欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (8): 1450-1459.doi: 10.3724/SP.J.1006.2021.04213

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

影响甘薯收获期软腐病发生的指标筛选

张思梦(), 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权*()   

  1. 浙江农林大学农业与食品科学学院/浙江省农产品品质改良重点实验室, 浙江杭州 311300
  • 收稿日期:2020-09-18 接受日期:2020-12-01 出版日期:2021-08-12 网络出版日期:2021-01-06
  • 通讯作者: 陆国权
  • 作者简介:E-mail: 1826213445@qq.com
  • 基金资助:
    国家现代农业产业技术体系建设专项(CARS-10-B19);国家自然科学基金项目(31671750);浙江省农业(粮食)新品种选育重大科技专项子专题(2016C02050-7-5)

Identification and index screening of soft rot resistance at harvest stage in sweetpotato

ZHANG Si-Meng(), NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan*()   

  1. College of Agriculture and Food Science, Zhejiang Agriculture and Forest University/Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Hangzhou 311300, Zhejiang, China
  • Received:2020-09-18 Accepted:2020-12-01 Published:2021-08-12 Published online:2021-01-06
  • Contact: LU Guo-Quan
  • Supported by:
    China Agriculture Research System(CARS-10-B19);National Natural Science Foundation of China(31671750);Major Scientific and Technological Sub-topics of Zhejiang for Agricultural (Food) New Varieties Selection and Breeding(2016C02050-7-5)

摘要:

软腐病是甘薯贮藏期最具破坏力的病害之一, 病原菌是匍枝根霉(Rhizopus stolonifer), 匍枝根霉从伤口侵染, 利用伤口的营养物质进行繁殖, 破坏细胞壁, 造成薯块软烂。本研究以不同时期收获的6个甘薯品种块根为试验材料, 通过薯片接菌碟法鉴定软腐病抗性, 测定薯块的质构特性(硬度、黏附性、黏附力、内聚性、弹性、咀嚼性、胶黏性)、营养物质(干率、淀粉、果糖、葡萄糖、蔗糖、粗蛋白、粗纤维)、抗性酶活(POD、PPO、PAL)等生理指标, 对各指标值进行相关分析、灰色关联度分析、隶属函数分析, 筛选和综合评价软腐病抗性指标。根据病斑直径将甘薯软腐病抗性划分等级, 通过病斑直径和各指标值的相关分析、灰色关联度分析, 筛选抗软腐病指标并确定其权重, 再进行隶属函数分析, 得到不同材料软腐病抗性综合评价值(D值), 通过综合评价值和病斑直径比较及相关分析验证指标筛选的可靠性。试验材料的软腐病抗性结果显示, 90 d收获甘薯软腐病抗性表现为抗病, 105 d收获甘薯整体表现为感病和高感, 120、135、150 d收获甘薯软腐病整体抗性为中抗, 同时筛选出果糖含量、咀嚼性、内聚性、弹性、粗蛋白含量、POD、PAL酶活性等7个可评价甘薯软腐病抗性的指标。本研究可为甘薯抗软腐新品种选育提供种质并为甘薯软腐病抗性评价及抗软腐机制研究提供理论依据。

关键词: 甘薯, 软腐病抗性, 收获期, 鉴定指标

Abstract:

Soft rot is one of the most destructive diseases during sweetpotato storage. Cell walls were destroyed and soft rot was caused by Rhizopus Stolonifer, which invaded from wounds and propagated with nutrients from wounds. Six varieties of sweetpotato roots in different harvest period were used as the experimental material to identify the resistance index to soft rot, through the inoculation with sweetpotato chips. Physiological indexes including texture of roots (hardness, adhesion, adhesion force, cohesiveness, elasticity, chewiness, and glue viscosity), nutrients (dry matter content, starch, fructose, glucose, sucrose, crude protein and crude fiber), resistance enzyme activity (POD, PPO, PAL) were investigated in this study. Their correlation analysis, grey correlation analysis of each index and subordinate function analysis were applied in screening and comprehensive evaluation of soft rot resistance. The soft rot resistance of sweetpotato roots was graded based on the disease spot diameter. The index and weight of soft rot resistance were conducted by correlation analysis and grey correlation analysis of disease spot diameter and index values. Comprehensive evaluation value (D-value) of six varieties of sweetpotato roots at different harvest stages were calculated using the membership function analysis. The reliability of indicators selection was verified through correlation analysis of D-value based on the disease spot diameter. Soft rot resistance of sweetpotato was high in 90 day at harvest stage, moderate resistance in 120, 135, 150 day of harvest stage, and hypersensitivity and susceptibility in 105 day of harvest stage. Seven indexes, including fructose content selection, chewiness, cohesiveness, elasticity, protein content, POD and PAL enzyme activity, were filtered out to estimate the resistance of soft rot in sweetpotato. These results could provide the germplasm information for selection and breeding of new sweetpotato varieties resistant to soft rot and could serve as a basis for subsequent assessment of sweetpotato resistant to soft rot and their soft rot resistance mechanism.

