欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (5): 799-806.doi: 10.3724/SP.J.1006.2021.03047

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

ACC处理对不同基因型玉米幼苗响应氮素供给的调控效应

吴冰卉(), 王桂萍(), 王玉斌, 李召虎, 张明才*()   

  1. 植物生长调节剂教育部工程研究中心/中国农业大学农学院, 北京100193
  • 收稿日期:2020-07-28 接受日期:2020-11-13 出版日期:2021-05-12 网络出版日期:2020-12-24
  • 通讯作者: 张明才
  • 作者简介:吴冰卉, E-mail: wubinghui923@163.com|王桂萍, 18810939619@163.com
  • 基金资助:
    国家自然科学基金项目(31871546);国家级大学生创新创业训练计划项目

Regulation of ACC treatment on nitrogen supply response of maize seedlings with different genotypes

WU Bing-Hui(), WANG Gui-Ping(), WANG Yu-Bin, LI Zhao-Hu, ZHANG Ming-Cai*()   

  1. Engineering Research Center of Plant Growth Regulator, Ministry of Education / College of Agronomy and Biotechnology, China Agricultural University, Beijing 10093, China
  • Received:2020-07-28 Accepted:2020-11-13 Published:2021-05-12 Published online:2020-12-24
  • Contact: ZHANG Ming-Cai
  • Supported by:
    National Natural Science Foundation of China(31871546);National Training Program of Innovation and Entrepreneurship for Undergraduates

摘要:

乙烯对玉米生长发育与形态建成具有重要调控作用, 但乙烯对玉米氮素吸收与积累调控效应缺乏深入研究, 局限了乙烯在玉米丰产高效栽培中的应用。本研究以郑单958、瑞福尔1号和德美亚3号3个玉米品种为试验材料, 比较研究不同基因型玉米植株对氮素供给的响应差异, 结合外源添加乙烯合成前体1-氨基环丙烷-1-羧酸(1-aminocyclopropane-1-carboxylic acid, ACC), 分析乙烯对不同基因型玉米氮素吸收的调控效应。研究结果表明, 在低氮条件下, 氮素敏感型品种(德美亚3号和瑞福尔1号)比郑单958叶片缺氮表型明显, 对ACC处理敏感, 而且ACC处理抑制玉米植株地上和地下部的生长和干物质积累; ACC处理抑制了低氮下叶片叶绿素合成, 降低叶片可溶性蛋白积累, 促进玉米叶片早衰, 其中ACC处理郑单958叶片叶绿素和可溶性蛋白含量均显著高于德美亚3号和瑞福尔1号; 进一步研究发现, 低氮处理抑制乙烯合成关键酶基因ZmACS7ZmACO15的表达, 降低乙烯含量, ACC处理促进低氮条件下ZmACS7ZmACO15基因的表达, 提高乙烯含量; 低氮处理抑制玉米根系中ZmNRT2.1表达, 但ACC处理促进低氮下玉米根系中ZmNRT2.1表达, 其中郑单958根中ZmNRT2.1表达在低氮条件下显著高于德美亚3号和瑞福尔1号。研究结果表明乙烯通过调控玉米植株乙烯合成关键酶基因和ZmNRT2.1表达, 调节了氮素吸收与分配, 影响了植株生长, 其中氮素敏感性品种比持绿型品种对乙烯更为敏感。

关键词: 玉米, 基因型, 氮素吸收, 硝态氮, 1-氨基环丙烷-1-羧酸

Abstract:

