欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (7): 1215-1227.doi: 10.3724/SP.J.1006.2021.02057

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻核不育系柱头性状的主基因+多基因遗传分析

江建华1(), 张武汉2, 党小景1, 荣慧3, 叶琴3, 胡长敏1, 张瑛1, 何强2,*(), 王德正1,*()   

  1. 1安徽省农业科学院水稻研究所 / 水稻遗传育种安徽省重点实验室, 安徽合肥230031
    2杂交水稻国家重点实验室 / 湖南杂交水稻研究中心, 湖南长沙410125
    3安徽科技学院, 安徽凤阳 233100
  • 收稿日期:2020-08-18 接受日期:2020-12-01 出版日期:2021-07-12 网络出版日期:2020-12-31
  • 通讯作者: 何强,王德正
  • 作者简介:江建华, E-mail: peanutlabjjh@163.com, Tel: 0551-62160454
  • 基金资助:
    本研究由杂交水稻国家重点实验室(湖南杂交水稻研究中心)开放课题基金(2018KF01);水稻遗传育种安徽省重点实验室开放基金(SDKF-201904);国家自然科学基金项目资助(31601374)

Genetic analysis of stigma traits with genic male sterile line by mixture model of major gene plus polygene in rice (Oryza sativa L.)

JIANG Jian-Hua1(), ZHANG Wu-Han2, DANG Xiao-Jing1, RONG Hui3, YE Qin3, HU Chang-Min1, ZHANG Ying1, HE Qiang2,*(), WANG De-Zheng1,*()   

  1. 1Institute of Rice Research, Anhui Academy of Agricultural Sciences / Rice Genetic Breeding Key Laboratory of Anhui Province, Hefei 230031, Anhui, China
    2State Key Laboratory of Hybrid Rice / Hunan Hybrid Rice Research Center, Changsha 410125, Hunan, China
    3Anhui Science and Technology University, Fengyang 233100, Anhui, China
  • Received:2020-08-18 Accepted:2020-12-01 Published:2021-07-12 Published online:2020-12-31
  • Contact: HE Qiang,WANG De-Zheng
  • Supported by:
    This study was supported by the Open Research Fund of National Key Laboratory of Hybrid Rice (Hunan Hybrid Rice Research Center)(2018KF01);the Program of Rice Genetic Breeding Key Laboratory of Anhui Province(SDKF-201904);the National Natural Science Foundation of China(31601374)

摘要:

柱头性状是影响水稻不育系异交繁殖和杂交水稻制种产量的重要性状。为创制长柱头、高外露率的水稻温敏核不育系提供遗传信息, 调查了短柱头、低外露率的粳型光温敏核不育系7001S和长柱头、高外露率的温敏核不育系紫泰S及其杂交、自交获得的F1、F2群体(350个株系)和F2:3群体(320个株系)的4个柱头性状, 分析了4个性状之间的相关性, 并运用主基因+多基因混合遗传模型, 对2个世代4个性状进行了遗传分析。结果表明, 4个柱头性状间均表现出极显著正相关, 相关系数介于0.262和0.895之间。柱头长度、花柱长度、柱头和花柱总长度(以下简称柱花总长度)均表现出受2对主效基因和微效基因共同控制, 除F2群体中柱花总长度的2对主基因表现为等加性效应和等显性效应外, 其余均表现为加性-显性-上位性效应, 3个性状均表现出以主基因间的上位性效应为主; F2群体柱头外露率受2对加性-显性-上位性主基因+多基因控制, 而F2:3群体则表现为受1对加性-显性主基因+多基因控制, 以主基因间的加性效应为主。2个世代中的4个柱头性状均以主基因遗传为主。

关键词: 水稻, 核不育系, 柱头性状, 主基因+多基因模型, 遗传分析

Abstract:

Rice stigma traits are important traits that affects the yield of male sterile lines and hybrid rice seed production. To provide genetic information for the creation of thermo-sensitive genic male sterile lines with long stigmas and high exsertion rates in rice, we investigated the correlation among four stigma traits of 7001S (japonica photoperiod-thermo-sensitive genic male sterile line with short stigma length and low exsertion rate, P1), Zitai S (indica thermo-sensitive genic male sterile line with long stigma length and high exsertion rate, P2), and F1, F2 (350 lines), and F2:3 (320 lines) from the cross P1 × P2. Coefficients of linear correlation in stigma traits were calculated, and genetic patterns were analyzed by mixed major-gene plus polygene inheritance models. The results showed that there were extremely significant linear positive correlations among four stigma traits. The correlation coefficients were between 0.262 and 0.895. Genetic analysis revealed that stigma length (STL), style length (SYL), the sum of stigma, and style length (TSSL) were controlled by two major genes plus polygenes. The two major genes expressed additive-dominant-epistatic effects, but they expressed equal additive effects and equal dominant effects of TSSL in F2 population. The epistatic effect was dominant in STL, SYL, and TSSL in F2 and F2:3. Percentage of exserted stigma (PES) was controlled by two major genes plus polygenes with additive-dominant-epistatic effect in F2. However, PES was controlled by one major gene with additive-dominant effect plus polygenes in F2:3. The additive effect was dominant of PES in F2 and F2:3. Four stigma traits were mainly governed by major genes.

Key words: rice (Oryza sativa L.), genic male sterile line, stigma trait, major gene plus polygene model, genetic analysis

图1

7001S和紫泰S植株和穗子的表现"

图2

水稻雌蕊各部位、7001S和紫泰S柱头表现以及柱头外露表现 A: 7001S和紫泰S的柱头长度比较; B: 水稻雌蕊各部位名称; C: 水稻柱头无外露、单外露以及双外露的表现; D: 紫泰S田间柱头外露表现。"

表1

7001S、紫泰S组合F2和F2:3群体柱头相关性状描述"

性状
Trait
环境
Environment
亲本Parent F1 F2/F2:3群体 F2/F2:3 population
7001S 紫泰S
Zitai S
变幅
Range
均值 ± 标准差
Mean ± SD
变异系数CV (%) 遗传力
H2 (%)
偏度值Skewness 峰度值
Kurtosis
柱头长度
STL
E1 0.867 1.808 1.438 0.993-2.079 1.468 ± 0.226 15.40 78.71 0.088 -0.467
E2 0.915 1.737 1.303 0.752-1.880 1.180 ± 0.221 18.71 86.09 0.807 0.334
花柱长度
SYL
E1 0.780 1.134 0.825 0.441-1.402 0.793 ± 0.162 20.43 93.44 0.559 0.138
E2 0.721 1.207 0.953 0.554-1.399 0.862 ± 0.170 19.78 95.30 0.853 0.298
柱花总长度
TSSL
E1 1.648 2.941 2.263 1.524-3.116 2.261 ± 0.323 14.29 86.42 0.055 -0.269
E2 1.636 2.943 2.256 1.464-3.100 2.042 ± 0.337 16.49 96.72 0.202 0.169
柱头外露率
PES
E1 19.60 63.33 48.35 2.16-79.59 31.73 ± 17.43 54.94 80.23 0.547 -0.178
E2 14.82 58.09 43.32 2.83-74.34 35.85 ± 16.33 45.55 90.16 0.143 -0.792

表2

7001S、紫泰S和7001S/紫泰S F1 4个柱头性状的联合方差分析"

性状
Trait
变异来源
Source of variation
自由度
DF
平方和
SS
均方
MS
F
F-value
F0.05 F0.01
柱头长度
STL (mm)
基因型间Genotypes 2 12.44 6.22 833.66** 3.10 4.85
环境间Environments 1 0.07 0.07 8.98** 3.95 6.93
基因型×环境互作Genotype × Environment 2 0.14 0.07 9.22** 3.10 4.85
花柱长度
SYL (mm)
基因型间Genotypes 2 2.92 1.46 727.96** 3.10 4.85
环境间Environments 1 0.05 0.05 26.65** 3.95 6.93
基因型×环境互作Genotype × Environment 2 0.15 0.07 36.98** 3.10 4.85
柱花总长度
TSSL (mm)
基因型间Genotypes 2 27.06 13.53 1512.51** 3.10 4.85
环境间Environments 1 0 0 0.08 3.95 6.93
基因型×环境互作Genotype × Environment 2 0 0 0.04 3.10 4.85
柱头外露率
PES (%)
基因型间Genotypes 2 19,545.70 9772.85 265.44** 3.17 5.03
环境间Environments 1 377.86 377.86 10.26** 4.02 7.13
基因型×环境互作Genotype × Environment 2 0.52 0.26 0.01 3.17 5.03