Key words: sweetpotato, soft rot resistance, harvest stage, appraisal indicators

表1

甘薯样品编号"

品种
Variety
收获时间Harvest time
90 d 105 d 120 d 135 d 150 d
徐紫薯8号 Xuzishu 8 1-1 1-2 1-3 1-4 1-5
烟薯25 Yanshu 25 2-1 2-2 2-3 2-4 2-5
济薯25 Jishu 25 3-1 3-2 3-3 3-4 3-5
浙薯13 Zheshu 13 4-1 4-2 4-3 4-4 4-5
心香 Xinxiang 5-1 5-2 5-3 5-4 5-5
漯紫薯4号 Luozishu 4 6-1 6-2 6-3 6-4 6-5

图1

不同收获期甘薯块根接匍枝根霉菌碟21 h后发病情况 A: 90 d收获; B: 105 d收获; C: 120 d收获; D: 135 d收获; E: 150 d收获。"

表2

不同收获期甘薯块根软腐病病斑直径"

品种
Variety
收获时间Harvest time
90 d 105 d 120 d 135 d 150 d
徐紫薯8号 Xuzishu 8 0.82±0.12 d 2.17±0.06 a 1.622±0.04 b 1.79±0.16 b 1.37±0.22 c
烟薯25 Yanshu 25 0.90±0.06 d 3.58±0.05 a 1.07±0.03 d 1.74±0.28 b 1.41±0.13 c
济薯25 Jishu 25 0.59±0.05 c 2.62±0.14 a 1.31±0.44 b 1.29±0.05 b 1.54±0.11 b
浙薯13 Zheshu 13 0.59±0.02 e 2.79±0.36 a 1.42±0.11 c 1.04±0.14 d 1.84±0.17 b
心香 Xinxiang 0.83±0.01 d 3.17±0.17 a 2.82±0.21 b 1.10±0.10 d 2.18±0.17 c
漯紫薯4号 Luozishu 4 0.52±0.02 c 1.64±0.07 a 1.50±0.15 a 0.69±0.04 c 1.31±0.14 b

表3

不同收获期甘薯块根软腐病病情指数及抗性评价结果"

品种
Variety
收获时间Harvest time
90 d 105 d 120 d 135 d 150 d
徐紫薯8号 Xuzishu 8 25.00 R 66.67 S 55.56 MR 52.78 MR 50.00 MR
烟薯25 Yanshu 25 25.00 R 97.22 HS 41.67 MR 52.78 MR 50.00 MR
济薯25 Jishu 25 25.00 R 66.67 S 47.22 MR 47.22 MR 50.00MR
浙薯13 Zheshu 13 25.00 R 83.33 HS 47.22 MR 50.00 MR 55.56 MR
心香 Xinxiang 25.00 R 94.44 HS 77.78 S 44.44 MR 55.56 MR
漯紫薯4号 Luozishu 4 25.00 R 55.56 MR 55.56 MR 25.00 R 50.00 MR

表4

甘薯各样品软腐病相关指标测定值"

