欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (5): 860-868.doi: 10.3724/SP.J.1006.2021.04153

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

绿豆雄性不育突变体msm2015-1的遗传学与细胞学分析

吴然然(), 林云, 陈景斌, 薛晨晨, 袁星星, 闫强, 高营, 李灵慧, 张勤雪, 陈新*()   

  1. 江苏省农业科学院经济作物研究所, 江苏南京 210014
  • 收稿日期:2020-07-11 接受日期:2020-10-14 出版日期:2021-05-12 网络出版日期:2020-10-30
  • 通讯作者: 陈新
  • 作者简介:E-mail: rrwu@jaas.ac.cn
  • 基金资助:
    国家重点研发计划项目(2019YFD1001301);国家重点研发计划项目(2019YFD1001300);江苏省自然科学基金项目(BK20190257);国家自然科学基金项目(31871696);江苏特粮特经产业技术体系集成创新中心(JATS[2019]399)

Genetic and cytological analysis of male sterile mutant msm2015-1 in mungbean

WU Ran-Ran(), LIN Yun, CHEN Jing-Bin, XUE Chen-Chen, YUAN Xing-Xing, YAN Qiang, GAO Ying, LI Ling-Hui, ZHANG Qin-Xue, CHEN Xin*()   

  1. Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
  • Received:2020-07-11 Accepted:2020-10-14 Published:2021-05-12 Published online:2020-10-30
  • Contact: CHEN Xin
  • Supported by:
    National Key Research and Development Program of China(2019YFD1001301);National Key Research and Development Program of China(2019YFD1001300);Natural Science Foundation of Jiangsu Province(BK20190257);National Natural Science Foundation of China(31871696);Jiangsu Agricultural Industry Technology System(JATS[2019]399)

摘要:

单产水平低一直是我国绿豆存在的产业问题。绿豆杂种优势显著是提高产量的有效途径, 而雄性不育材料是实现杂种利用的宝贵资源。本研究利用60Co-γ辐射诱变技术首次在绿豆中获得雄性不育突变体, 并命名为‘不育绿豆2015-1’ (male sterile mungbean2015-1, 简写为msm2015-1)。msm2015-1营养生长期表型与‘苏绿1号’没有明显差异。花器官形态正常, 但花药发白且不能正常开裂散粉, 成熟期座荚率几乎为0。遗传分析显示, 育性分离群体中可育与不育分离比符合3∶1, 表明不育性状由单个隐性核基因控制。花粉发育的细胞学分析发现, msm2015-1的盛开花朵中花粉粒几乎未在柱头附着, 体外亦未萌发。花粉细胞质未被Alexander染液正常着色, I2-KI染色出现典败、圆败和染败3种类型。DAPI染色显示, msm2015-1花粉细胞核发育异常。醋酸洋红染色表明, 败育发生在花粉发育早期, 花粉母细胞在四分体时期减数分裂的不对称和异常多分裂是导致花粉败育的主要原因。

关键词: 绿豆, 雄性不育, 遗传分析, 花粉发育, 细胞学

Abstract:

In China, the low yield per unit has always been a problem in the mungbean industry. The heterosis of mungbean is an effective way to increase yield. The male sterile line is a valuable resource to realize the utilization of hybrid. In this study, 60Co-γ radiation mutagenesis technology was used to induce male sterile mutants in mungbean, and we gained one mutant named male sterile mungbean 2015-1 (msm2015-1) for the first time. There was no significant phenotype difference between msm2015-1 and Sulyu 1 during the vegetative growth stage. The floral organ of msm2015-1 was normal, but the anthers of msm2015-1 were white and could not crack and disperse powder normally in the flowering stage. In the mature stage, hardly any normal pods grew up. Genetic analysis showed the separation ratio of fertility and sterility in the fertile segregation population was in line with 3:1, indicating that the sterility trait was controlled by a single recessive nuclear gene. Cytological analysis of pollen development revealed that there were few pollen grains of msm2015-1 attached to mature stigmas. The pollen grains of msm2015-1 did not germinate in vitro. The cytoplasm of msm2015-1’s pollen could not be stained by Alexander dye. Three abortion types showed up when stained by I2-KI dye: typical abortion, spherical abortion and stained abortion. DAPI staining showed the nuclei of msm2015-1’s pollen developed abnormally. Magenta acetate staining indicated that abortion occurred in the early stage of pollen development, while the asymmetry and more anomalous fission of meiosis during the tetrad stage were the main causes of pollen abortion.