图3

2个环境下7001S和紫泰S 4个柱头相关性状的表现 缩写同表1。"

表3

4个柱头性状备选模型配合表型分布的极大似然函数值和AIC值(IECM算法)"

性状
Trait
环境
Env.
世代
Generation
备选模型
Candidate model
极大对数似然函数值
Max. log likelihood value
AIC值
AIC value
适合性检验a
Test of goodness-of-fit a
柱头长度
STL
E1 F2 MX1-AD-ADI 69.20 -122.40 0/0/2/0/0
MX2-ADI-ADI 72.90 -121.90 0/0/2/0/0
MX2-ADI-AD 72.70 -127.50 0/0/2/0/0
MX2-AD-AD 66.60 -123.20 0/1/1/1/1
E2 F2:3 PG-ADI 227.00 -442.00 0/0/1/1/0
MX1-AD-ADI 236.50 -457.00 0/0/1/0/0
MX2-ADI-ADI 238.60 -453.10 0/0/1/1/0
MX2-ADI-AD 238.40 -458.80 0/0/1/0/0
花柱长度
SYL
E1 F2 2MG-ADI 118.90 -217.80 1/1/1/2/0
MX1-AD-ADI 118.40 -222.80 0/0/1/0/0
MX2-ADI-AD 121.70 -217.40 0/0/1/0/0
MX2-AD-AD 106.20 -194.40 3/2/2/3/0
E2 F2:3 2MG-ADI 220.90 -421.90 0/0/2/0/0
2MG-AD 210.90 -409.80 2/2/2/2/0
MX1-AD-ADI 220.80 -427.60 0/0/1/0/0
MX2-ADI-AD 219.10 -412.20 0/0/0/0/0
柱花总长度
TSSL
E1 F2 MX2-AD-AD -60.20 130.39 0/0/1/0/0
MX2-A-AD -62.25 130.50 0/0/1/0/0
MX2-EAED-AD -64.11 132.22 0/0/1/0/0
MX2-EEAD-AD -65.47 134.94 0/0/1/0/0
E2 F2:3 2MG-ADI 18.46 -16.92 0/0/0/1/0
MX1-AD-ADI 9.54 -5.08 0/0/0/0/0
MX2-ADI-AD 5.01 15.98 0/0/0/0/0
MX2-EAED-AD -3.10 18.20 3/3/1/3/0
柱头外露率
PES
E1 F2 2MG-ADI -1627.49 3276.98 1/1/0/1/0
MX1-AD-ADI -1631.22 3278.44 0/0/0/0/0
MX2-ADI-ADI -1620.71 3265.42 0/0/0/0/0
MX2-ADI-AD -1619.79 3257.57 0/0/0/0/0
E2 F2:3 2MG-AD -1482.84 2977.69 0/0/1/0/0
MX1-AD-ADI -1482.98 2979.95 0/0/1/0/0
MX1-A-AD -1483.46 2976.92 0/0/1/0/0
MX1-EAD-AD -1484.77 2979.55 0/0/1/0/0

图4

7001S/紫泰S组合F2 (E1)和F2:3 (E2)群体4个柱头相关性状的次数分布和拟合混合分布及其成分分布"

表4

4个柱头性状遗传参数估计值"

遗传参数
Genetic parameter
柱头长度STL 花柱长度SYL 柱花总长度TSSL 柱头外露率PES
E1 E2 E1 E2 E1 E2 E1 E2
MX2-ADI-
AD
MX2-ADI-
AD
MX2-ADI-
AD
MX2-ADI-
AD
MX2-EEAD-
AD
MX2-ADI-
AD
MX2-ADI-
ADI
MX1-AD-
ADI
一阶参数Univalent parameter
da 0.18 0.06 0.12 0.05 -0.28 0.06 -22.32 15.99
db 0.05 0.01 -0.02 -0.01 -0.03 -7.61
ha 0.13 0.11 -0.19 0.13 0.50 -2.71 -4.31
hb 0.06 0.30 -0.12 0.12 0.19 -1.63
i -0.05 0.13 0.12 0.05 -0.14 7.56
jab 0.17 0.18 0.02 0.07 -0.19 1.59
jba -0.01 -0.03 0.08 0.25 0.32 -2.04
l -0.25 0.22 0.15 0.28 1.44 -0.71
[d] -0.70 -0.47 -0.28 -0.28 -0.06 -0.68
[h] 0.10 -0.53 0.15 -0.50 -0.08 -2.29
二阶参数Bivalent parameter
σ2p 0.051 0.049 0.026 0.029 0.104 0.113 304.86 266.70
σ2mg 0.040 0.045 0.020 0.030 0.080 0.110 271.96 189.71
σ2pg 0.000 0.000 0.006 0.000 0.010 0.000 8.42 52.40
h2mg (%) 81.81 92.86 71.64 93.00 76.02 97.09 89.21 71.13
h2pg (%) 0.00 0.00 22.21 0.00 10.99 0.00 2.76 19.65

