种子内APX酶活性表现为下降趋势, 杂交种子内APX酶活性在第3天呈短暂下降趋势, 随后上升, 第9天开始下降, 表明在老化条件下杂交种子内APX酶清除体内过氧化物的能力高于亲本, 即杂交种抗老化能力高于其父母本, 且TaAPX基因对种子活力的调控是一个复杂的多因素参与的调控过程。本研究为进一步研究BS型杂交小麦种子活力的分子调控机理奠定了一定的基础。

关键词: BS型杂交小麦, 人工老化, 抗坏血酸过氧化物酶, 基因克隆, 表达分析

Abstract:

In this study, the seeds of two-line hybrid wheat of BS-type BS1453/11GF5135 and its parents BS1453 (female parent) and 11GF5135 (male parent) were used as materials, and the ascorbate peroxidase gene (TaAPX) was obtained by homologous cloning in BS1453/11GF5135. The gene contains an open reading frame (ORF) of 832 bp, which encoded a total of 277 amino acids. The interaction between miRNAs and TaAPX was predicted by bioinformatics analysis, and the results showed that TaAPX may be regulated by miR396 and other miRNAs that related to stress resistance and seed viability. In addition, it was found that APX protein mainly interacted with redox-related enzymes via protein interaction prediction analysis. qPCR and enzyme activity analysis were conducted on embryos of parents and hybrid at different aging time, it was found that the expression trend of TaAPX gene in hybrid and parents were first up-regulated and then down-regulated. However, the expression of TaAPX gene in hybrid seeds peaked on the seventh day, and it began to decline in parents seeds on the fifth day. There was an antagonistic effect between miR396 and TaAPX. With the increase of aging time, the activity of APX enzyme in parents seeds showed a downtrends, while it showed a temporary downtrends on the third day in hybrid seeds, then it increased and began to decline on the ninth day. It was suggested that the ability of APX enzyme to remove peroxides in the hybrid seeds was higher than that in the parents seeds under the aging condition, that is, the anti-aging ability of hybrid was higher than that of the parents. Moreover, the regulation of seed activity by TaAPX gene was a complex multi-factor regulation process. This study laid a foundation for the further research on the molecular regulation mechanism of the seed vigor of BS type hybrid wheat.

Key words: BS type hybrid wheat, artificial aging, ascorbate peroxidase, gene cloning, expression analysis

表1

TaAPX基因克隆及qPCR引物序列"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
退火温度
Annealing
temperature (℃)
引物用途
Primer purpose
APX-F TATCTCTAGAGGATCCATGGCGGCTCCGGT 71.37 扩增基因引物序列
Amplified gene primer sequences
APX-R TGCTCACCATGGATCCTTACTTGCTCCTCTTGGAAGCCTCG 72.27
APX-qF CAACCGTTGAGTTCATCCCTG 57.8 荧光定量PCR引物序列
RT-qPCR primer sequences
APX-qR TGGTGCGCCTTTCTTAGCAT 60
18S rRNA-qF CGCGCTACGGCTTTGACCTA 56 内参引物序列
Internal reference primer sequences
18S rRNA-qR CGGCAGATTCCCACGCGTTACG 58
miR396-qF CGGTCTTCCACAGCTTTCTT 75 荧光定量PCR引物序列
RT-qPCR primer sequences
miR396-qR GTGCAGGGTCCGAGGT 76
U6snRNA-qF CAAGGATGACACGCAAATTCG 80 内参引物序列
Internal reference primer sequences
U6snRNA-qR GTGCAGGGTCCGAGGT 82.5

图1

亲本及杂交种籽粒形态"

图2

人工老化前后种子萌发表型和发芽统计 A: 老化处理和未老化处理的杂交种及父母本种子的萌发表型。B: 人工老化处理对杂交种及父母本的发芽率、根长、芽长的影响。发芽率在(P<0.01)时差异极显著, 用**表示; 根长在(P < 0.05)时差异显著, 用*表示; 芽长差异不显著。0~5 d: 老化处理的天数。"

图3

TaAPX基因的扩增产物 M: DL2000; 1: BS1453扩增产物; 2: 11GF5135扩增产物; 3: BS1453/11GF5135扩增产物。"

图4

TaAPX氨基酸多序列比对分析"

图5

父母本和杂交种CDS序列比对分析"

图6

TaAPX蛋白的三级结构及磷酸化位点预测 A: TaAPX蛋白的三级结构; B: TaAPX蛋白磷酸化位点的预测。"

图7

TaAPX蛋白系统进化分析"

图8

TaAPX基因与miRNA和蛋白的互作模型及互作位点 A: TaAPX基因与miRNA的互作图; B: miRNA的发卡结构图; C: 与TaAPX蛋白互作的蛋白的网络模型; D: TaAPX基因与miR396的互作位点。"

