欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (3): 416-426.doi: 10.3724/SP.J.1006.2021.04108

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系

唐婧泉(), 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄*   

  1. 华中农业大学作物遗传改良国家重点实验室 / 国家油菜工程技术研究中心, 湖北武汉 430070
  • 收稿日期:2020-05-15 接受日期:2020-08-19 出版日期:2021-03-12 网络出版日期:2020-09-08
  • 通讯作者: 沈金雄
  • 作者简介:E-mail: 519736700@qq.com
  • 基金资助:
    国家自然科学基金项目资助(31871654)

Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L.

TANG Jing-Quan(), WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong*   

  1. National Key Laboratory of Crop Genetic Improvement / National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2020-05-15 Accepted:2020-08-19 Published:2021-03-12 Published online:2020-09-08
  • Contact: SHEN Jin-Xiong
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31871654)

摘要:

蔗糖非发酵相关蛋白激酶(sucrose non-fermenting-1-related protein kinase, SnRK)是植物中广泛存在的丝氨酸/苏氨酸蛋白激酶, 它们参与调控植物的信号传导、逆境响应和种子生长等生物学过程。为了解析甘蓝型油菜(Brassica napus L.)中SnRK基因家族的性质及其对种子含油量的影响, 本研究对BnSnRK基因家族的系统进化、基因结构、蛋白质理化性质、保守基序、蛋白质二级结构、顺式作用元件和亚细胞定位预测等进行分析, 并通过候选基因关联分析、单倍型分析和qRT-PCR筛选影响种子含油量的BnSnRK基因。结果显示, 鉴定得到92个BnSnRK成员, 分为3个亚族, 分布于甘蓝型油菜19条染色体上, 亚族之间蛋白质理化性质差异显著。多数基因拥有7~14个外显子; 同一亚族的motif分布情况更相似。BnSnRK家族主要在细胞质中表达, 蛋白质二级结构主要以α-螺旋和不规则卷曲为主。关联分析筛选出与油菜种子含油量相关的12个家族成员, 基因BnaC02g10730D可能负向调控甘蓝型油菜种子含油量, 基因BnaA07g12290D、BnaA10g22850D、BnaA08g18050D、BnaC04g44390D可能正向调控甘蓝型油菜种子含油量。不同环境之间种子含油量差异显著, 且与含油量相关的12个成员均含有MYB、MYC和ABA响应元件, 环境特异的含油量关联基因可能与植物非生物胁迫响应相关。本研究为BnSnRK基因功能验证及育种工作提供了理论参考。

关键词: 甘蓝型油菜, 种子含油量, 蔗糖非发酵相关蛋白激酶, 关联分析, 生物信息分析

Abstract:

Sucrose non-fermenting-1-related protein kinase (SnRK) is a widely existed serine/threonine protein kinase in plants, which is involved in the regulation of biological processes such as signal transduction, stress response and seed growth. In order to explore the mechamism of the SnRK gene families and its influence on the seed oil content of Brassica napus L., BnSnRK gene family system evolution, gene structure, physical and chemical properties of protein, conservative motif, protein secondary structure, cis-element and subcellular localization prediction were analyzed, and BnSnRK genes affecting oil content of seeds were screened by candidate genes association analysis, haplotype analysis and qRT-PCR. The results showed that 92 BnSnRK members were identified and divided into three subgroups, distributed on 19 chromosomes of Brassica napus L. The physical and chemical properties of proteins were significantly different among subgroups. Most genes had 7-14 exons; the motifs of the same subfamily were more similar in distribution. The BnSnRK family was mainly expressed in the cytoplasm. 12 family members related to the oil content were screened out by association analysis in rapeseed. Genes BnaC02g10730D might negatively regulate seed oil content, while genes BnaA07g12290D, BnaA10g22850D, BnaA08g18050D, and BnaC04g44390D might positively regulate seed oil content of Brassica napus L. There were significant differences in seed oil content under different environments, and 12 oil-related members all contained MYB, MYC and ABA response elements. Environment-specific oil-related genes might be related to plant abiotic stress response. This study provides a theoretical basis for BnSnRK gene functional verification and breeding.