Ethylene plays an important role in the growth and morphological formation of maize, while little research is involved in the regulatory effects of ethylene on the nitrogen absorption and accumulation in maize, which limits the application of ethylene in high yield and efficient cultivation of maize production. In this study, three maize varieties (Zhengdan 958, Ruifuer 1, and Demeiya 3) were used as experimental materials to study the response of maize varieties with different nitrogen absorption efficiency under different nitrogen levels condition. Combined with the addition of the precursor of ethylene synthesize 1-aminocyclopropane-1-carboxylic acid (ACC), the regulation effects of ethylene on nitrogen uptake of different genotypes were analyzed in maize. The results showed that nitrogen-sensitive varieties (Ruifuer 1 and Demeiya 3) had more obvious phenotype of nitrogen deficiency than Zhengdan 958 under low nitrogen condition, and were more sensitive to ACC treatment. Moreover, ACC treatment repressed the growth and dry matter accumulation in the shoot and root of maize plants. ACC treatment decreased the chlorophyll content of leaves under low nitrogen, reduced the accumulation of soluble protein in leaves, and promoted the premature aging of maize leaves. Among them, the contents of chlorophyll and soluble protein in Zhengdan 958 leaves with ACC treatment were significantly higher than those of Ruifuer 1 and Demeiya 3. Furthermore, low nitrogen treatment inhibited the expression of key enzymes (ZmACS7 and ZmACO15) in ethylene synthesis, while decreased the ethylene release rate. Thus, ACC treatment promoted the expression of ZmACS7 and ZmACO15 and enhanced ethylene release rate under low nitrogen treatments. Low nitrogen treatment inhibited the expression of ZmNRT2.1 in maize roots, but ACC treatment promoted the expression of ZmNRT2.1 in maize roots. In addition, the expression of ZmNRT2.1 in roots of Zhengdan 958 was significantly higher than those of Ruifuer 1 and Demeiya 3 under low nitrogen treatments. The results showed that ethylene regulated the uptake and distribution of nitrogen by regulating the key enzyme genes of ethylene synthesis and the expression of ZmNRT2.1 in maize which affected plants growth , and nitrogen-sensitive varieties were more sensitive to ethylene than green-holding variety.

Key words: maize, genotype, nitrogen absorption, nitrate nitrogen, 1-aminocyclopropane-1-carboxylic acid

表1

qRT-PCR引物序列"

引物名称
Primer name
正向引物
Forward primer (5°-3°)
反向引物
Reverse primer (5°-3°)
ZmUbiquitin CTGGTGCCCTCTCTCCATATGG CAACACTGACACGACTCATGACA
ZmACO15 AGCGGCGGCGACGCATACC GGAGATGACTTGGGCGCTGCAA
ZmACS7 CGACGCCTTATTACCCAGCT AGGGGTTGGTGATGAGGATG
ZmNRT2.1 GGCTACATCACCGTCAGGTT CGATGATCTTGCTGCTGAAC
ZmNRT1.1a TGGGATTCTTCGTCAGCTCC GCCTTGTACTTGTACCAGCG

图1

不同氮素供给条件下ACC处理对不同基因型玉米植株干重与根冠比的影响 A和B分别为ACC处理7 d后不同基因型玉米植株在不同氮素条件下根系和地上部的干重; C为ACC处理7 d后不同基因型玉米植株在不同氮素条件下的根冠比。"

图2

不同氮素供给条件下ACC处理对不同基因型玉米植株氮素积累的影响"

图3

不同氮素供给条件下ACC处理对不同基因型玉米叶片可溶性蛋白(A)和叶绿素含量(B)的影响"

图4

不同氮素供给条件下ACC处理对不同基因型玉米乙烯释放速率影响"

图5

不同氮素供给条件下ACC处理对不同基因型玉米乙烯合成关键酶ZmACO15 (A)和ZmACS7 (B)表达的影响"

图6

不同氮素供给条件下ACC处理对不同基因型玉米氮转运蛋白ZmNRT2.1 (A)和ZmNRT1.1a (B)表达的影响"

