欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (5): 789-798.doi: 10.3724/SP.J.1006.2021.04169

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定

李杰华1,3(), 端群1,3(), 史明涛1,3(), 吴潞梅1,3, 柳寒2, 林拥军1, 吴高兵3, 范楚川1,3,*(), 周永明1,3,*()   

  1. 1华中农业大学作物遗传改良国家重点实验室, 湖北武汉 430070
    2浙江省农业科学院, 浙江杭州 310021
    3华中农业大学植物科学技术学院, 湖北武汉 430070
  • 收稿日期:2020-07-25 接受日期:2020-11-01 出版日期:2021-05-12 网络出版日期:2020-12-14
  • 通讯作者: 范楚川,周永明
  • 作者简介:李杰华, E-mail: 1023629768@qq.com|端群, E-mail: 554246233@qq.com|史明涛, E-mail: 843121993@qq.com
  • 基金资助:
    国家转基因生物新品种培育重大专项(2018ZX08020001)

Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance

LI Jie-Hua1,3(), DUAN Qun1,3(), SHI Ming-Tao1,3(), WU Lu-Mei1,3, LIU Han2, LIN Yong-Jun1, WU Gao-Bing3, FAN Chu-Chuan1,3,*(), ZHOU Yong-Ming1,3,*()   

  1. 1National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    2Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
    3College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2020-07-25 Accepted:2020-11-01 Published:2021-05-12 Published online:2020-12-14
  • Contact: FAN Chu-Chuan,ZHOU Yong-Ming
  • Supported by:
    National Major Project for Developing New GM Crops(2018ZX08020001)

摘要:

草甘膦是世界上应用最广泛的广谱性除草剂, 目前我国还没有自主知识产权的抗草甘膦油菜品种。本研究利用农杆菌介导的油菜下胚轴遗传转化方法, 将新型抗草甘膦基因I. variabilis EPSPS转入甘蓝型油菜品系J9707中, 获得了126株阳性转化株, 阳性率为97.0%。这些转化单株中的T-DNA插入以单拷贝为主(占44.8%)。通过反向PCR确定了EPS-2、EPS-6和EPS-7等油菜转化体中T-DNA插入位置, 并设计转化体特异性引物对它们的T0~T3代材料进行检测, 证明了它们的T-DNA在基因组水平上整合的稳定性。RNA和蛋白水平的表达分析证实, I. variabilis EPSPS转基因及其蛋白产物在各转化株系不同世代能够稳定表达。苗期进行不同剂量的除草剂喷施处理发现, EPS-1、EPS-2、EPS-5、EPS-6和EPS-7等株系可耐受4倍田间推荐使用剂量的草甘膦。本研究所创建的新型抗草甘膦油菜种质资源将为我国抗除草剂油菜品种培育奠定了重要基础。

关键词: 甘蓝型油菜, I. variabilis EPSPS, 转基因, 草甘膦, 分子特征

Abstract:

Glyphosate is the most widely used broad-spectrum herbicide in the world. However, at present there is no glyphosate-tolerant rapeseed variety with independent intellectual property rights in China. In the study, a novel glyphosate-resistant genes I. variabilis EPSPS was transferred to the Brassica napus pure line J9707 via the Agrobacterium tumefaciens-mediated hypocotyl method, and 126 T0-positive transgenic plants with 97.0% positive rate were generated. The T-DNA insertion with a single copy (44.8%) is dominant. The insertion locations of T-DNA in the lines of EPS-2, EPS-6, and EPS-7 were identified by inverse PCR method. The stability of the T-DNA insertion in these lines were further confirmed by insertion-specific PCR in their T0 to T3 plants. The gene expression analysis revealed that the I. variabilis EPSPS gene and its protein was stably expressed in different generations of transgenic lines in RNA and protein levels. Treatments with different doses of glyphosate indicated that the lines of EPS-1, EPS-2, EPS-5, EPS-6, and EPS-7 could tolerate four times of the recommended dose of glyphosate in production. Thus, the novel glyphosate-tolerant rapeseed lines generated in the present study will lay the foundation for the herbicide- tolerance rapeseed breeding in China.