样品编号
Sample number
内聚性
Cohesiveness
(ratio)
弹性
Springiness
(mm)
咀嚼性
Chewiness
(N)
果糖
Fructose content
(mg g-1)
粗蛋白
Crude protein content (%)
过氧化物酶
POD activity
(U)
苯丙氨酸解氨酶活性
PAL activity (U)
1-1 0.23±0.00 a 6.31±0.78 ab 210.67±7.10 a 1.36±0.15 d 0.95±0.05 a 7.54±0.24 c 95.00±5.00 a
1-2 0.20±0.01 ab 5.83±0.25 b 165.18±6.28 b 4.64±0.37 a 0.55±0.02 c 2.45±0.20 e 35.33±1.53 c
1-3 0.21±0.00 a 5.81±0.17 b 158.95±2.34 b 4.34±0.28 a 0.62±0.01 b 3.56±0.42 d 17.00±1.00 d
1-4 0.18±0.02 b 6.75±0.25 a 178.27±9.20 b 2.52±0.30 b 0.45±0.02 d 10.55±0.43 b 33.67±3.06 c
1-5 0.21±0.02 a 5.92±0.32 b 176.68±17.80 b 1.87±0.20 c 0.90±0.03 a 16.49±0.49 a 45.00±3.61 b
2-1 0.23±0.01 ab 6.51±0.40 a 126.80±4.36 b 15.34±0.85 c 0.71±0.02 a 10.56±0.37 a 86.33±1.15 a
2-2 0.19±0.01 c 5.43±0.69 b 92.70±1.52 d 19.09±0.08 ab 0.54±0.01 c 4.63±0.44 d 25.33±3.51 b
2-3 0.24±0.01 a 6.71±0.40 a 138.82±5.38 a 19.52±0.13 a 0.45±0.01 d 6.49±1.20 c 25.33±1.53 b
2-4 0.21±0.01 bc 6.68±0.04 a 126.11±10.85 b 16.46±1.30 c 0.66±0.03 b 9.57±0.43 ab 22.33±3.21 b
2-5 0.20±0.01 c 6.35±0.32 a 107.98±4.93 c 17.9±0.40 b 0.43±0.02 d 8.46±0.32 b 8.00±1.00 c
3-1 0.21±0.03 a 6.31±0.07 b 126.14±3.82 b 1.49±0.23 bc 0.57±0.02 d 15.13±0.53 b 73.67±2.52 a
3-2 0.16±0.00 b 5.72±0.25 c 118.63±4.92 b 1.97±0.14 bc 0.44±0.03 e 3.33±0.05 c 9.33±0.58 c
3-3 0.16±0.02 b 6.52±0.14 a 150.22±8.80 a 2.16±0.31 b 0.87±0.01 a 5.42±0.42 c 25.67±2.08 b
3-4 0.14±0.01 b 6.07±0.33 bc 116.60±2.94 b 1.17±0.04 c 0.81±0.01 b 5.66±0.44 c 26.33±2.31 b
3-5 0.13±0.01 b 6.83±0.39 ab 120.41±2.01 b 10.33±0.96 a 0.75±0.01 c 24.39±3.52 a 12.00±1.00 c
4-1 0.28±0.09 a 6.86±0.18 a 218.32±3.87 a 1.80±0.14 d 0.95±0.02 a 9.57±0.92 a 89.00±3.00 a
4-2 0.18±0.00 ab 6.02±0.18 b 135.65±6.94 c 2.65±0.17 c 0.77±0.01 b 2.69±0.79 d 16.33±2.52 bc
4-3 0.20±0.04 ab 5.90±0.34 b 126.72±3.95 d 5.22±0.42 a 0.66±0.09 c 7.47±0.18 b 18.67±3.06 c
4-4 0.17±0.02 b 6.10±0.11 b 125.59±3.53 d 4.08±0.53 b 0.99±0.01 d 5.53±0.49 c 21.67±1.53 b
4-5 0.17±0.01 b 6.71±0.36 a 169.24±4.96 b 1.41±0.14 d 0.40±0.01 d 10.23±0.64 a 17.67±1.15 bc
5-1 0.18±0.01 a 5.49±0.27 a 86.51±2.96 c 1.78±0.11 c 1.00±0.02 a 49.04±0.44 a 68.00±2.65 a
5-2 0.16±0.01 b 5.08±0.56 a 73.64±4.39 d 6.80±0.59 b 0.54±0.01 c 5.38±0.33 d 36.67±3.06 b
5-3 0.19±0.01 a 5.93±0.68 a 103.35±4.52 b 10.03±0.60 a 0.55±0.01 c 6.37±0.37 d 25.33±3.06 c
5-4 0.17±0.01 ab 5.97±0.33 a 106.20±7.81 b 6.03±0.61 b 0.39±0.04 d 8.53±0.97 c 30.67±3.79 c
5-5 0.16±0.01 b 5.74±0.24 a 117.08±3.00 a 6.14±0.65 b 0.76±0.10 b 14.48±0.70 b 13.00±1.73 d
6-1 0.20±0.02 a 7.14±0.68 a 137.18±3.47 a 3.06±0.23 d 0.83±0.01 b 2.81±0.11 d 75.33±4.16 a
6-2 0.17±0.02 a 5.51±0.28 c 97.46±0.35 c 6.83±0.46 b 0.44±0.02 d 8.36±0.41 b 21.00±2.00 c
6-3 0.20±0.01 a 6.51±0.21 ab 133.85±4.09 a 7.63±0.20 a 0.54±0.02 c 2.09±0.18 e 20.33±4.04 c
6-4 0.18±0.01 a 5.99±0.14 bc 115.39±2.91 b 7.53±0.35 c 0.85±0.06 b 4.84±0.18 c 55.67±1.53 b
6-5 0.19±0.03 a 5.80±0.28 c 109.29±7.51 b 4.98±0.46 c 0.97±0.08 a 8.99±0.28 a 11.33±2.08 d