表5

4个柱头性状间的相关性系数"

性状 Trait 柱头长度 STL 花柱长度 SYL 柱花总长度 TSSL 柱头外露率 PES
柱头长度 STL 0.472** 0.885** 0.281**
花柱长度 SYL 0.369** 0.760** 0.306**
柱花总长度 TSSL 0.895** 0.816** 0.339**
柱头外露率 PES 0.352** 0.262** 0.377**

图5

7001S/紫泰S组合F2 (A)和F2:3 (B)群体柱花总长度和柱头外露率的散点图"

[1] 袁隆平. 发展杂交水稻保障粮食安全. 第一届中国杂交水稻大会论文集. 湖南长沙, 2010. pp 1-2.
Yuan L P. Developing hybrid rice to ensure food security. In: Collection of the 1st Chinese Hybrid Rice Conference. Changsha, Hunan, China, 2010. pp 1-2(in Chinese).
[2] Huang X H, Han B. Rice domestication occurred through single origin and multiple introgressions. Nat Plants, 2016,2:16207.
[3] Qian Q, Guo L B, Smith S M, Li J Y. Breeding high-yield superior quality hybrid super rice by rational design. Natl Sci Rev, 2016,3:283-294.
[4] Xia Y M, Tang N, Hu Y Y, Li D, Li S C, Bu X L, Yu M L, Qi S W, Yang Y S, Zhu H J, Cao C Y, Li P, Yuan L P, Cao M L. A method for mechanized hybrid rice seed production using female sterile rice. Rice, 2019,12:39.
pmid: 31140005
[5] 刘文炳. 三系杂交水稻超高产制种配套组装技术. 第一届中国杂交水稻大会论文集. 湖南长沙, 2010. pp 465-468.
Liu W B. Packaging techniques for super-high-yield seed production of hybrid rice. In: Collection of the 1st Chinese Hybrid Rice Conference. Changsha, Hunan, China, 2010. pp 465-468(in Chinese).
[6] 舒志芬, 陈勇, 刘钊, 袁露, 熊朝, 张海清. 5个水稻光温敏核不育系柱头特性与异交结实率的关系. 作物研究, 2015,29:343-347.
Shu Z F, Chen Y, Liu Z, Yuan L, Xiong C, Zhang H Q. Correlation between outcrossing characteristics and stigma feature of 5 PTGMS lines. Crop Res, 2015,29:343-347 (in Chinese with English abstract).
[7] 田大成, 黄三奎, 段永国, 王友红. 水稻不育系花时和受粉时间与异交结实率的关系. 杂交水稻, 2004,19(3):50-54.
Tian D C, Huang S K, Duan Y G, Wang Y H. The relationship between flowering and pollination time and outcrossing rate of male sterile lines in hybrid rice seed production. Hybrid Rice, 2004,19(3):50-54 (in Chinese with English abstract).
[8] 代贵金, 华泽田, 蔡伟, 王妍, 张忠旭, 王大为. 激素在杂交粳稻制种中的应用研究. 杂交水稻, 1999,14(增刊):15-20.
Dai G J, Hua Z T, Cai W, Wang Y, Zhang Z X, Wang D W. Application of plant growth substances in the seed production of japonica hybrid rice. Hybrid Rice, 1999,14(S):15-20 (in Chinese).
[9] 田大成, 张素英, 秦春林. 提高柱头外露率是杂交稻制种稳产高产的关键措施. 四川农业科技, 1990, ( 2):16-18.
Tian D C, Zhang S Y, Qin C L. Increasing stigma exsertion rate is a key measure for hybrid rice seed production. Sichuan Agric Sci Tech, 1990, ( 2):16-18 (in Chinese).
[10] 李庆荣. 柱头外露率的环境变异及其在异交结实中的作用. 种子科技, 1995, ( 2):32-33.
Li Q R. Environmental variation of stigma exsertion rate and its role in outcrossing. Seed Tech, 1995, ( 2):32-33 (in Chinese).
[11] 杨保汉. 不育系柱头外露率及其结实率研究. 杂交水稻, 1997,12(1):13-15.
Yang B H. Studies on stigma exsertion rate and outcrossing rate of CMS lines in rice. Hybrid Rice, 1997,12(1):13-15 (in Chinese with English abstract).
[12] Miyata M, Yamamoto T, Komori T, Nitta N. Marker-assisted selection and evaluation of the QTL for stigma exsertion under japonica rice genetic background. Theor Appl Genet, 2007,114:539-548.