[1] 崔爱民, 张久刚, 张虎, 单皓, 陈伟. 我国玉米生产现状及发展变革. 中国农业科技导报, 2020,22(7):10-19.
Cui A M, Zhang J G, Zhang H, Shan H, Chen W. Preliminary exploration on current situation and development of maize production in China. J Agric Sci Technol, 2020,22(7):10-19 (in Chinese with English abstract).
[2] 侯云鹏, 孔丽丽, 杨建, 尹彩侠, 秦裕波, 李前, 于雷, 王立春, 谢佳贵. 氮肥运筹对春玉米产量、养分吸收和转运的影响. 玉米科学, 2016,24(4):137-143.
Hou Y P, Kong L L, Yang J, Yin C X, Qin Y B, Li Q, Yu L, Wang L C, Xie J G. Effects of nitrogen fertilizer management on yield, nutrient absorption and translocation of spring maize. J Maize Sci, 2016,24(4):137-143 (in Chinese with English abstract).
[3] 银敏华, 李援农, 李昊, 徐袁博, 周昌明, 张天乐. 氮肥运筹对夏玉米根系生长与氮素利用的影响. 农业机械学报, 2016,47(6):129-138.
Yin M H, Li Y N, Li H, Xu Y B, Zhou C M, Zhang T L. Effects of nitrogen application rates on root growth and nitrogen use of summer maize. Trans CSAM, 2016,47(6):129-138 (in Chinese with English abstract).
[4] 张丽丽, 齐华, 樊叶, 杨海龙, 付俊, 许淑娟, 景希强, 王璞. 氮肥后移对玉米冠层内物质分配及氮素利用的影响. 玉米科学, 2017,25(1):127-132.
Zhang L L, Qi H, Fan Y, Yang H L, Fu J, Xu S J, Jing X Q, Wang P. Effects of postponing N application on dry matter accumulation and nitrogen utilization in maize canopy. J Maize Sci, 2017,25(1):127-132 (in Chinese with English abstract).
[5] Ciampitti I A, Vyn T J. Grain nitrogen source changes over time in maize: a review. Crop Sci, 2013,53:366-377.
[6] Chen Y L, Xiao C X, Chen X C, Li Q, Zhang J, Chen F J, Yuan L X, Mi G H. Characterization of the plant traits contributed to high grain yield and high grain nitrogen concentration in maize. Field Crops Res, 2014,159:1-9.
[7] Chen Y L, Xiao C X, Wu D L, Xia T T, Chen Q W, Chen F J, Yuan L X, Mi G H. Effects of nitrogen application rate on grain yield and grain nitrogen concentration in two maize hybrids with contrasting nitrogen remobilization efficiency. Eur J Agron, 2015,62:79-89.
[8] 郭松, 孙文彦, 顾日良, 王章奎, 陈范骏, 赵秉强, 袁力行, 米国华. 两个玉米品种灌浆期叶片氮转移效率差异的分子机制. 植物营养与肥料学报, 2018,24:1149-1157.
Guo S, Sun W Y, Gu R L, Wang Z K, Chen F J, Zhao B Q, Yuan L X, Mi G H. Differences in leaf nitrogen remobilization efficiency and related gene expression during grain filling stage of two maize hybrids. Plant Nutr Fert Sci, 2018,24:1149-1157 (in Chinese with English abstract).
[9] Khan M I R, Trivellini A, Fatma M, Masood A, Francini A, Iqbal N, Ferrante A, Khan N A. Role of ethylene in responses of plants to nitrogen availability. Front Plant Sci, 2015,6:1-20.
[10] Shekoofa A, Emam Y. Plant growth regulator (ethephon) alters maize (Zea mays L.) growth, water use and grain yield under water stress. J Agron, 2008,7:41-48.
[11] Ye D L, Zhang Y S, Al-Kaisi M M, Duan L S, Zhang M C, Li Z H. Ethephon improved stalk strength associated with summer maize adaptations to environments differing in nitrogen availability in the North China Plain. J Agric Sci, 2016,154:960-977.
[12] 余音, 卢胜, 宋海星, 官春云, 陈柯豪, 张振华. ACC对不同氮效率油菜生长后期硝态氮再利用的调控机理. 植物营养与肥料学报, 2017,23:1378-1386.
Yu Y, Lu S, Song H X, Guan C Y, Chen K H, Zhang Z H. Regulation mechanisms of NO3- re-utilization by ACC at later growth stages of Brassica napus. Plant Nutr Fert Sci, 2017,23:1378-1386 (in Chinese with English abstract).
[13] Leblanc A, Renault H, Lecourt J, Etienne P, Deleu C, Le D E. Elongation changes of exploratory and root hair systems induced by aminocyclopropane carboxylic acid and aminoethoxyvinylglycine affect nitrate uptake and BnNrt2.1 and BnNrt1.1 gene expression in oil rape. Plant Physiol, 2008,146:1928-1940.
[14] Leblanc A, Segura R, Deleu C, Le D E. In low transpiring conditions, uncoupling the BnNrt2.1 and BnNrt1.1 NO3- transporters by glutamate treatment reveals the essential role of BnNRT2.1 for nitrate uptake and the nitrate-signalling cascade during growth. Plant Signal Behav, 2013,8:e22904.