表5

甘薯软腐病病斑直径与各指标的灰色关联度及排序"

序列
Indicator
测定指标
Index
关联度γ
Correlation degree γ
权重
Weight
位次
Rank
X4 果糖 Fructose 0.5145 0.1668 1
X6 过氧化物酶 Peroxidase 0.4996 0.1620 2
X3 咀嚼性 Chewiness 0.4566 0.1480 3
X8 苯丙氨酸解氨酶 L-phenylalanin ammo-nialyase 0.4144 0.1344 5
X1 内聚性 Cohesiveness 0.4248 0.1377 4
X2 弹性 Springiness 0.4069 0.1319 6
X5 粗蛋白 Crude protein 0.3675 0.1192 7

表6

各指标隶属函数值及加权综合值"

样品编号
Sample number
内聚性
Cohesiveness
(ratio)
弹性
Springiness
(mm)
咀嚼性
Chewiness
(N)
果糖
Fructose content
(mg g-1)
粗蛋白
Crude protein content (%)
过氧化物酶
POD activity
(U)
苯丙氨酸解氨酶活性
PAL activity (U)
加权综合值
Weighted
composite value
1-1 0.09 0.40 0.05 0.12 0.08 0.88 0.00 0.23
1-2 0.32 0.64 0.37 0.33 0.73 0.99 0.69 0.55
1-3 0.21 0.65 0.41 0.30 0.62 0.97 0.90 0.55
1-4 0.53 0.19 0.28 0.20 0.91 0.82 0.70 0.49
1-5 0.24 0.59 0.29 0.12 0.15 0.69 0.57 0.37
2-1 0.09 0.31 0.63 0.83 0.47 0.82 0.10 0.48
2-2 0.45 0.83 0.87 0.92 0.76 0.95 0.80 0.81
2-3 0.00 0.21 0.55 1.00 0.90 0.91 0.80 0.64
2-4 0.27 0.22 0.64 0.80 0.55 0.84 0.84 0.61
2-5 0.32 0.38 0.76 0.95 0.94 0.86 1.00 0.75
3-1 0.25 0.40 0.64 0.08 0.70 0.72 0.25 0.42
3-2 0.78 0.69 0.69 0.11 0.92 0.97 0.98 0.71
3-3 0.71 0.30 0.47 0.12 0.21 0.93 0.80 0.50
3-4 0.91 0.52 0.70 0.05 0.31 0.92 0.79 0.59
3-5 1.00 0.15 0.68 0.42 0.40 0.53 0.95 0.60
4-1 0.09 0.13 0.00 0.09 0.07 0.84 0.07 0.19
4-2 0.51 0.55 0.57 0.14 0.37 0.99 0.90 0.57
4-3 0.34 0.60 0.63 0.31 0.56 0.89 0.88 0.58
4-4 0.64 0.51 0.64 0.25 0.01 0.93 0.84 0.54
4-5 0.64 0.21 0.34 0.06 0.98 0.83 0.89 0.54
5-1 0.50 0.80 0.91 0.10 0.00 0.00 0.31 0.36
5-2 0.76 1.00 1.00 0.31 0.75 0.93 0.67 0.77
5-3 0.46 0.59 0.79 0.52 0.73 0.91 0.80 0.68
5-4 0.61 0.57 0.77 0.31 1.00 0.86 0.74 0.68
5-5 0.75 0.68 0.70 0.00 0.39 0.74 0.94 0.63
6-1 0.37 0.00 0.56 0.20 0.27 0.98 0.23 0.37
6-2 0.62 0.79 0.84 0.52 0.92 0.87 0.85 0.73
6-3 0.38 0.31 0.58 0.57 0.75 1.00 0.86 0.60
6-4 0.58 0.56 0.71 0.61 0.24 0.94 0.45 0.56
6-5 0.44 0.65 0.75 0.34 0.04 0.85 0.96 0.56
[1] Laryea D, Koomson D, Oduro I, Carey E. Evaluation of 10 genotypes of sweetpotato for fries. Food Sci Nutr, 2019,7:589-598.
doi: 10.1002/fsn3.2019.7.issue-2
[2] Flis B, Tatarowska B, Milczarek D, Plich J. Effect of location on starch content and tuber texture characteristics in potato breeding lines and cultivars. Acta Agric Scand Section B: Soil Plant Sci, 2017,67:453-461.
[3] Sato A, Truong V D, Johanningsmeier S D, Reynolds R, Pecota K V, Yencho C C. Chemical constituents of sweetpotato genotypes in relation to textural characteristics of processed French fries. J Food Sci, 2018,83:60-73.
doi: 10.1111/1750-3841.13978
[4] Clark C A, Silva W L D, Ramón A A, Main J L, Smith J. Incidence of end rots and internal necrosis in sweetpotato is affected by cultivar, curing, and ethephon defoliation. Horttechnology, 2013,23:886-897.