doi: 10.1007/s00122-006-0454-4 pmid: 17131105
[13] Virmani S S, Athwal D S. Genetic variability in floral characteristics influencing outcrossing in Oryza sativa L. Crop Sci, 1973,13:66-67.
[14] Takano-Kai N, Doi K, Yoshimura A,. GS3 participates in stigma exsertion as well as seed length in rice. Breed Sci, 2011, 61: 244-250.
[15] 刘强明. 水稻异交相关性状的QTL遗传剖析与柱头长度QTL qSTL3.1的精细定位. 南京农业大学博士学位论文, 江苏南京, 2015.
Liu Q M. QTL Dissection of Out-crossing Related Traits and Fine Mapping of a Stigma Length QTL qSTL3.1 in Rice (Oryza sativa L.). PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2015 (in Chinese with English abstract).
[16] Zhou H, Li P, Xie W, Hussain S, Li Y, Xia D, Zhao H, Sun S, Chen J, Ye H, Hou J, Zhao D, Gao G, Zhang Q, Wang G, Lian X, Xiao J, Yu S, Li X, He Y. Genome-wide association analyses reveal the genetic basis of stigma exsertion in rice. Mol Plant, 2017,10:634-644.
doi: 10.1016/j.molp.2017.01.001 pmid: 28110091
[17] Dang X, Liu E, Liang Y, Liu Q, Breria C M, Hong D. QTL detection and elite alleles mining for stigma traits in Oryza sativa by association mapping. Front Plant Sci, 2016,7:1188.
pmid: 27555858
[18] Liu Y, Zhang A, Wang F, Kong D, Li M, Bi J, Zhang F, Wang J, Luo X, Pan Z, Yu X, Liu G, Luo L. Fine mapping a quantitative trait locus, qSER-7, that controls stigma exsertion rate in rice(Oryza sativa L.). Rice, 2019,12:46.
doi: 10.1186/s12284-019-0304-z pmid: 31289958
[19] Xiong L X, Liu K D, Dai X K, Xu C G, Zhang Q. Identification of genetic factors controlling domestication-related traits of rice using an F2 population of a cross between Oryza sativa and O. rufipogon. Theor Appl Genet, 1999,98:243-251.
[20] 李威, 圣忠华, 朱子亮, 魏祥进, 石磊, 邬亚文, 唐绍清, 王建龙, 胡培松. 粳稻柱头外露率QTL定位. 中国水稻科学, 2017,31:23-30.
Li W, Sheng Z H, Zhu Z L, Wei X J, Shi L, Wu Y W, Tang S Q, Wang J L, Hu P S. QTL mapping of japonica rice stigma exsertion rate. Chin J Rice Sci, 2017,31:23-30 (in Chinese with English abstract).
[21] Bakti C, Tanaka J. Detection of dominant QTLs for stigma exsertion ratio in rice derived from Oryza rufipogon accession ‘W0120’. Breed Sci, 2019,69:143-150.
pmid: 31086492
[22] Uga Y, Fukuta Y, Cai H W, Iwata H, Ohsawa R, Morishima H, Fujimura T. Mapping QTLs influencing rice floral morphology using recombinant inbred lines derived from a cross between Oryza sativa L. and Oryza rufifipogon Griff. Theor Appl Genet, 2003,107:218-226.
doi: 10.1007/s00122-003-1227-y pmid: 12845437
[23] Yu X Q, Mei H W, Luo L J, Liu G L, Zou G H, Hu S P, Li M S, Wu J H. Dissection of additive, epistatic effect and Q × E interaction of quantitative trait loci influencing stigma exsertion under water stress in rice. Acta Genet Sin, 2006,33:542-550.
