欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (8): 1460-1471.doi: 10.3724/SP.J.1006.2021.04195

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于BSA-Seq和RNA-Seq方法鉴定大豆抗豆卷叶螟候选基因

曾维英(), 赖振光(), 孙祖东*(), 杨守臻, 陈怀珠, 唐向民   

  1. 广西农业科学院经济作物研究所/农业农村部西南玉米大豆间套作区农业科学观测实验站, 广西南宁 530007
  • 收稿日期:2020-08-25 接受日期:2021-01-13 出版日期:2021-08-12 网络出版日期:2021-02-18
  • 通讯作者: 孙祖东
  • 作者简介:曾维英, E-mail: zengweiying_1981@163.com|赖振光, E-mail: 519229671@qq.com
  • 基金资助:
    广西自然科学基金项目(2017GXNSFDA198037);广西农业科学院科技发展基金项目(桂农科2020YM116, 2015YT58)

Identification of the candidate genes of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) by BSA-Seq and RNA-Seq

ZENG Wei-Ying(), LAI Zhen-Guang(), SUN Zu-Dong*(), YANG Shou-Zhen, CHEN Huai-Zhu, TANG Xiang-Min   

  1. Institute of Economic Crops, Guangxi Academy of Agricultural Sciences/Southwest Experimental Station of Maize-Soybean Intercrop, Ministry of Agriculture and Rural Affairs, Nanning 530007, Guangxi, China
  • Received:2020-08-25 Accepted:2021-01-13 Published:2021-08-12 Published online:2021-02-18
  • Contact: SUN Zu-Dong
  • Supported by:
    Natural Science Foundation of Guangxi Province, China(2017GXNSFDA198037);Science and Technology Development Fund of Guangxi Academy of Agricultural Sciences (Guinongke 2020YM116, 2015YT58)

摘要:

豆卷叶螟(Lamprosema indicata Fabricius)是重要的大豆食叶性害虫, 挖掘大豆抗豆卷叶螟相关基因对大豆抗虫品种选育和遗传改良至关重要。本研究用大豆高抗豆卷叶螟材料赶泰-2-2和高感豆卷叶螟材料皖82-178进行杂交构建F2代分离群体, 从303个F2代单株中挑选出高抗豆卷叶螟和高感豆卷叶螟的单株各30株, 分别构建2个极端性状的DNA混合池用于全基因组重测序以分析控制豆卷叶螟相关的候选基因。结果表明, 4个样本中共有11,963,077个单核苷酸多态性(SNPs)标记, 根据SNP-index方法关联分析, 共有329个基因位于99%置信区间外, 这些基因主要集中在7号染色体5,601,065~5,865,237 bp区间(总长为0.26 Mb)、16号染色体2,975,110~6,336,096 bp区间(总长为3.36 Mb)、18号染色体44,366,115~54,297,600 bp区间(总长为9.93 Mb)等区域内。将BSA-Seq结果与转录组测序结果进行联合分析发现, 有12个基因相关联; 最后, 结合生物信息学分析、候选基因的表达模式和基因的同源注释, 锁定CNGC4WRKY16转录因子、AAP7、丝氨酸/苏氨酸蛋白激酶、ZPR1B等12个基因为控制豆卷叶螟性状相关的候选基因。本研究结果不仅为解析大豆抗豆卷叶螟的分子机理奠定重要的基础, 也将为大豆抗虫基因的克隆奠定坚实的理论基础。

关键词: 大豆, 豆卷叶螟, BSA-Seq, RNA-Seq, 候选基因

Abstract:

Bean pyralid is an important leaf-feeding insect in soybean. Identification of insect-tolerant genes from soybean has great significant to the crop insect-tolerant breeding and genetic improvement. In this study, an F2 population with 303 individuals was constructed using insect-resistant line Gantai-2-2 and insect-sensitive line Wan 82-178. 30 F2 insect-resistant individuals and 30 insect-sensitive individuals were selected respectively to construct two DNA pools which were used for the whole-genome re-sequencing. The results showed that there were a total of 11,963,077 single nucleotide polymorphism (SNPs) markers identified in two parental lines and two mixed pools. According to the association analysis of SNP-index method, a total of 329 genes were located outside the 99% confidence interval. These genes were mainly concentrated in the regions of 5,601,065-5,865,237 bp with a total of 0.26 Mb on chromosome 7, 2,975,110-6,336,096 bp with a total of 3.36 Mb on chromosome 16, and 44,366,115-54,297,600 bp with a total of 9.93 Mb on chromosome 18. Correlation analysis of BSA-Seq and transcriptome sequencing showed that 12 genes were correlated. Then, 12 candidate genes, including CNGC4, WRKY transcription factor 16, AAP7, serine/threonine protein kinase and ZPR1B were identified by bioinformatics analysis, differential expression analysis, and homologous annotation. This study laid an important foundation for the analysis of the molecular mechanism of soybean resistance to bean pyralid and the cloning of anti-insect genes.