doi: 10.21273/HORTTECH.23.6.886
[5] 陆漱韵, 刘庆昌, 李惟基. 甘薯育种学. 北京: 中国农业出版社, 1998. pp 1-5.
Lu S Y, Liu Q C, Li W J. Sweet Potato Breeding. Beijing: China Agriculture Press, 1998. pp 1-5(in Chinese).
[6] Ray R C, Ravi V, Hegde V, Korada R R, Tomlins K. Post harvest handling, storage methods, pest and diseases of sweet potato. Int J Innovat Hortic, 2015,4:1-10.
[7] 王亮, 闫根柱, 赵迎丽, 王春生. 甘薯贮藏期主要病害及其防治方法. 中国果菜, 2009, (8):22.
Wang L, Yan G Z, Zhao Y L, Wang C S. The main diseases of sweet potato during storage and their control methods. China Fruits Veget, 2009, (8):22 (in Chinese with English abstract).
[8] Tang B, Pan H B, Tang W J, Zhang Q Q, Ding L X, Zhang F Q. Fermentation and purification of cellulase from a novel strain Rhizopus stolonifer var. reflexus TP-02. Biomass Bioenergy, 2011,36:366-372.
doi: 10.1016/j.biombioe.2011.11.003
[9] Lewthwaite S L, Wright P J, Triggs C M. Sweetpotato cultivar susceptibility to postharvest soft rot caused by Rhizopus stolonifer. New Zealand Plant Prot, 2013,66:223-228.
[10] Edmunds B A, Clark C A, Villordon A Q, Holmes G J. Relationships of preharvest weather conditions and soil factors to susceptibility of sweetpotato to postharvest decay caused by Rhizopus stolonifer and Dickeya dadantii. Plant Dis, 2015,99:848-857.
doi: 10.1094/PDIS-11-14-1143-RE pmid: 30699536
[11] Holmes G J, Stange R R. Influence of wound type and storage duration on susceptibility of sweetpotatoes to Rhizopus soft rot. Plant Dis, 2002,86:345-348.
doi: 10.1094/PDIS.2002.86.4.345
[12] 杨冬静, 徐振, 赵永强, 张成玲, 孙厚俊, 谢逸萍. 甘薯软腐病抗性鉴定方法研究及其对甘薯种质资源抗性评价. 华北农学报, 2014,29(增刊1):54-56.
Yang D J, Xu Z, Zhao Y Q, Zhang C L, Sun H J, Xie Y P. Research on the identification method of sweet potato soft rot resistance and its resistance evaluation to sweet potato germplasm resources. Acta Agric Boreali-Sin, 2014,29(S1):54-56 (in Chinese with English abstract).
[13] Scruggs A C, Quesada-Ocampo L M. Cultural, chemical, and alternative control strategies for Rhizopus soft rot of sweetpotato. Plant Dis, 2016,100:1532-1540.
doi: 10.1094/PDIS-01-16-0051-RE pmid: 30686213
[14] Edmunds B A, Holmes G J. Evaluation of alternative decay control products for control of postharvest Rhizopus soft rot of sweetpotatoes. Plant Health Prog, 2009,10:26.
doi: 10.1094/PHP-2009-0206-01-RS
[15] Nafady N A, Alamri S A M, Hassan E A, Hashem M, Mostafa Y S, Abo-Elyousr K A M. Application of ZnO-nanoparticles to manage Rhizopus soft rot of sweet potato and prolong shelf-life. Folia Hortic, 2019,31:319-329.
doi: 10.2478/fhort-2019-0025
[16] 崔杰, 党耀国, 刘思峰. 基于灰色关联度求解指标权重的改进方法. 中国管理科学, 2008,16(5):141-145.