Key words: Brassica napus, seed oil content, sucrose non-fermenting-1-related protein kinase, association analysis, bioinformation analysis

图1

基于BnSnRK的油菜种子含油量和脂肪酸组分的关联分析 图示为较宽松筛选条件下的关联分析结果汇总。点状标注共8层, 从内圈到外圈的表型为含油量、棕榈酸、硬脂酸、油酸、亚油酸、亚麻酸、芥酸、花生烯酸。正方形标注表示18碳类脂肪酸组分。"

附图2

italic>SnRK亚家族的理化性质比较"

附表1

BnSnRK蛋白二级结构分析"

结构类型
Structure type
BnSnRK1 BnSnRK2 BnSnRK3
最小值
Minimum
最大值
Maximum
标准差
Standard deviation
最小值
Minimum
最大值
Maximum
标准差
Standard deviation
最小值
Minimum
最大值
Maximum
标准差
Standard deviation
α-螺旋
Alpha helix
31.62 34.83 0.98 31.58 45.50 3.52 31.62 41.12 2.14
β-转角
Beta angle
5.85 7.44 0.58 4.14 8.65 1.29 8.14 12.56 0.96
不规则卷曲
Irregular crimp
40.70 44.92 1.30 34.05 43.09 2.50 29.95 39.92 2.50
延伸链
Extending chain
15.82 18.96 0.91 13.01 20.35 1.83 15.73 21.10 1.22

附图3

BnSnRK基因家族成员富集分析"

附图1

SnRK基因家族亚细胞定位预测"

附图4

BnSnRK家族启动子顺式作用元件分析 MYB: MYB转录因子响应元件;MYC: MYC转录因子响应元件;MBS: MYB结合位点。"

图2

BnSnRK基因家族代表性成员的系统进化树、CDD保守结构和基因结构构成 BnSnRK基因家族分为3个亚族, 红色区域为SnRK1亚族, 蓝色区域为SnRK2亚族, 黄色区域为SnRK3亚族。"

附图5

BnSnRK部分成员的保守基序分析"

图10

附图6 E4环境含油量关联分析的曼哈顿图"

表1

重复检测到的油菜种子含油量关联位点"

基因名称
Gene name
环境
Environment
标记
Marker
染色体
Chromosome
LOD值
LOD value
阈值
-log10 (P)
表型贡献率
R2 (%)
单倍型频率
Haplotype frequency
BnaA07g12290D E2 s5667 A7 3.79 4.53 7.79 0.42
BnaA10g22850D E2 s7970 A10 4.50 5.33 12.95 0.30
BnaA07g12290D E4 s5664 A7 3.42 4.14 1.99 0.48
BnaA07g12290D E4 s5675 A7 4.46 5.23 3.07 0.28
BnaA10g22850D E4 s8059 A10 5.44 6.26 6.70 0.11
BnaA10g22850D E4 s8018 A10 8.16 9.06 6.34 0.09
BnaA07g12290D E5 s5674 A7 5.07 5.87 4.16 0.28

附图7

单倍型分析箱线图 单倍型ACT和单倍型CTC分别为基因BnaA10g28850D含油量最低和最高的单倍型,在E2、E4、E5环境中用绿箱体表示;单倍型GGGT和TAAC分别为基因BnaA07g12290D的含油量最低和最高单倍型,在3个环境中用蓝色箱体表示;每个环境下的边框和线用不同颜色区分。"

附表2

单倍型分析的多重比较"