Key words: Brassica napus, I. variabilis EPSPS, transgene, glyphosate, molecular characteristics

图1

pTGH-1质粒的T-DNA示意图"

表1

本研究所用引物序列"

引物名称
Primer name
引物序列
Primer sequence (5°-3°)
引物名称
Primer name
引物序列
Primer sequence (5°-3°)
EPSPS-F ATTAGCGCTAGGGACGTGAG P1 CTCTAGCCAATACGCAAACCGCC
EPSPS-R ATACGCTCCCACATCCTGTC P3 TGTTGTGTGGAATTGTGAGCGGA
35SP-1 GAAACCGGTTACAGGCAAATG SP2 CAGGTGGAGAACGTCGGTACGACT
35SP-2 AGAGGCGGTTTGCGTATT SP3 GGGTTTCGCTCATGTGTTGAGCA
35ST-1 ATAACACATTGCGGACGTTT BnACT-qRTF CTGGAATTGCTGACCGTATGAG
35ST-2 AGCCGGTGCTTGATAACT BnACT-qRTR ATCTGTTGGAAAGTGCTGAGGG
35SP-2 AGAGGCGGTTTGCGTATT EPs-qRTF CAGGGATGGACTCGTTATCAC
p130-35sF CAAGTGGATTGATGTGATAACATG EPs-qRTR GAGGGTCTTCGCAGTCGT
p130-35sR GTAGAGAGAGACTGGTGATTTCAGC EPSPS6 F GGCTTCTTAGTGGGCCTTTC
Iva-EPSPS-F ATTAGCGCTAGGGACGTGAG EPSPS7 F CATCCGCTTTACGACGAAACT
Iva-EPSPS-R ATACGCTCCCACATCCTGTC EPSPS2 F GAACTGAGCATGAATGGCATAAA
P5 ATGTGTGAGTAGTTCCCAGATAAGG

图2

转I. variabilis EPSPS基因植株的PCR阳性检测结果 A: 利用引物对EPSPS-F/EPSPS-R检测目的基因I. variabilis EPSPS的PCR结果; B: 利用引物对35SP-1/35SP-2检测CaMV 35S启动子元件的PCR结果; C: 利用引物对35ST-1/35ST-2检测CaMV 35S终止子元件的PCR结果。M为2 kb DNA marker; P为pTGH质粒(阳性对照); N为转化受体J9707 (阴性对照); 1~12为T0代部分转化植株, 编号分别为EPS-1~EPS-12。"

图3

转I. variabilis EPSPS基因T0代阳性植株的Southern blot拷贝数检测结果 A: Southern blot检测结果。杂交探针为位于目的基因上的EPSPS探针, 基因组DNA采用Hind III酶切。M: DNA marker; 1~31: 转基因阳性植株; 1: EPS-1; 3: EPS-2; 12: EPS-7; 29: EPS-3; 31: EPS-6; N: J9707 (阴性对照)。B: 不同拷贝数的单株统计。"

图4

T2和T3代转I. variabilis EPSPS基因植株的Southern blot杂交拷贝数检测 A: EcoR I酶切、CaMV35S promoter探针; B: Hind III酶切、CaMV35S promoter探针; C: EcoR I酶切、EPSPS探针; D: Hind III酶切、EPSPS探针。M: DNA marker; P: pTGH-1质粒(阳性对照); N: J9707 (阴性对照); 1~9: 转基因阳性植株, 依次为EPS-1的T2代植株、EPS-2的T2代植株、EPS-3的T2代植株、EPS-4的T2代植株、EPS-5的T2代植株、EPS-6的T2代植株、EPS-6的T3代植株、EPS-7的T2代植株、EPS-7的T3代植株。"

表2

单拷贝转基因家系草甘膦抗性分离鉴定"

株系编号
Line ID
总株数
Total plant number
存活株数
Number of survived plants
死亡株数
Number of dead plants
期望分离比
Expected segregated ratio
χ20.05, 1
EPS-1 50 33 17 3:1 1.71
EPS-2 50 31 19 3:1 3.84
EPS-4 56 39 17 3:1 0.59
EPS-5 49 34 15 3:1 0.55

图5

EPS-2、EPS-6和EPS-7等油菜转化体中T-DNA插入位置信息"

图6

EPS-2、EPS-6和EPS-7等转基因家系的转化体特异性PCR检测结果 A: EPS-2转基因家系不同世代材料的转化体特异性PCR检测结果, 检测所用引物为EPSPS-2 F和P5; B: EPS-6转基因家系不同世代材料的转化体特异性PCR检测结果, 检测所用引物为EPSPS6 F和P5; C: EPS-7转基因家系不同世代材料的转化体特异性PCR检测结果, 检测所用引物为EPSPS7F和P5。其中, M为2 kb DNA marker; P为pTGH-1质粒(阳性对照); N为转化受体J9707 (阴性对照); 1为T0代植株; 2~4为T1代抗性植株; 5~7为T2代抗性植株; 8~10为T3代抗性植株。"