Cui J, Dang Y G, Liu S F. An improved method for solving index weights based on grey incidence. China Manage Sci, 2008,16(5):141-145 (in Chinese with English abstract).
[17] 王士强, 胡银岗, 佘奎军, 周琳璘, 孟凡磊. 小麦抗旱相关农艺性状和生理生化性状的灰色关联度分析. 中国农业科学, 2007,40:2452-2459.
Wang S Q, Hu Y G, She K J, Zhou L L, Meng F L. Grey Correlation analysis of agronomic and physiological and biochemical traits related to drought resistance in wheat. Sci Agric Sin, 2007,40:2452-2459 (in Chinese with English abstract).
[18] 张文英, 柳斌辉, 杨国航, 彭海城, 栗雨勤. 玉米不同时期抗旱性鉴定指标的灰色关联度与聚类分析. 华北农学报, 2008,23(增刊1):96-98.
Zhang W Y, Liu B H, Yang G H, Peng H C, Li Y Q. Grey correlation degree and cluster analysis of drought resistance identification indicators in different periods of maize. Acta Agric Boreali-Sin, 2008,23(S1):96-98 (in Chinese with English abstract).
[19] Alfaro-Sifuentes L, Juan M, Meca D E, Elorrieta M A, Valenzuela J L. Effectiveness of chemical and thermal treatments on control Rhizopus stolonifer fruit infection comparing tomato cultivars with different sensitivities to cracking. Int J Environ Res Public Health, 2019,16:2754.
doi: 10.3390/ijerph16152754
[20] Alessandrini L, Balestra F, Romani S, Rocculi P, Rosa M D. Physicochemical and sensory properties of fresh potato-based pasta (Gnocchi). J Food Sci, 2010,75:542-547.
[21] 陆国权, 李秀玲, 丁守仁. 盐酸水解DNS比色法快速测定甘薯淀粉含量的标准方法研究. 中国粮油学报, 2002,17(1):25-28.
Lu G Q, Li X L, Ding S R. Hydrochloric acid hydrolysis DNS colorimetric method to quickly determine the standard method of sweet potato starch content. J Chin Cereals Oils Assoc, 2002,17(1):25-28 (in Chinese with English abstract).
[22] 李燕平. 高效液相色谱-示差折光检测法测定茶叶中果糖、葡萄糖、蔗糖的含量. 广东化工, 2016, (7):187-188.
Li Y P. Determination of fructose, glucose and sucrose in tea by high performance liquid chromatography-refractive index detection method. Guangdong Chem Ind, 2016, (7):187-188 (in Chinese with English abstract).
[23] 陈智慧, 史梅, 王秋香, 张晓红. 用凯氏定氮法测定食品中的蛋白质含量. 新疆畜牧业, 2008, (5):22-24.
Chen Z H, Shi M, Wang Q X, Zhang X H. Determination of protein content in food by Kjeldahl method. Xinjiang Animal Husb, 2008, (5):22-24 (in Chinese with English abstract).
[24] Rao L. Lamin proteolysis facilitates nuclear events during apoptosis. J Cell Biol, 1996,135:1441-1455.
doi: 10.1083/jcb.135.6.1441
[25] Pizzocaro F, Torreggiani D, Gilardi G. Inhibition of apple polyphenoloxidase (PPO) by ascorbic acid, citric acid and sodium chloride. J Food Proc Preserv, 2010,17:21-30.
doi: 10.1111/jfpp.1993.17.issue-1
[26] Lister C E, Lancaster J E, Walker J R L. Developmental changes in enzymes of flavonoid biosynthesis in the skins of red and green apple cultivars. J Sci Food Agric, 1996,71:313-320.
doi: 10.1002/(ISSN)1097-0010