因变量: 含油量
Dependent variable: oil content
(I) 单倍型
Haploid type
(J) 单倍型
Haploid type
平均差异
Average difference
标准误
Standard error
显著性
Significant
BnaA07g12290D GAGT GGAC -0.48587 0.59894 0.418
GGGT 0.31362 0.59408 0.598
TAAC -1.04697 0.56187 0.063
GGAC GAGT 0.48587 0.59894 0.418
GGGT 0.79949* 0.37903 0.035
TAAC -0.5611 0.32624 0.086
GGGT GAGT -0.31362 0.59408 0.598
GGAC -0.79949* 0.37903 0.035
TAAC -1.36059* 0.31722 0.000
TAAC GAGT 1.04697 0.56187 0.063
GGAC 0.5611 0.32624 0.086
GGGT 1.36059* 0.31722 0.000
BnaA10g22850D ACT CTC -2.57628* 0.44087 0.000
CTT -1.01843 0.85095 0.232
CTC ACT 2.57628* 0.44087 0.000
CTT 1.55785* 0.76008 0.041
CTT ACT 1.01843 0.85095 0.232
CTC -1.55785* 0.76008 0.041

图3

含油量相关候选基因在甘蓝型油菜种子中的表达分析 A: qRT-PCR分析BnSnRK基因家族中含油量相关候选基因在油菜幼嫩种子中的表达; B: 全部候选基因的相对表达。"

附图8

SnRK基因家族染色体位置分布图 图中BnSnRK1、BnSnRK2和BnSnRK3亚族的成员名称分别用绿、红、黑表示,没有成员分布的Random染色体未出现在图中。"

图4

甘蓝型油菜SnRK基因家族同源比对图(A)及甘蓝、甘蓝型油菜和白菜3个物种的共线联合比对关系(B) A图中浅蓝色背景线为甘蓝型油菜SnRK基因家族成员之间的共线性基因对, 彩色线条将可能与甘蓝型油菜种子含油量关联的基因成员高亮表示。B图中灰色背景线代表全基因组中的共线性区块, 高亮线条代表BnSnRK基因家族成员在3个物种间的共线性关系。"