[24] Hu S P, Zhou Y, Zhang L, Zhu X D, Wang Z G, Li L, Luo L J, Zhou Q M. QTL analysis of floral traits of rice (Oryza sativa L.) under well-watered and drought stress conditions. Genes Genom, 2009,31:173-181.
[25] Li P B, Feng F C, Zhang Q L, Chao Y, Gao G J, He Y Q. Genetic mapping and validation of quantitative trait loci for stigma exsertion rate in rice. Mol Breed, 2014,34:2131-2138.
[26] 尹成, 李平波, 高冠军, 张庆路, 罗利军, 何予卿. 水稻柱头外露率QTL定位. 分子植物育种, 2014,12:43-49.
Yin C, Li P B, Gao G J, Zhang Q L, Luo L J, He Y Q. QTL analysis of percentage of exserted stigma in rice. Mol Plant Breed, 2014,12:43-49 (in Chinese with English abstract).
[27] Rahman M H, Yu P, Zhang Y X, Sun L P, Wu W X, Shen X H, Zhan X D, Chen D B, Cao L Y, Cheng S H. Quantitative trait loci mapping of the stigma exertion rate and spikelet number per panicle in rice( Oryza sativa L.). Genet Mol Res, 2016, 15: gmr15048432.
[28] Yan W G, Li Y, Agrama H A, Luo D G, Gao F Y, Lu X J, Ren G J. Association mapping of stigma and spikelet characteristics in rice ( Oryza sativa L.). Mol Breed, 2009,24:277-292.
pmid: 20234878
[29] Zhang K, Zhang Y, Wu W, Zhan X, BakrAnis G, Rahman M H, Hong Y, Riaz A, Zhu A, Cao Y, Sun L, Yang Z, Yang Q, Cao L, Cheng S. qSE7 is a major quantitative trait locus (QTL) influencing stigma exsertion rate in rice(Oryza sativa L.). Sci Rep, 2018,8:14523.
doi: 10.1038/s41598-018-32629-2 pmid: 30266907
[30] Rahman M H, Zhang Y, Zhang K, Rahman M S, Barman H N, Riaz A, Chen Y, Wu W, Zhan X, Cao L, Cheng S. Genetic dissection of the major quantitative trait locus (qSE11), and its validation as the major influence on the rate of stigma exsertion in rice( Oryza sativa L.). Front Plant Sci, 2017,8:1818.
doi: 10.3389/fpls.2017.01818 pmid: 29163563
[31] Uga Y, Siangliw M, Nagamine T, Ohsawa R, Fujimura T, Fukuta Y. Comparative mapping of QTLs determining glume, pistil and stamen sizes in cultivated rice ( Oryza sativa L.). Plant Breed, 2010,129:657-669.
[32] Marathi B, Ramos J, Hechanova S L, Oane R H, Jena K K. SNP genotyping and characterization of pistil traits revealing a distinct phylogenetic relationship among the species of Oryza. Euphytica, 2015,201:131-148.
[33] 陈兰, 张红, 张启武, 江建华, 王洋, 陈杰丽, 洪德林. 水稻6个异交相关性状的SSR关联分析. 南京农业大学学报, 2012,35(2):1-9.
Chen L, Zhang H, Zhang Q W, Jiang J H, Wang Y, Chen J L, Hong D L. Association analysis of six outcrossing related traits in rice ( Oryza sativa L.) with SSR markers. J Nanjing Agric Univ, 2012,35(2):1-9 (in Chinese with English abstract).
[34] Liu Q, Qin J, Li T, Liu E, Fan D, Edzesi W M, Liu J, Jiang J, Liu X, Xiao L, Liu L, Hong D. Fine mapping and candidate gene analysis of qSTL3, a stigma length-conditioning locus in rice(Oryza sativa L.). PLoS One, 2015,10:e0127938.
doi: 10.1371/journal.pone.0127938 pmid: 26030903
[35] 李成荃, 许克农, 王守海, 罗彦长, 王德正. 粳型水稻光敏核不育系7001S的育性与利用研究. 安徽农业科学, 1994,22(1):11-15.