[27] 贾小平, 袁玺垒, 陆平, 范丙友, 黄华, 戴凌峰. 中国71个谷子种质资源的灰色关联度分析及综合评价. 种子, 2017,36(9):63-66.
Jia X P, Yuan X L, Lu P, Fan B Y, Huang H, Dai L F. Grey correlation analysis and comprehensive evaluation of 71 millet germplasm resources in China. Seeds, 2017,36(9):63-66 (in Chinese with English abstract).
[28] 武修英, 陆漱韵, 李惟基. 一种快速、准确鉴定甘薯抗线虫性糠腐病的方法. 作物学报, 1992,18:317-319.
Wu X Y, Lu S Y, Li W J. A rapid and accurate method for identifying resistance of sweet potato to nematode bran rot. Acta Agron Sin, 1992,18:317-319 (in Chinese with English abstract).
[29] 张志德, 朱俊光. 粉锈宁防治甘薯黑斑病初步研究. 植物保护学报, 1991,18:305-310.
Zhang Z D, Zhu J G. A preliminary study on the control of Ceratocystis fimbriata of sweetpotato by triadimefon. Acta Plant Prot, 1991,18:305-310 (in Chinese with English abstract).
[30] 黄立飞, 陈景益, 房伯平, 罗忠霞, 张雄坚, 王章英. 甘薯茎腐病菌的遗传多样性及致病力差异分析. 植物保护学报, 2018,45:1227-1234.
Huang L F, Chen J Y, Fang B P, Luo Z X, Zhang X J, Wang Z Y. Analysis of genetic diversity and pathogenicity of sweet potato stem rot pathogens. Acta Phytophy Sin, 2018,45:1227-1234 (in Chinese with English abstract).
[31] 李龙, 王兰芬, 武晶, 景蕊莲, 王述民. 普通菜豆品种苗期抗旱性鉴定. 作物学报, 2015,41:963-971.
Li L, Wang L F, Wu J, Jing R L, Wang S M. Identification of drought resistance of common bean varieties at seedling stage. Acta Agron Sin, 2015,41:963-971 (in Chinese with English abstract).
[32] 王正航, 武仙山, 昌小平, 李润植, 景蕊莲. 小麦旗叶叶绿素含量及荧光动力学参数与产量的灰色关联度分析. 作物学报, 2010,36:217-227.
Wang Z H, Wu X S, Chang X P, Li R Z, Jing R L. Grey correlation analysis of wheat flag leaf chlorophyll content, fluorescence kinetic parameters and yield. Acta Agron Sin, 2010,36:217-227 (in Chinese with English abstract).
[33] 段文学, 张海燕, 解备涛, 汪宝卿, 张立明. 甘薯苗期耐盐性鉴定及其指标筛选. 作物学报, 2018,44:1237-1247.
Duan W X, Zhang H Y, Xie B T, Wang B Q, Zhang L M. Salt tolerance identification and index screening of sweet potato seedlings. Acta Agron Sin, 2018,44:1237-1247 (in Chinese with English abstract)
[34] 谈锋, 张启堂, 陈京, 李坤培. 甘薯品种抗旱适应性的数量分析. 作物学报, 1991,17:394-398.
Tan F, Zhang Q T, Chen J, Li K P. Quantitative analysis of drought resistance adaptability of sweet potato varieties. Acta Agron Sin, 1991,17:394-398 (in Chinese with English abstract).
[35] 李玲, 徐舒, 曹如霞, 陈玲玲, 崔鹏, 吕尊富, 陆国权. 基于PCA-Entropy TOPSIS的甘薯品种块根质构品质评价. 中国农业科学, 2020,53:2161-2170.
Li L, Xu S, Cao R X, Chen L L, Cui P, Lyu Z F, Lyu G Q. Evaluation of root texture quality of sweet potato varieties based on PCA-Entropy TOPSIS. Sci Agric Sin, 2020,53:2161-2170 (in Chinese with English abstract).
[36] Gill P, Kaur G, Saxena V K. Genetic studies of some biochemical compounds and their relationship with charcoal rot resistance in maize (Zea mays L.). J Res (India), 2005,42:1-9.
[37] 蔡复礼. 果糖的应用特性及其分离. 食品工业科技, 1996, (2):38-40.