图9

不同老化时间下TaAPX基因和miR396在杂交种和亲本种子胚中的表达模式分析 A: 不同老化条件下, TaAPX基因和miR396在父本种子胚中的表达; B: 不同老化条件下, TaAPX基因和miR396在母本种子胚中的表达; C: 不同老化条件下, TaAPX基因和miR396在杂交种种子胚中的表达。0~9 d: 老化处理的天数。"

图10

不同老化时间下杂交种和亲本内APX酶活性分析 A: 不同老化条件下, APX酶活在父本种子胚中的变化; B: 不同老化条件下, APX酶活在母本种子胚中的变化; C: 不同老化条件下, APX酶活在杂交种种子胚中的变化。0~9 d: 老化处理的天数。"

[1] Lu Z, Liu D, Liu S. Two rice cytosolic ascorbate peroxidase differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Rep, 2008,26:1909-1917.
doi: 10.1007/s00299-007-0395-7 pmid: 17571267
[2] Wang C, Yang C P, Wang Y C. Cloning and expression analysis of an APX gene from Betula platyphylla. J Northeast Agric Univ, 2009,37:79-88.
[3] 张保青, 邵敏, 黄玉新, 黄杏, 宋修鹏, 陈虎, 王盛, 谭秦亮, 杨丽涛, 李杨瑞. 甘蔗抗坏血酸过氧化物酶基因ScAPX1的克隆和表达分析. 生物技术通报, 2019,35:31-37.
Zhang B Q, Shao M, Huang Y X, Huang X, Song X P, Chen H, Wang S, Tan Q L, Yang L T, Li Y R. Cloning and expression analysis of sugarcane ascorbate peroxidase gene ScAPX1. Biotechnol Bull, 2019,35:31-37 (in Chinese with English abstract).
[4] Shia W M, Muramotoa Y, Uedaa A, Takabea T. Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene, 2001,273:23-27.
[5] Shafi A, Gill T, Zahoor I, Ahuja P S, Sreenivasulu Y, Kumar S, Singh K. Ectopic expression of SOD andAPX genes in Arabidopsis alters metabolic pools and genes related to secondary cell wall cellulose biosynthesis and improve salt tolerance. Mol Biol Rep, 2019,46:1985-2002.
doi: 10.1007/s11033-019-04648-3 pmid: 30706357
[6] 王晗, 刘涛, 何红红, 梁国平, 马宗桓, 毛娟, 陈佰鸿. 葡萄APX基因家族的鉴定与表达分析. 果树学报, 2020,37:472-484.
Wang H, Liu T, He H H, Liang G P, Ma Z H, Mao J, Chen B H. Identification and expression analysis of APX gene family in grape. J Fruit Sci, 2020,37:472-484 (in Chinese with English abstract).
[7] Cunha J R, Carvalho Fabrício E L, Lima-Neto M C, Jardim- Messeder D, Cerqueira João V A, Martins M O, Fontenele A V, Márgis-Pinheiro M, Komatsu S, Silveira Joaquim A G. Proteomic and physiological approaches reveal new insights for uncover the role of rice thylakoidalAPX in response to drought stress. J Proteomics, 2019,192:125-136.
pmid: 30170113
[8] 舒英杰, 陶源, 王爽. 高等植物种子活力的生物学研究进展. 西北植物学报, 2013,33:1709-1716.
Shu Y J, Tao Y, Wang S. Advances in biological research on seed vigor of higher plants. Acta Bot Boreali-Occident Sin, 2013,33:1709-1716 (in Chinese with English abstract).
[9] 赵昌平. 中国杂交小麦研究现状与趋势. 中国农业科技导报, 2010,12:5-8.
Zhao C P. Status and trends of hybrid wheat research in China. J Agric Sci Technol, 2010,12:5-8 (in Chinese with English abstract).
[10] 张自阳, 姜小苓, 茹振钢, 李淦, 刘明久. 人工老化对杂交小麦种子生理特性和种子活力变化的影响. 江苏农业科学, 2013,41(2):81-83.
Zhang Z Y, Jiang X L, Ru Z G, Li G, Liu M J. Effects of artificial aging on physiological characteristics and seed vigor of hybrid wheat. Jiangsu Agric Sci, 2013,41(2):81-83 (in Chinese with English abstract).
[11] 宋松泉. 种子生物学研究指南. 北京: 科学出版社, 2005. pp 92-93(in Chinese).
Song S Q. Guide to Seed Biology Research, Beijing: Science Press, 2005. pp 92-93(in Chinese).
[12] 耿晓丽, 藏新山, 王飞, 张丽媛, 田雪军, 倪中福, 姚颖垠, 胡兆荣, 辛明明, 彭惠茹, 孙其信. 小麦耐热相关转录因子基因TabZIP28的分离及功能分析. 农业生物技术学报, 2016,24:157.
Geng X L, Zang X S, Wang F, Zhang L Y, Tian X J, Ni Z F, Yao Y G, Hu Z R, Xin M M, Peng H R, Sun Q X. Isolation and functional analysis of wheat heat resistant transcription factor gene TabZIP28. J Agric Biotechnol, 2016,21:157 (in Chinese with English abstract).
[13] 刘伟灿. 干旱胁迫下大豆miR396基因家族表达分析及功能鉴定. 吉林农业大学博士学位论文, 吉林长春, 2016.
Liu W C. Expression Analysis and Functional Identification of Soybean miR396 Gene Family under Drought Stress. PhD Dissertation of Jilin Agricultural University, Changchun, Jilin, China, 2016 (in Chinese with English abstract).