Key words: mungbean, male sterile, genetic analysis, pollen development, cytology

图1

绿豆雄性不育突变体msm2015-1表型分析 A: 营养生长期; B: 花蕾; C: 盛开的花朵; D: 花蕾解剖图, 从左至右依次为旗瓣、翼瓣、龙骨瓣、雄蕊和雌蕊; E: 开花后第2天的小豆荚; F: 近成熟的豆荚。A图中标尺为10 cm, B~F图中标尺为1 cm。"

图2

绿豆雄性不育突变体msm2015-1花药及花粉粒形态观察 A: 花药, 白色箭头指示msm2015-1未正常开裂; B: ‘苏绿1号’柱头, 白色箭头指示大量花粉附着; C: msm2015-1柱头, 白色箭头指示几乎无花粉附着; D: ‘苏绿1号’花药的扫描电镜图; E: msm2015-1花药的扫描电镜图; F: ‘苏绿1号’成熟花粉粒的扫描电镜图; G: msm2015-1成熟花粉粒的扫描电镜图。A~C图中标尺为1 mm, D和E图中标尺为100 µm, F和G图中标尺为10 µm。"

表1

育性分离群体的遗传学分析"

表型
Phenotype
观察值
Observed number
理论值
Theoretical number
χ2
(3:1)
可育株Fertile plants 187 193.5 0.873
不育株Sterile plants 71 64.5

图3

绿豆雄性不育突变体msm2015-1花粉体内及体外萌发 A: ‘苏绿1号’花粉柱头萌发, 白色箭头指示柱头上花粉粒及其萌发出的花粉管; B: msm2015-1花粉柱头萌发, 白色箭头指示柱头上无花粉粒附着; C: ‘苏绿1号’成熟花粉体外萌发; D: msm2015-1成熟花粉体外萌发。图中标尺为100 µm。"

图4

绿豆雄性不育突变体msm2015-1花粉活力的染色分析 A: ‘苏绿1号’成熟花粉的Alexander染色; B: msm2015-1成熟花粉的Alexander染色; C: Alexander染色花粉败育率统计; D: ‘苏绿1号’成熟花粉的I2-KI染色; E: msm2015-1成熟花粉的I2-KI染色; F: I2-KI染色花粉败育率统计; G: ‘苏绿1号’成熟花蕾的花药Alexander染色; H: msm2015-1成熟花蕾的花药Alexander染色。图中标尺为100 µm。"

图5

绿豆雄性不育突变体msm2015-1的花粉细胞核发育检测 A: ‘苏绿1号’成熟花粉DAPI染色, 白色和红色箭头分别指示生殖核和营养核; B: msm2015-1成熟花粉DAPI染色。图中标尺为20 µm。"

图6

绿豆雄性不育突变体msm2015-1花粉早期发育阶段分析 A: 花粉早期发育的各个时期, 白色箭头指示msm2015-1四分体时期的不对称和不均等分裂导致形成的大小不一的小孢子; B: 四分体时期出现的异常多分裂, 图中数字表示msm2015-1分裂出的小孢子个数。PMC: 花粉母细胞; Tetrad: 四分体; Msp: 小孢子; Pollen: 花粉。图中标尺为20 µm。"