Key words: soybean, bean pyralid, BSA-Seq, RNA-Seq, candidate genes

表1

原始测序数据统计表"

样本
Sample
原始序列数
Raw reads
原始碱基数
Raw bases
过滤后序列数
Clean reads
过滤后碱基数
Clean bases
有效率
Clean_data/
raw_data (%)
GC含量
Clean_GC_rate (%)
Q20含量
Q20
(%)
Q30含量Q30
(%)
皖82-178 Wan 82-178 438,210,500 65,731,575,000 432,474,442 64,871,166,300 98.69 35.57 96.50 92.13
赶泰-2-2 Gantai-2-2 441,716,184 66,257,427,600 433,990,902 65,098,635,300 98.25 35.60 96.34 91.79
高感子代池
Highly susceptible pool
206,898,280 31,034,742,000 202,406,834 30,361,025,100 97.83 35.54 96.44 92.01
高抗子代池
Highly resistant pool
210,122,884 31,518,432,600 206,805,618 31,020,842,700 98.42 35.46 96.29 91.70

表2

质控后测序数据与参考基因组比对结果统计分析"

样本
Sample
过滤后序
列数
Clean reads
比对上数据
Mapping reads
比对率
Mapping rate (%)
优质比对率
Properly paired ratio (%)
平均测序深度
Mean depth
1×覆盖度Coverage ≥ 1× (%) 5×覆盖度
Coverage ≥ 5× (%)
10×覆盖度
Coverage ≥ 10× (%)
20×覆盖度
Coverage ≥ 20× (%)
皖82-178 Wan 82-178 43,4152,986 433,232,376 99.79 99.73 65.78 96.67 96.12 95.67 94.62
赶泰-2-2 Gantai-2-2 435,703,158 434,715,984 99.77 99.72 65.98 96.68 96.13 95.68 94.60
高感子代池
Highly susceptible pool
203,202,650 202,820,220 99.81 99.76 30.78 95.75 94.55 93.29 83.88
高抗子代池
Highly resistant pool
207,33,600 207,143,542 99.76 99.71 31.44 95.76 94.56 93.32 84.44

表3

多态性位点注释统计表"

变异位点信息
Variation sites information
皖82-178
Wan 82-178
赶泰-2-2
Gantai-2-2
高感子代池
Highly susceptible pool
高抗子代池
Highly resistant pool
内含子Intron 324,202 324,333 230,606 231,332
基因区间Intergenic region 2,589,457 2,588,540 1,851,943 1,867,897
可变剪切位点Splicing 612 620 449 444
基因上游Upstream 192,755 192,753 133,797 136,203
基因下游Downstream 162,024 161,574 113,186 114,671
基因上游/基因下游Upstream/downstream 12,038 12,088 8296 8733
5°非翻译区UTR5° 23,658 23,746 68,071 16,818
3°非翻译区UTR3° 29,843 29,595 20,949 21,579
终止子提前Stop gain 1652 1649 1177 1225
终止子丢失Stop loss 270 276 197 204
同义突变Synonymous 48,462 48,433 35,671 35,492
非同义突变Non-synonymous 67,206 67,040 49,333 49,653
SNP总数SNP numbers 3,487,363 3,485,674 2,483,855 2,506,185
纯合突变SNP Hom SNP number 3,480,115 3,478,433 2,477,251 2,499,464
杂合突变SNP Hete SNP number 7248 7241 6604 6721
纯合突变SNP比率Hom SNP rate (%) 99.79 99.79 99.73 99.73
杂合突变SNP比率Het SNP rate (%) 0.21 0.21 0.27 0.27
转换Ts 2,264,913 2,264,110 1,606,918 1,617,797
颠换Tv 1,218,400 1,217,609 872,951 884,443
转换/颠换Ts/Tv 1.86 1.86 1.84 1.83