图7

转I. variabilis EPSPS阳性株系的表达检测 A: RT-PCR检测目的基因在T0代株系叶片中的RNA表达水平。其中, M为3 kb DNA marker; 1~5依次为EPS-1、EPS-6、EPS-7、EPS-2和EPS-5等转化系; N: J9707 (阴性对照); P: pTGH-1质粒(阳性对照)。B: Western blot检测目的基因在T0代株系叶片中的蛋白表达水平。其中, N: J9707 (阴性对照); 1~6依次为EPS-1、EPS-6、EPS-36、EPS-7、EPS-2和EPS-5转化系。C: qRT-PCR检测目的基因在T3代株系的不同组织中相对表达量。油菜Actin2 (AF111812)为内参基因。"

图8

转I. variabilis EPSPS基因T1代株系喷施草甘膦处理下的抗性表现"

图9

转I. variabilis EPSPS基因T3代株系苗期喷施不同浓度草甘膦处理下的抗性表现"

[1] 王汉中. 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010,32:300-302.
Wang H Z. Historical review and prospect of rapeseed industry development in China. Chin J Oil Crop Sci, 2010,32:300-302 (in Chinese with English abstract).
[2] 官春云. 优质油菜生理生态和现代栽培技术. 北京: 中国农业出版社, 2013. pp 192-219.
Guan C Y. Physiological Ecology and Modern Cultivation Techniques of High-Quality Rapeseed. Beijing: China Agriculture Press, 2013. pp 192-219(in Chinese).
[3] Dill G M. Glyphosate-resistant crops: history, status and future. Pest Manage Sci, 2010,61:219-224.
[4] 赵平. 2015年全球农药市场概况及发展趋势. 农药, 2017,56(2):79-85.
Zhao P. Overview and development trend of global pesticide market in 2015. Pesticide, 2017,56(2):79-85 (in Chinese with English abstract).
[5] Li H T, Li J J, Zhao B, Wang J, Yi L C, Liu C, Wu J S, King G J, Liu K D. Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed ( Brasscia napus) for hybrid seed production using chemically induced male sterility. Theor Appl Genet, 2015,128:107-118.
[6] 魏松红, 纪明山, 张希科, 孙桂玲. 应用诱变法筛选抗草甘膦水稻植株. 农药, 2006,45(11):43-44.
Wei S H, Ji M S, Zhang X K, Sun G L. Selection of glyphosate-resistant rice with mutation. Pesticide, 2006,45(11):43-44 (in Chinese with English abstract).
[7] 张俐俐, 谷维, 雷勃钧, 吕晓波, 李铁. 应用化学诱变法筛选抗草甘膦大豆突变株系. 大豆科学, 2009,28:938-940.
Zhang L L, Gu W, Lei B J, Lyu X B, Li T. Glyphosate resistant mutant strain of soybean filtered by chemomorphosis. Soybean Sci, 2009,28:938-940 (in Chinese with English abstract).
[8] Padgette S R, Kolacz K H, Delannay X, Re D B, LaVallee B J, Tinius C N, Rhodes W K, Otero Y I, Barry G F, Eichholtz D A. Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci, 1995,35:1451-1461.
[9] Kahrizi D, Salmanian A H, Afshari A, Moieni A, Mousavi A. Simultaneous substitution of Gly96 to Ala and Ala183 to Thr in 5-enolpyruvylshikimate-3-phosphate synthase gene of E. coli (k12) and transformation of rapeseed (Brassica napus L.) in order to make tolerance to glyphosate. Plant Cell Rep, 2007,26:95-104.
[10] Main C L, Jones M A, Murdock E C. Weed response and tolerance of enhanced glyphosate-resistant cotton to glyphosate. J Cotton Sci, 2007,11:104-109.
[11] Green J M, Hale T, Pagano M A, Andreassi J L, Gutteridge S A. Response of 98140 corn with gat4621 and hra transgenes to glyphosate and ALS-inhibiting herbicides. Weed Sci, 2009,57:142-148.
[12] Comai L, Facciotti D, Hiatt W R, Thompson G, Rose R E, Stalker D M. Expression in plants of a mount aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature, 1985,317:741-744.
[13] Barry G, Kishore G, Padgette S, Taylor M, Kolacz K, Weldon M, Re D, Fincher K, Hallas L. Inhibitors of amino acid biosynthesis: strategies for imparting glyphosate tolerance to crop plants. Curr Top Plant Physiol, 1992,7:139-145.
[14] 陈家华, 潘良文, 沈禹飞, 胡永强, 陶军. 转基因抗草甘膦油菜籽中草甘膦氧化还原酶基因的检测方法研究. 中国油料作物学报, 2001,23:63-67.