[14] Yu Y H, Ni Z Y, Wang Y, Wan H N, Hu Z, Jiang Q Y, Sun X J, Zhang H. Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana. Plant Sci, 2019,285:68-78.
pmid: 31203895
[15] 何小梦. miR166和miR319在黄瓜响应盐胁迫中的功能分析. 华中农业大学硕士学位论文, 湖北武汉, 2019.
He X M. Functional Analysis of miR166 and miR319 in Cucumber Response to Salt Stress. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2019 (in Chinese with English abstract).
[16] 宋超. 水稻种子人工老化过程中抗氧化系统的变化. 中国农业科学院研究生院硕士学位论文, 北京, 2012.
Song C. Changes of Antioxidant System during Artificial Aging of Rice Seeds. MS Thesis of Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China, 2012 (in Chinese with English abstract).
[17] 刘建军, 马俊华, 孟俊文, 王自霞, 周小梅. 玉米种子老化过程中抗氧化酶活性的变化. 山西农业科学, 2013,41:907-910.
Liu J J, Ma J H, Meng J W, Wang Z X, Zhou X M. Changes of antioxidant enzyme activity in maize seed aging. J Shanxi Agric Sci, 2013,41:907-910 (in Chinese with English abstract).
[18] 周洁. microRNA 167基因在母系控制胚胎和种子发育中的重要作用. 上海师范大学硕士学位论文, 上海, 2019.
Zhou J. microRNA 167 Plays an Important Role in Maternal Control of Embryo and Seed Development. MS Thesis of Shanghai Normal University, Shanghai, China, 2019 (in Chinese with English abstract).
[19] Jasdeep C P, Harinder V, Koushik B, Rahul S J, Gyanendra P S. Molecular cloning and in-silico characterization of high temperature stress responsivepAPX gene isolated from heat tolerant Indian wheat cv. Raj 3765. BMC Res Notes, 2014,7:7137.
[20] 王爱君. 芥菜种子超干处理及老化的生理生化特性研究. 西南大学硕士学位论文, 重庆, 2011.
Wang A J. Study on Physiological and Biochemical Characteristics of Mustard Seeds Treated with Super-Drying and Aging. MS Thesis of Southwest University, Chongqing, China, 2011 (in Chinese with English abstract).
[21] 王玉红. 高羊茅、老芒麦、燕麦种子劣变与膜结构和透性关系的研究. 中国农业大学硕士学位论文, 北京, 2008.
Wang Y H. Study on the Relationship between Seed Deterioration and Membrane Structure and Permeability of Tall Fesco, Old Mann-Wheat and Oat. MS Thesis of China Agricultural University, Beijing, China, 2008 (in Chinese with English abstract).
[22] 杨江伟. 马铃薯干旱相关microRNA的鉴定及功能研究. 甘肃农业大学博士学位论文, 甘肃兰州, 2015.
Yang J W. Identification and Functional Study of Drought- Related microRNA in Potato. PhD Dissertation of Gansu Agricultural University, Lanzhou, Gansu, China, 2015 (in Chinese with English abstract).
[23] 龚淑敏. 甜玉米种子活力相关microRNA的鉴定与分析. 中国计量学院硕士学位论文, 浙江杭州, 2015.
Gong S M. Identification and Analysis of microRNA Related to Seed Vigor of Sweet Corn. MS Thesis of China Jiliang University, Hangzhou, Zhejiang, China, 2015 (in Chinese with English abstract with English abstract).
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[4] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[5] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[6] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[7] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[8] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[9] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[10] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[11] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[12] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[13] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[14] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[15] 李国纪, 朱林, 曹金山, 王幼宁. 大豆GmNRT1.2aGmNRT1.2b基因的克隆及功能探究[J]. 作物学报, 2020, 46(7): 1025-1032.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!