[15] Iqbal N, Nazar R, Syeed S, Masood A, Khan N A. Exogenously-sourced ethylene increases stomatal conductance, photosynthesis, and growth under optimal and deficient nitrogen fertilization in mustard. J Exp Bot, 2011,62:4955-4963.
[16] 叶德练, 王玉斌, 周琳, 李建民, 段留生, 张明才, 李召虎. 乙烯利和氮肥对夏玉米氮素吸收与利用及产量的调控效应. 作物学报, 2015,41:1701-1710.
Ye D L, Wang Y B, Zhou L, Li J M, Duan L S, Zhang M C, Li Z H. Effect of ethephon and nitrogen fertilizer on nitrogen uptake, nitrogen use efficiency and yield of summer maize. Acta Agron Sin, 2015,41:1701-1710 (in Chinese with English abstract).
[17] Kurtyka R, Małkowski E, Kita A, Karcz W. Effect of calcium and cadmium on growth and accumulation of cadmium, calcium, potassium and sodium in maize seedlings. Pol J Environ Stud, 2008,17:51-56.
[18] Bremner J M, Mulvaney C S. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. Madison, WI: Soil Science Society of America, Inc., 1982. pp 595-624.
[19] Abdel-Ghani A H, Kumar B, Reyes-Matamoros J, Gonzalez- Portilla P J, Jansen C, Martin J P S, Lee M, Lübberstedt T. Genotypic variation and relationships between seedling and adult plant traits in maize ( Zea mays L.) inbred lines grown under contrasting nitrogen levels. Euphytica, 2013,189:123-133.
[20] Schlüter U, Mascher M, Colmsee C, Scholz U, Bräutigam A, Fahnenstich H, Sonnewald U. Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis. Plant Physiol, 2012,160:1384-1406.
[21] Coque M, Martin A, Veyrieras J B, Hirel B, Gallais A. Genetic variation for N-remobilization and postsilking N-uptake in a set of maize recombinant inbred lines: 3. QTL detection and coincidences. Theor Appl Genet, 2008,117:729-747.
[22] Lee R B, Drew M C. Nitrogen-13 studies of nitrate fluxes in barley roots. J Exp Bot, 1986,185:1768-1779.
[23] Tsay Y F, Chiu C C, Tsai C B, Ho C H, Hsu P K. Nitrate transporters and peptide transporters. FEBS Lett, 2007,581:2290-2300.
[24] Li W, Wang Y, Okamoto M, Crawford N M, Siddiqi M Y, Glass A D M. Dissection of the AtNRT2.1: AtNRT2.2 inducible high-affinity nitrate transporter gene cluster. Plant Physiol, 2007,143:425-433.
[25] Taulemesse F, Le Gouis J, Gouache D, Gibon Y, Allard V. Post-flowering nitrate uptake in wheat is controlled by N status at flowering, with a putative major role of root nitrate transporter NRT2.1. PLoS One, 2015,10:e0120291.
[26] Li Y, Li J Q, Yan Y, Liu W Q, Zhang W N, Gao L H, Tian Y Q. Knock-down of csNRT2.1, a cucumber nitrate transporter, reduces nitrate uptake, root length, and lateral root number at low external nitrate concentration. Front Plant Sci, 2018,9:1-13.
[27] Trevisan S, Borsa P, Botton A, Varotto S, Malagoli M, Ruperti B, Quaggiotti S. Expression of two maize putative nitrate transporters in response to nitrate and sugar availability. Plant Biol (Stuttg), 2008,10:462-475.
[28] Tian Q Y, Sun P, Zhang W H. Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thaliana. New Phytol, 2009,184:918-931.
[29] Zheng D C, Han X, An Y, Guo H W, Xia X L, Yin W. The nitrate transporter NRT2.1 functions in the ethylene response to nitrate deficiency in Arabidopsis. Plant Cell Environ, 2013,36:1328-1337.
[30] Johnson P R, Ecker J R. The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet, 1998,32:227-254.
[31] Tsuchisaka A, Theologis A. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol, 2004,136:2982-3000.
[32] Yang S, Hoffman N. Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol, 1984,35:155-189.
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[8] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[12] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[13] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[14] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[15] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!