[1] Rabbi S M F, Rahman M M, Mondal M M A, Bhowal S K, Haque M A. Effect of chitosan application on plant characters, yield attributes and yield of mungbean. Res J Agric Environ Manage, 2016,5:95-100.
[2] Lambrides C J, Godwin I D. Mungbean. Genome Map Mol Breed Plants, 2007,3:69-90.
[3] Kang Y J, Kim S K, Kim M Y, Lestari P, Kim K H, Ha B K, Jun T H, Hwang W J, Lee T, Lee J, Shim S, Yoon M Y, Jang Y E, Han K S, Taeprayoon P, Yoon N, Somta P, Tanya P, Kim K S, Gwag J G, Moon J K, Lee Y H, Park B S, Bombarely A, Doyle J J, Jackson S A, Schafleitner R, Srinives P, Varshney R K, Lee S H. Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun, 2014,5:5543.
[4] Singh N, Mallick J, Sagolsem D, Mandal N, Bhattacharyya S. Mapping of molecular markers linked with MYMIV and yield attributing traits in mungbean. Indian J Genet Plant Breed, 2018,78:118-126.
[5] 邢宝龙, 殷丽丽. 绿豆育种及分子遗传学研究进展. 现代农业科技, 2017, (10):39-40.
Xing B L, Yin L L. Research progress of breeding and molecular genetics on Vigna radiata L. Modern Agric Sci Technol, 2017, (10):39-40 (in Chinese with English abstract).
[6] Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science, 2010,327:818-822.
[7] Kim Y J, Zhang D B. Molecular control of male fertility for crop hybrid breeding. Trends Plant Sci, 2018,23:53-65.
[8] Longin C F H, Muhleisen J, Maurer H P, Zhang H L, Gowda M, Reif J C. Hybrid breeding in autogamous cereals. Theor Appl Genet, 2012,125:1087-1096.
[9] Duvick D N. Biotechnology in the 1930s: the development of hybrid maize. Nat Rev Genet, 2001,2:69-74.
[10] Li G, Dong Y, Zhao Y, Tian X, Liu W. Genome-wide prediction in a hybrid maize population adapted to northwest China. Crop J, 2020,8:830-842.
[11] Li H L, Zhou Y, Xin W L, Wei Y Q, Zhang J L, Guo L L. Wheat breeding in northern China: achievements and technical advances. Crop J, 2019,7:718-729.
[12] Muhleisen J, Maurer H P, Stiewe G, Bury P, Reif J C. Hybrid breeding in barley. Crop Sci, 2013,53:819-824.
[13] Luo X, Tan Y Q, Ma C Z, Tu J X, Shen J X, Yi B, Fu T D. High-throughput identification of SNPs reveals extensive heterosis with intra-group hybridization and genetic characteristics in a large rapeseed ( Brassica napus L.) panel. Euphytica, 2019,215:2-10.
[14] Tang G L, Quan Y W, Mi H F, Zhai L X, Li J J, Li W L. Breeding of high yield, high quality and disease-resistant hybrid cotton varieties Hanza 160 and Hanza 1692. Agric Biotechnol, 2018,7:37-39.
[15] Chen X, Sorajjapinun W, Reiwthongchum S, Srinives P. Identification of parental mungbean lines for production of hybrid varieties. CMU J, 2003,2:97-106.
[16] Chen L T, Liu Y G. Male sterility and fertility restoration in crops. Annu Rev Plant Biol, 2014,65:579-606.
[17] Bohra A, Jha U C, Adhimoolam P, Bisht D, Singh N P. Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep, 2016,35:967-993.
[18] Van Ginkel M, Ortiz R. Cross the best with the best, and select the best: HELP in breeding selfing crops. Crop Sci, 2018,58:17-30.
[19] Li J J, Nadeem M, Sun G L, Wang X B, Qiu L J. Male sterility in soybean: Occurrence, molecular basis and utilization. Plant Breed, 2019,138:659-676.
[20] Wu Y, Fox T W, Trimnell M R, Wang L, Xu R J, Cigan A M, Huffman G A, Garnaat C W, Hershey H, Albertsen M C. Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol J, 2016,14:1046-1054.