Cai F L. Application characteristics and separation of fructose. Food Ind Sci Technol, 1996, (2):38-40 (in Chinese with English abstract).
[38] Muhanna M, Rees D. The role of root sugar content on the susceptibility of sweetpotato cultivars to soft rot. Afr Crop Sci J, 2004,12:295-303.
[39] Scott A Y, Ailan G, James A G, Frank F W, Jan E L. Rice cationic peroxidase accumulates in xylem vessels during incompatible interactions with Xanthomonas oryzae pv. oryzae. Plant Physiol, 1995,107:1333-1341.
doi: 10.1104/pp.107.4.1333
[40] 孙万春, 梁永超, 杨艳芳. 硅和接种黄瓜炭疽菌对黄瓜过氧化物酶活性的影响及其与抗病性的关系. 中国农业科学, 2002,35:1560-1564.
[41] Sun W C, Liang Y C, Yang Y F. The effect of silicon and inoculation with cucumber Colletotrichum on peroxidase activity of cucumber and its relationship with disease resistance. Sci Agric Sin, 2002,35:1560-1564 (in Chinese with English abstract).
[42] 刘太国, 石延霞, 文景芝, 李永镐. 水杨酸诱导烟草对TMV的抗性和PAL活性变化研究. 植物病理学报, 2003,33:190-191.
Liu T G, Shi Y X, Wen J Z, Li Y G. Study on salicylic acid-induced tobacco resistance to TMV and PAL activity changes. Acta Phytopathol Sin, 2003,33:190-191 (in Chinese with English abstract).
[43] 赵亚婷, 朱璇, 马玄, 郭杨美娟. 采前水杨酸处理对杏果实抗病性及苯丙烷代谢的诱导. 食品科学, 2015,36(2):216-220.
Zhao Y T, Zhu X, Ma X, Guo Y M J. Induction of disease resistance and phenylpropane metabolism of apricot fruit by salicylic acid treatment before harvest. Food Sci, 2015,36(2):216-220 (in Chinese with English abstract).
[1] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[2] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[3] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[4] 王翠娟, 柴沙沙, 史春余, 朱红, 谭中鹏, 季杰, 任国博. 铵态氮素促进甘薯块根形成的解剖特征及其IbEXP1基因的表达[J]. 作物学报, 2021, 47(2): 305-319.
[5] 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162.
[6] 黄小芳,毕楚韵,石媛媛,胡韵卓,周丽香,梁才晓,黄碧芳,许明,林世强,陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报, 2020, 46(8): 1195-1207.
[7] 刘永晨,司成成,柳洪鹃,张彬彬,史春余. 改善土壤通气性促进甘薯源库间光合产物运转的原因解析[J]. 作物学报, 2020, 46(3): 462-471.
[8] 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869.
[9] 张欢, 杨乃科, 商丽丽, 高晓茹, 刘庆昌, 翟红, 高少培, 何绍贞. 甘薯抗旱相关基因IbNAC72的克隆与功能分析[J]. 作物学报, 2020, 46(11): 1649-1658.
[10] 姜仲禹, 唐丽雪, 柳洪鹃, 史春余. 不同施钾量条件下甘薯块根形成的内源激素变化及其与块根数量的关系[J]. 作物学报, 2020, 46(11): 1750-1759.
[11] 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响[J]. 作物学报, 2020, 46(11): 1760-1770.
[12] 史文卿,张彬彬,柳洪鹃,赵庆鑫,史春余,王新建,司成成. 甘薯块根形成和膨大对土壤紧实度的响应机制及与产量的关系[J]. 作物学报, 2019, 45(5): 755-763.
[13] 张海燕,解备涛,汪宝卿,董顺旭,段文学,张立明. 不同甘薯品种抗旱性评价及耐旱指标筛选[J]. 作物学报, 2019, 45(3): 419-430.
[14] 段文学,张海燕,解备涛,汪宝卿,张立明. 甘薯苗期耐盐性鉴定及其指标筛选[J]. 作物学报, 2018, 44(8): 1237-1247.
[15] 安建刚,敬夫,丁祎,肖怡,尚浩浩,李宏利,杨晓璐,唐道彬,王季春. 氮肥分期运筹对套作甘薯产量、品质及氮素效率的影响[J]. 作物学报, 2018, 44(12): 1858-1866.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!