[1] Halford N G, Hardie D G. SNF1-related protein kinases: global regulators of carbon metabolism in plants? Plant Mol Biol, 1998,37:735-748.
doi: 10.1023/a:1006024231305 pmid: 9678569
[2] Halford N G, Hey S, Jhurreea D, Laurie S, McKibbin R S, Paul M, Zhang Y. Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase. J Exp Bot, 2003,54:467-475.
doi: 10.1093/jxb/erg038 pmid: 12508057
[3] Harmon A C, Gribskov M, Gubrium E, Harper J F. The CDPK superfamily of protein kinases. New Phytol, 2001,151:175-183.
[4] Jossier M, Bouly J P, Meimoun P, Arjmand A, Lessard P, Hawley S, Grahame Hardie D, Thomas M. SnRK1 (SNF1-related kinase 1) has a central role in sugar and ABMcA signalling in Arabidopsis thaliana. Plant J, 2009,59:316-328.
doi: 10.1111/j.1365-313X.2009.03871.x pmid: 19302419
[5] Halford N G, Hey S J. Snf1-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem J, 2009,419:247-259.
doi: 10.1042/BJ20082408 pmid: 19309312
[6] Emanuelle S, Hossain M I, Moller I E, Pedersen H L, van de Meene A M, Doblin M S, Koay A, Oakhill J S, Scott J W, Willats W G, Kemp B E, Bacic A, Gooley P R, Stapleton D I. SnRK1 fromArabidopsis thaliana is an atypical AMPK. Plant J, 2015,82:183-192.
pmid: 25736509
[7] Kulik A, Wawer I, Krzywińska E, Bucholc M, Dobrowolska G. SnRK2 protein kinases—key regulators of plant response to abiotic stresses. OMICS, 2011,15:859-872.
pmid: 22136638
[8] Anderberg R J, Walker-Simmons M K. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc Natl Acad Sci USA, 1992,89:10183-10187.
[9] Julkowska M M, McLoughlin F, Galvan-Ampudia C S, Rankenberg J M, Kawa D, Klimecka M, Haring M A, Munnik T, Kooijman E E, Testerink C. Identification and functional characterization of theArabidopsis Snf1-related protein kinase SnRK2.4 phosphatidic acid-binding domain. Plant Cell Environ, 2015,38:614-624.
doi: 10.1111/pce.12421 pmid: 25074439
[10] Zhao Y, Zhang Z, Gao J, Wang P, Hu T, Wang Z, Hou Y J, Wan Y, Liu W, Xie S, Lu T, Xue L, Liu Y, Macho A P, Tao W A, Bressan R A, Zhu J K. Arabidopsis duodecuple mutant of PYL ABA receptors reveals PYL repression of ABA-independent SnRK2 activity. Cell Rep, 2018,23:3340-3351.
pmid: 29898403
[11] Kim K N, Cheong Y H, Gupta R, Luan S. Interaction specificity ofArabidopsis calcineurin B-like calcium sensors and their target kinases. Plant Physiol, 2000,124:1844-1853.
pmid: 11115898
[12] Zhang H, Yang B, Liu W Z, Li H, Wang L, Wang B, Deng M, Liang W, Deyholos M K, Jiang Y Q. Identification and characterization of CBL and CIPK gene families in canola (Brassica napus L.). BMC Plant Biol, 2014,14:8.
pmid: 24397480
[13] Zhao J, Yu A, Du Y, Wang G, Li Y, Zhao G, Wang X, Zhang W, Cheng K, Liu X, Wang Z, Wang Y. Foxtail millet (Setaria italica (L.) P. Beauv) CIPKs are responsive to ABA and abiotic stresses. PLoS One, 2019,14:e0225091.
doi: 10.1371/journal.pone.0225091 pmid: 31714948
[14] de la Torre F, Gutiérrez-Beltrán E, Pareja-Jaime Y, Chakravarthy S, Martin G B, del Pozo O. The tomato calcium sensor Cbl10 and its interacting protein kinase Cipk6 define a signaling pathway in plant immunity. Plant Cell, 2013,25:2748-2764.
pmid: 23903322
[15] Tang R J, Zhao F G, Garcia V J, Kleist T J, Yang L, Zhang H X, Luan S. Tonoplast CBL-CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis. Proc Natl Acad Sci USA, 2015,112:3134-3139.
pmid: 25646412
[16] Mark C U, Reinhard B, Daniel I B. Asymmetric selection and the evolution of extraordinary defences. Nat Commun, 2013,1:314-334.
[17] Liang Y, Kang K, Gan L, Ning S, Xiong J, Song S, Xi L, Lai S, Yin Y, Gu J, Xiang J, Li S, Wang B, Li M. Drought-responsive genes, late embryogenesis abundant group3 (LEA3) and vicinal oxygen chelate, function in lipid accumulation inBrassica napus and Arabidopsis mainly via enhancing photosynthetic efficiency and reducing ROS. Plant Biotechnol J, 2019,17:2123-2142.
pmid: 30972883