[21] Wan X Y, Wu S W, Li Z W, Dong Z Y, An X L, Ma B, Tian Y H, Li J P. Maize genic male-sterility genes and their applications in hybrid breeding: progress and perspectives. Mol Plant, 2019,12:321-342.
[22] Kim Y J, Zhang D, Jung K H. Molecular basis of pollen germination in cereals. Trends Plant Sci, 2019,24:1126-1136.
[23] Zhang D, Luo X, Zhu L. Cytological analysis and genetic control of rice anther development. J Genet Genomics, 2011,38:379-390.
[24] Shi J X, Cui M H, Yang L, Kim Y J, Zhang D B. Genetic and biochemical mechanisms of pollen wall development. Trends Plant Sci, 2015,20:741-753.
[25] 陈海元. 水稻种间杂种不育位点S40的精细定位及其败育机理的研究. 南京农业大学博士学位论文, 江苏南京, 2017.
Chen H Y. Fine Mapping and Study of Sterility Mechanism of the Interspecific Hybrid Sterility Locus S40 in Rice. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2017 (in Chinese with English abstract).
[26] Li H M, Chen H, Yang Z N, Gong J M. Cdi gene is required for pollen germination and tube growth in Arabidopsis. FEBS Lett, 2012,586:1027-1031.
[27] 蒋祥新. 绿豆大小孢子发生与雌雄配子体发育. 湖北农学院学报, 1989, (1):52-59.
Jiang X X. Mega- and microsporogenesis and development of male and female gametophytes in mungbean. J Hubei Agric Coll, 1989, (1):52-59 (in Chinese with English abstract).
[28] 孙寰, 张井勇, 王玉民, 赵丽梅. 木豆、苜蓿和大豆3种豆科作物杂种优势利用概述. 中国农业科学, 2009,42:1528-1539.
Sun H, Zhang J Y, Wang Y M, Zhao L M. A review of utilization of heterosis in three legume crops of pigeonpea, alfalfa and soybean. Sci Agric Sin, 2009,42:1528-1539 (in Chinese with English abstract).
[29] Saxena K B, Chauhan Y S, Laxman S, Kumar R V, Johansen C. Research and development of hybrid pigeonpea. Res Bull, 1996,19.
[30] Saxena K B, Kumar R V, Tikle A N, Saxena M K, Gupta P. ICPH 2671: the world’s first commercial food legume hybrid. Plant Breed, 2013,132:479-485.
[31] 赵丽梅, 孙寰, 王曙明, 王跃强, 黄梅, 李建平. 大豆杂交种杂交豆1号选育报告. 中国油料作物学报, 2004,26:16-18.
Zhao L M, Sun H, Wang S M, Wang Y Q, Huang M, Li J P. Breeding report of hybrid soybean ‘Hybrid Bean No. 1’. Chin J Oil Crop Sci, 2004,26:16-18 (in Chinese with English abstract).
[32] 赵丽梅, 彭宝, 张伟龙, 张连发, 张井勇, 李建平, 李茂海, 孙寰. 杂交大豆制种技术体系的建立. 大豆科学, 2010,29(4):165-169.
Zhao L M, Peng B, Zhang W L, Zhang L F, Zhang J Y, Li J P, Li M H, Sun H. Establishment of technology system for hybrid soybean seed production. Soybean Sci, 2010,29(4):165-169 (in Chinese with English abstract).
[33] Sangiri C, Kaga A, Tomooka N, Vaughan D, Srinives P. Genetic diversity of the mungbean ( Vigna radiata, Leguminosae) genepool on the basis of microsatellite analysis. Aust J Bot, 2007,55:837-847.
[34] Chen J, Somta P, Chen X, Cui X, Yuan X, Srinives P. Gene mapping of a mutant mungbean ( Vigna radiata L.) using new molecular markers suggests a gene encoding a YUC4-like protein regulates the chasmogamous flower trait. Front Plant Sci, 2016,7:830.
[35] Guo J X, Liu Y G. Molecular control of male reproductive development and pollen fertility in rice. J Integr Plant Biol, 2012,54:967-978.
[36] Xiao Y, You S, Kong W, Tang Q, Bai W, Cai Y, Zheng H, Wang C, Jiang L, Wang C. A GARP transcription factoranther dehiscence defected 1 (OsADD1) regulates rice anther dehiscence. Plant Mol Biol, 101:403-414.