图1

所有染色体Delta SNP-index图 横坐标为染色体编号, 纵坐标为Delta SNP-index值。不同颜色的点表示不同染色体上筛选后的SNP, 红色曲线表示滑窗后的Delta SNP-index值, 蓝色直线表示99%置信区间值。"

图2

候选基因GO富集分析情况"

图3

前20条富集通路注释情况"

表4

候选基因信息表"

序号
No.
基因ID
Gene ID
基因注释
Gene annotation
染色体
Chr.
比较组
Comparison group
上调或下调a
Up or down a
1 XM_003526153.4 环核苷酸门控离子通道4
Cyclic nucleotide-gated ion channel 4 (CNGC4)
Chr. 6 HR0/HR48
HS0/HS48
Up
2 XM_003533631.4 纤维素合成酶A催化亚基4 (CesA4)
Cellulose synthase A catalytic subunit 4 [UDP-forming]
Chr. 9 HR0/HR48
HS0/HS48
Down
3 NM_001250658.2 WRKY16转录因子
WRKY transcription factor 16
Chr. 12 HR0/HR48 Up
4 NM_001255802.1 赤霉素2-β加双氧酶8
Gibberellin 2-beta-dioxygenase 8-like
Chr. 11 HR0/HR48 Up
5 XM_003519602.4 氨基酸透性酶7 (AAP7)
Probable amino acid permease 7
Chr. 2 HR0/HR48 Up
6 XM_026126143.1 Mdis1相互受体激酶2
MDIS1-interacting receptor like kinase 2
Chr. 16 HR0/HR48 Up
7 XM_006601656.3 丝氨酸/苏氨酸蛋白激酶
Serine/threonine protein kinase-like protein
Chr. 18 HR0/HR48
Up
8 NM_001248669.2 ZPR1B
Protein LITTLE ZIPPER 2-like
Chr. 18 HS0/HS48 Up
9 XM_026126905.1 类枯草杆菌蛋白酶
Subtilisin-like protease Glyma18g48580
Chr. 18 HS0/HR0
Down
10 XM_026125778.1 抗病蛋白RGA3
Putative disease resistance protein RGA3
Chr. 15 HS0/HR0
Down
11 XM_026126161.1 无特征LOC100809946
Uncharacterized LOC100809946
Chr. 16 HS0/HR0 Up
12 XM_026127992.1 硫氰酸酶结构域蛋白酶10
Rhodanese-like domain-containing protein 10
Chr. 3 HS48/HR48
HS0/HR0
Down
[1] 中国农作物病虫图谱编写组. 中国农作物病虫图谱: 第五分册, 油料病虫(一). 北京: 中国农业出版社, 1982. pp 136-137.
Editorial Committee of Plate of Chinese Diseases and Insects on Crop. Plate of Chinese Diseases and Insects on Crop, Fifth Fascicule, Diseases and Insects on Oil Crop (first). Beijing: China Agriculture Press, 1982. pp 136-137(in Chinese).
[2] 崔章林, 盖钧镒, 吉东风, 任珍静. 大豆种质资源对食叶性害虫抗性的鉴定. 大豆科学, 1997,16:93-102.
Cui Z L, Gai J Y, Ji D F, Ren Z J. A study on leaf-feeding insect species on soybeans in Nanjing area. Soybean Sci, 1997,16:93-102 (in Chinese with English abstract).
[3] 孙祖东, 杨守臻, 陈怀珠, 韦德卫. 南宁大豆食叶性害虫调查. 广西农业科学, 2001,32:104-106.
Sun Z D, Yang S Z, Chen H Z, Wei D W. Investigation on leaf-feeding pests of soybean in Nanning. Guangxi Agric Sci, 2001,32:104-106 (in Chinese with English abstract).
[4] 孙祖东, 盖钧镒. 大豆对食叶性害虫抗性的研究. 中国农业科学, 1999,32(增刊1):81-88.
Sun Z D, Gai J Y. Study on resistance of soybean to leaf-feeding insect. Sci Agric Sin, 1999,32(S1):81-88 (in Chinese with English abstract).
[5] 崔章林, 盖钧镒. 大豆抗食叶性害虫研究进展. 大豆科学, 1996,15:149-158.
Cui Z L, Gai J Y. Advance of study on soybean leaf-feeding insects. Soybean Sci, 1996,15:149-158 (in Chinese with English abstract).