[18] Ghillebert R, Swinnen E, Wen J, Vandesteene L, Ramon M, Norga K, Rolland F, Winderickx J. The AMPK/SNF1/SnRK1 fuel gauge and energy regulator:structure, function and regulation. FEBS J, 2011,278:3978-3990.
pmid: 21883929
[19] Hardie D G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol, 2007,8:774-785.
doi: 10.1038/nrm2249 pmid: 17712357
[20] Zhai Z, Liu H, Shanklin J. Phosphorylation of WRINKLED1 by KIN10 results in its proteasomal degradation, providing a link between energy homeostasis and lipid biosynthesis. Plant Cell, 2017,29:871-889.
pmid: 28314829
[21] Cui Y, Su Y, Wang J, Jia B, Wu M, Pei W, Zhang J, Yu J. Genome-wide characterization and analysis of CIPK gene family in two cultivated allopolyploid cotton species: sequence variation, association with seed oil content, and the role of GhCIPK6. Int J Mol Sci, 2020,21:863.
[22] Guo Y, Huang Y, Gao J, Pu Y, Wang N, Shen W, Wen J, Yi B, Ma C, Tu J, Fu T, Zou J, Shen J. CIPK9 is involved in seed oil regulation in Brassica napus L. and Arabidopsis thaliana (L.) Heynh. Biotechnol Biofuels, 2018,11:124.
[23] Chen C, Xia R, Chen H, He Y. TBtools, a Toolkit for Biologists integrating various HTS-data handling tools with a user-friendly interface. bioRxiv, 2018, https://doi.org/10.1101/289660.
doi: 10.1101/2021.01.05.425441 pmid: 33442695
[24] Wang Y, Tang H, Debarry J D, Tan X, Li J, Wang X, Lee T H, Jin H, Marler B, Guo H, Kissinger J C, Paterson A H. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 2012,40:49-49.
[25] Wu P, Wang W, Duan W, Li Y, Hou X. Comprehensive analysis of the CDPK-SnRK superfamily genes in Chinese cabbage and its evolutionary implications in plants. Front Plant Sci, 2017,8:162.
doi: 10.3389/fpls.2017.00162 pmid: 28239387
[26] 马宗桓, 毛娟, 李文芳, 杨世茂, 吴金红, 陈佰鸿. 葡萄SnRK2家族基因的鉴定与表达分析. 园艺学报, 2016,43:1891-1902.
Ma Z H, Mao J, Li W F, Yang S M, Wu J H, Chen B H. Identification and expres-sion profile of the SnRK2 family genes in grapevine. Acta Hortic Sin, 2016,43:1891-1902 (in Chinese with English abstract).
[27] Held K, Pascaud F, Eckert C, Gajdanowicz P, Hashimoto K, Corratgé-Faillie C, Offenborn J N, Lacombe B, Dreyer I, Thibaud J B, Kudla J. Calcium-dependent modulation and plasma membrane targeting of the AKT2 potassium channel by the CBL4/CIPK6 calcium sensor/protein kinase complex. Cell Res, 2011,21:1116-1130.
pmid: 21445098
[28] Wang Y, Yan H, Qiu Z, Hu B, Zeng B, Zhong C, Fan C. Comprehensive analysis of SnRK gene family and their responses to salt stress in Eucalyptus grandis. Int J Mol Sci, 2019,20:2786-2786.
[29] Kim K N, Cheong Y H, Grant J J, Pandey G K, Luan S. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction inArabidopsis. Plant Cell, 2003,15:411-423.
doi: 10.1105/tpc.006858 pmid: 12566581
[30] 王海波. 小桐子SnRK2基因家族的全基因组鉴定及特征分析. 分子植物育种. 2016,14:2319-2329.
Wang H B. Genome-wide identification and sequence characterization of SnRK2 genes family in Jatropha curcas. Mol Plant Breed, 2016,14:2319-2329 (in Chinese with English abstract).
[31] Hrabak E M, Chan C W, Gribskov M, Harper J F, Choi J H, Halford N, Kudla J, Luan S, Nimmo H G, Sussman M R, Thomas M, Walker-Simmons K, Zhu J K, Harmon A C. TheArabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol, 2003,132:666-680.
doi: 10.1104/pp.102.011999 pmid: 12805596
[32] Lee H J, Park Y J, Seo P J, Kim J H, Sim H J, Kim S G, Park C M. Systemic immunity requires SnRK2.8-mediated nuclear import of NPR1 in Arabidopsis. Plant Cell, 2015,27:3425-3438.
doi: 10.1105/tpc.15.00371
[33] Thornton J W, DeSalle R. Gene family evolution and homology: genomics meets phylogenetics. Annu Rev Genomics Hum Genet, 2000,1:41-73.
[34] Jaramillo M A, Kramer E M. The role of developmental genetics in understanding homology and morphological evolution in plants. Int J Plant Sci, 2007,168:61-72.
doi: 10.1086/509078