[37] Song S, Chen Y, Liu L, Benjamin S Y H, Mao C, Gan Y, Yu H. OsFTIP7 determines auxin-mediated anther dehiscence in rice. Nat Plants, 2018,4:495-504.
[38] Zhu J, Lou Y, Xu X F, Yang Z N. A genetic pathway for tapetum development and function in Arabidopsis. J Integr Plant Biol, 2011,53:892-900.
[39] Li D D, Xue J S, Zhu J, Yang Z N. Gene regulatory network for tapetum development in Arabidopsis thaliana. Front Plant Sci, 2017,8:1559.
[40] Ranjan R, Khurana R, Malik N, Badoni S, Parida S K, Kapoor S, Tyagi A K. bHLH142 regulates various metabolic pathway-related genes to affect pollen development and anther dehiscence in rice. Sci Rep, 2017,7:43397.
[41] Yu J, Meng Z, Liang W, Kudla J, Tucker M R, Luo Z, Chen M, Xu D, Zhao G, Wang J. A rice Ca2+ binding protein is required for tapetum function and pollen formation . Plant Physiol, 2016,172:1772-1786.
[42] Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, Zong J, Wilson Z A, Zhang D. PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol, 2011,156:615-630.
[43] Yuan W, Li X, Chang Y, Wen R, Chen G, Zhang Q, Wu C. Mutation of the rice gene PAIR3 results in lack of bivalent formation in meiosis. Plant J, 2009,59:303-315.
[44] Yan X, Zeng X, Wang S, Li K, Yuan R, Gao H, Luo J, Liu F, Wu Y, Li Y, Zhu L, Wu G. Aberrant meiotic prophase I leads to genic male sterility in the novel TE5A mutant of Brassica napus. Sci Rep, 2016,6:33955.
[45] Zhao D Z. The EXCESS MICROSPOROCYTES1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Genes Dev, 2002,16:2021-2031.
[46] Yi J, Kim S R, Lee D Y, Moon S, Lee Y S, Jung K H, Hwang I, An G. The rice gene DEFECTIVE TAPETUM AND MEIOCYTES 1 (DTM1) is required for early tapetum development and meiosis. Plant J, 2012,70:256-270.
[47] Chang Z, Xu C, Huang X, Yan W, Qiu S, Yuan S, Ni H, Chen S, Xie G, Chen Z, Wu J, Tang X. The plant-specific ABERRANT GAMETOGENESIS 1 gene is essential for meiosis in rice. J Exp Bot, 2020,71:204-218.
[1] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[2] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[3] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[4] 王娜, 白建芳, 马有志, 郭昊宇, 王永波, 陈兆波, 赵昌平, 张立平. 小麦lncRNA27195及其靶基因TaRTS克隆及表达分析[J]. 作物学报, 2021, 47(8): 1417-1426.
[5] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227.
[6] 周步进, 李刚, 金刚, 周瑞阳, 刘冬梅, 汤丹峰, 廖小芳, 刘一丁, 赵艳红, 王颐宁. 利用红麻HcPDIL5-2a非全长基因创制雄性不育新种质[J]. 作物学报, 2021, 47(6): 1043-1053.
[7] 党科, 宫香伟, 吕思明, 赵冠, 田礼欣, 靳飞, 杨璞, 冯佰利, 高小丽. 糜子/绿豆间作模式下施氮量对绿豆叶片光合特性及产量的影响[J]. 作物学报, 2021, 47(6): 1175-1187.
[8] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[9] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[10] 李京琳, 李佳林, 李新鹏, 安保光, 曾翔, 吴永忠, 黄培劲, 龙湍. 水稻ptc1隐性核不育系的创制及其配合力分析[J]. 作物学报, 2021, 47(11): 2173-2183.
[11] 张雪翠,钟超,段灿星,孙素丽,朱振东. 大豆品种郑97196抗疫霉病基因RpsZheng精细定位[J]. 作物学报, 2020, 46(7): 997-1005.
[12] 蒋会兵,杨盛美,刘玉飞,田易萍,孙云南,陈林波,唐一春. 厚轴茶雄性不育株花药败育的生物学特性和细胞学研究[J]. 作物学报, 2020, 46(7): 1076-1086.
[13] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[14] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
[15] 于奇,冯乃杰,王诗雅,左官强,郑殿峰. S3307对始花期和始粒期淹水绿豆光合作用及产量的影响[J]. 作物学报, 2019, 45(7): 1080-1089.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!