Li C Q, Xu K L, Wang S H, Luo Y C, Wang D Z. Study on the fertility of japonica PGMR 7001S and its utilization. J Anhui Agric Sci, 1994,22(1):11-15 (in Chinese with English abstract).
[36] 张启武, 江建华, 姚瑾, 洪德林. 穞稻与粳稻恢复系C堡籽粒灌浆速率的特征及遗传分析. 作物学报, 2009,35:1229-1235.
Zhang Q W, Jiang J H, Yao J, Hong D L. Characterization and genetic analysis of grain filling rate of Ludao and restorer line C-bao injaponica rice(Oryza sativa L.). Acta Agron Sin, 2009,35:1229-1235 (in Chinese with English abstract).
[37] 汪文祥, 胡琼, 梅德圣, 李云昌, 周日金, 王会, 成洪涛, 付丽, 刘佳. 甘蓝型油菜分枝角度主基因+多基因混合遗传模型及遗传效应. 作物学报, 2016,42:1103-1111.
Wang W X, Hu Q, Mei D S, Li Y C, Zhou R J, Wang H, Cheng H T, Fu L, Liu J. Genetic effects of branch angle using mixture model of major gene plus polygene in Brassica napus L. Acta Agron Sin, 2016,42:1103-1111 (in Chinese with English abstract).
[38] 梁慧珍, 余永亮, 许兰杰, 杨红旗, 董薇, 谭政伟, 李磊, 裴新涌, 刘新梅. 大豆α-生育酚的遗传与QTL分析. 中国农业科学, 2019,52:11-20.
Liang H Z, Yu Y L, Xu L J, Yang H Q, Dong W, Tan Z W, Li L, Pei X Y, Liu X M. Inheritance and QTL mapping for α-tocopherol in soybean. Sci Agric Sin, 2019,52:11-20 (in Chinese with English abstract).
[39] 翟英. 番茄果实色泽和色素含量的遗传特征. 分子植物育种, 2019,17:264-269.
Zhai Y. Genetic characteristics of color and pigment content in Tomato fruits. Mol Plant Breed, 2019,17:264-269 (in Chinese with English abstract).
[40] 解松峰, 吉万全, 张耀元, 张俊杰, 胡卫国, 李俊, 王长有, 张宏, 陈春环. 小麦重要产量性状的主基因+多基因混合遗传分析. 作物学报, 2020,46:365-384.
Xie S F, Ji W Q, Zhang Y Y, Zhang J J, Hu W G, Li J, Wang C Y, Zhang H, Chen C H. Genetic effects of important yield traits analysed by mixture model of major gene plus polygene in wheat. Acta Agron Sin, 2020,46:365-384 (in Chinese with English abstract).
[41] 曹锡文, 刘兵, 章元明. 植物数量性状分离分析Windows软件包SEA的研制. 南京农业大学学报, 2013,36(6):1-6.
Cao X W, Liu B, Zhang Y M. SEA: a software package of segregation analysis of quantitative traits in plants. J Nanjing Agric Univ, 2013,36(6):1-6 (in Chinese with English abstract).
[42] 盖钧镒. 试验统计方法. 北京: 中国农业出版社, 2000. pp 99-126, 157-189.
Gai J Y. Methods of Experiments and Statistics. Beijing: China Agriculture Press, 2000. pp 99- 126, 157-189(in Chinese).
[43] 吴爽, 江建华, 汤修竹, 王德正. 水稻温敏核不育系广茉S的异交特性研究. 杂交水稻, 2015,30(3):35-38.
Wu S, Jiang J H, Tang X J, Wang D Z. Studies on outcrossing characteristics of TGMS line Guangmo S in rice. Hybrid Rice, 2015,30(3):35-38 (in Chinese with English abstract).
[44] 王春娥, 盖钧镒, 傅三雄, 喻德跃, 陈受宜. 大豆豆腐和豆乳得率的遗传分析与QTL定位. 中国农业科学, 2008,41:1274-1282.
Wang C E, Gai J Y, Fu S X, Yu D Y, Chen S Y. Inheritance and QTL mapping of Tofu and soymilk output in soybean. Sci Agric Sin, 2008,41:1274-1282 (in Chinese with English abstract).
[45] Li T, Chen Y W. Genetics of stigma exsertion in rice. Rice Genet Newsl, 1985,2:84-85.
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[13] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!