[35] Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P. Early allopolyploid evolution in the post-NeolithicBrassica napus oilseed genome. Science, 2014,345:950-953.
doi: 10.1126/science.1253435 pmid: 25146293
[36] Deng W, Yan F, Zhang X, Tang Y, Yuan Y. Transcriptional profiling of canola developing embryo and identification of the important roles of BnDof5. 6 in embryo development and fatty acids synthesis. Plant Cell Physiol, 2015,56:1624-1640.
doi: 10.1093/pcp/pcv074 pmid: 26092973
[37] Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, Kidokoro S, Maruyama K, Yoshida T, Ishiyama K, Kobayashi M, Shinozaki K, Yamaguchi-Shinozaki K. ThreeArabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol, 2009,50:1345-1363.
pmid: 19541597
[38] 崔力勃, 朱乐, 蒋立希. ABA对于十字花科油籽脂肪酸组成及储藏蛋白的影响及机制. 农业生物技术学报, 2017,25:1059-1071.
Cui L B, Zhu L, Jiang L X. Effects of ABA on fatty acid composition and stored protein of cruciferous oilseeds. J Agric Biotechnol, 2017,25:1059-1071 (in Chinese with English abstract).
[39] Zheng Z, Xu X, Crosley R A, Greenwalt S A, Sun Y, Blakeslee B, Wang L, Ni W, Sopko M S, Yao C, Yau K, Burton S, Zhuang M, McCaskill D G, Gachotte D, Thompson M, Greene T W. The protein kinase SnRK2.6 mediates the regulation of sucrose metabolism and plant growth inArabidopsis. Plant Physiol, 2010,153:99-113.
pmid: 20200070
[40] Pandey G K, Cheong Y H, Kim B G, Grant J J, Li L, Luan S. CIPK9: a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis. Cell Res, 2007,17:411-421.
doi: 10.1038/cr.2007.39 pmid: 17486125
[41] Ali G M, Komatsu S. Proteomic analysis of rice leaf sheath during drought stress. J Proteome Res, 2006,5:396-403.
doi: 10.1021/pr050291g pmid: 16457606
[42] Hadiarto T, Tran L S. Progress studies of drought-responsive genes in rice. Plant Cell Rep, 2011,30:297-310.
doi: 10.1007/s00299-010-0956-z pmid: 21132431
[43] Shinozaki K, Shinozaki K Y. Gene expression and signal transduction in water-stress response. Plant Physiol, 1997,115:327-334.
pmid: 12223810
[44] Li J, Wang X Q, Watson M B, Assmann S M. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science, 2000,287:300-303.
doi: 10.1126/science.287.5451.300 pmid: 10634783
[45] 余义和, 李秀珍, 郭大龙, 张会灵, 杨英军, 李学强, 张国海. 葡萄类钙调磷酸酶B亚基互作蛋白激酶VvCIPK10的特性与表达. 中国农业科学, 2016,49:3798-3806.
Yu Y H, Li X Z, Guo D L, Zhang H L, Yang Y J, Li X Q, Zhang G H. Characteristics and expression of calcineurin like B subunit interaction protein VvCIPK10 in grapevine. Sci Agric Sin, 2016,49:3798-3806 (in Chinese with English abstract).
[46] Malekzadeh M, Mirmazloum I, Mortazavi S N, Angourani H R, Panahi M. The physicochemical properties and oil constituents of milk thistle (Silybum marianum Gaertn. cv. Budakalászi) under drought stress. J Med Plants Res, 2011,5:1485-1488.
[47] Mailer R J, Cornish P S. Effects of water stress on glucosinolate and oil concentrations in the seeds of rape (Brassica napus L.) and turnip rape (Brassica rapa L. var. silvestris [Lam.] Briggs). Aust J Exp Agric, 1987,27:707-711.
[48] Canvin D T. The effect of temperature on the oil content and fatty acid composition of the oils from several oil seed crops. Can J Bot, 1965,43:63-69.
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[4] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[5] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[6] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[7] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[8] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[9] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[10] 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137.
[11] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[12] 于芮苏, 田小康, 刘斌斌, 段迎新, 李婷, 张秀英, 张兴华, 郝引川, 李勤, 薛吉全, 徐淑兔. 玉米抗倒伏相关性状QTL的关联和连锁分析[J]. 作物学报, 2022, 48(1): 138-150.
[13] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[14] 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238.
[15] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!