Chen J H, Pan L W, Shen Y F, Hu Y Q, Tao J. Detection of glyphosate oxidoreductase gene in transgenic rapeseed resistant to glyphosate. Chin J Oil Crop Sci, 2001,23:63-67 (in Chinese with English abstract).
[15] Yang X, Li L, Jiang X Q, Wang W, Cai X X, Su J, Wang F, Lu B R. Genetically engineered rice endogenous 5-enolpyruvoylshikimate-3-phosphate synthase (EPSPS) transgene alters phenology and fitness of crop-wild hybrid offspring. Sci Rep, 2017,7:6834.
[16] Li J, Meng X B, Zong Y, Chen K L, Zhang H W, Liu J X, Li J Y, Gao C X. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat Plants, 2016,2:139.
[17] Aaron W H, Raj D C, Tomas C, Andrew M M, Anupama V, Adam B, Colby G S, Rebecca B, Daniel F V, Nigel J T. Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnol J, 2018,16:1275-1282.
[18] Cui Y, Huang S Q, Liu Z D, Yi S Y, Zhou F, Chen H, Lin Y J. Development of novel glyphosate-tolerant japonica rice lines: a step toward commercial release. Front Plant Sci, 2016,7:1218.
[19] 刘子铎, 易沭远, 林拥军, 张利莉, 吴高兵. 一种分离的5-烯醇丙酮莽草酸-3-磷酸合酶基因. CN103834674, 2016-2-23.
Liu Z Y, Yi M Y, Lin Y J, Zhang L L, Wu G B. A isolated 5- enolpyruvyl-shikimate-3-phosphate synthase gene. CN103834674, 2016-2-23 (in Chinese).
[20] Yi S Y, Wu G B, Lin Y J, Hu N, Liu Z D. Characterization of a new type of glyphosate-tolerant 5-enolpyruvyl shikimate-3- phosphate synthase from Isoptericola variabilis. J Mol Catal B Enzym, 2015,111:1-8.
[21] Zhou Y, Wang H, Gilmer S, Whitwill S, Keller W, Fowke L C. Control of petal and pollen development by the plant cyclin- dependent kinase inhibitor ICK1 in transgenic Brassica plants. Planta, 2002,215:248-257.
[22] 李杰华. 抗广谱性除草剂转基因油菜创制及抗性评价. 华中农业大学硕士学位论文, 湖北武汉, 2018.
Li J H. Development and Evaluation of Transgenic Rapeseed with Broad Spectrum Herbicide Resistant Gene. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2018 (in Chinese with English abstract).
[23] Fan C C, Wu Y D, Yang Q Y, Yang Y, Meng Q W, Zhang K Q, Li J G, Wang J F, Zhou Y M. A novel single-nucleotide mutation in a CLAVATA3 gene homologue controls a multilocular silique trait in Brassica rapa L. Mol Plant, 2014,7:1788-1792.
[24] Dong Y F, Jin X, Tang Q L, Zhang X, Yang J T, Liu X J, Cai J F, Zhang X B, Wang X J, Wang Z X. Development and event-specific detection of transgenic glyphosate-resistant rice expressing the G2-EPSPS gene. Front Plant Sci, 2017,8:885.
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[4] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[5] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[6] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[7] 王渭霞, 赖凤香, 胡海燕, 何佳春, 魏琪, 万品俊, 傅强. 超低温11年保存期对转基因作物基体标准样品核酸检测的影响[J]. 作物学报, 2022, 48(1): 238-248.
[8] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[9] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
[10] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[11] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[12] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[13] 唐婧泉, 王南, 高界, 刘婷婷, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. 甘蓝型油菜SnRK基因家族生物信息学分析及其与种子含油量的关系[J]. 作物学报, 2021, 47(3): 416-426.
[14] 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471.
[15] 魏丽娟, 申树林, 黄小虎, 马国强, 王曦彤, 杨怡玲, 李洹东, 王书贤, 朱美晨, 唐章林, 卢坤, 李加纳, 曲存民. 锌胁迫下甘蓝型油菜发芽期下胚轴长的全基因组关联分析[J]. 作物学报, 2021, 47(2): 262-274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!