[6] 崔章林, 盖钧镒, 吉东风, 任珍静. 南京地区大豆食叶性害虫种类调查与分析. 大豆科学, 1997,16:12-20.
Cui Z L, Gai J Y, Ji D F, Ren J Z. A study on leaf-feeding insect species on soybeans in Nanjing area. Soyben Sci, 1997,16:12-20 (in Chinese with English abstract).
[7] 孙祖东, 杨守臻, 陈怀珠, 李初英, 龙丽萍. 大豆对豆卷叶螟的抗性鉴定. 中国油料作物学报, 2005,27(4):69-71.
Sun Z D, Yang S Z, Chen H Z, Li C Y, Long L P. Identification of soybean resistance to bean pyralid (Lamprosema indicata Fabricius) and oviposition preference of bean pyralid on soybean varieties. Chin J Oil Crop Sci, 2005,27(4):69-71 (in Chinese with English abstract).
[8] Xing G N, Zhou B, Wang Y F, Zhao T J, Yu D Y, Chen S Y, Gai J Y. Genetic components and major QTL confer resistance to bean pyralid (Lamprosema indicata Fabricius) under multiple environments in four RIL populations of soybean. Theor Appl Genet, 2012,125:859-875.
doi: 10.1007/s00122-012-1878-7
[9] 李广军, 程利国, 张国政, 何小红, 智海剑, 章元明. 大豆对豆卷叶螟抗性的主基因+多基因混合遗传. 大豆科学, 2008,27:33-36.
Li G J, Cheng L G, Zhang G Z, He X H, Zhi H J, Zhang Y M. Mixed major-gene plus polygenes inheritance analysis for resistance in soybean to bean pyralid (Lamprosema indicata Fabricius). Soybean Sci, 2008,27:33-36 (in Chinese with English abstract).
[10] 李广军, 李河南, 程利国, 章元明. 大豆对豆卷叶螟抗性的QTL定位. 中国油料作物学报, 2009,31:365-369.
Li G J, Li H N, Cheng L G, Zhang Y M. Mapping quantitative trait loci for resistance in soybean to bean pyralid (Lamprosema indicata Fabricius). Chin J Oil Crop Sci, 2009,31:365-369 (in Chinese with English abstract).
[11] 曾维英, 蔡昭艳, 张志鹏, 陈怀珠, 杨守臻, 唐向民, 赖振光, 孙祖东. 大豆抗豆卷叶螟的生理生化特性研究. 南方农业学报, 2016,46:2112-2116.
Zeng W Y, Cai Z Y, Zhang Z P, Chen H Z, Yang S Z, Tang X M, Lai Z G, Sun Z D. Physiological and biochemical characteristics of Lamprosema indicata (Fabricius)-resistant soybean. J Southern Agric, 2015,46:2112-2116 (in Chinese with English abstract).
[12] Zeng W Y, Sun Z D, Cai Z Y, Chen H Z, Lai Z G, Yang S Z, Tang X M. Proteomic analysis by iTRAQ-MRM of soybean resistance to Lamprosema indicata. BMC Genomics, 2017,18:444.
doi: 10.1186/s12864-017-3825-0
[13] Zeng W Y, Sun Z D, Cai Z Y, Chen H Z, Lai Z G, Yang S Z, Tang X M. Comparative transcriptome analysis of soybean response to bean pyralid larvae. BMC Genomics, 2017,18:871.
doi: 10.1186/s12864-017-4256-7
[14] 曾维英, 孙祖东, 赖振光, 蔡昭艳, 陈怀珠, 杨守臻, 唐向民. 大豆抗豆卷叶螟的转录组和蛋白质组关联分析. 中国农业科学, 2018,51:1244-1260.
Zeng W Y, Sun Z D, Lai Z G, Cai Z Y, Chen H Z, Yang S Z, Tang X M. Correlation analysis on transcriptomic and proteome of soybean resistance to bean pyralid (Lamprosema indicata). Sci Agric Sin, 2018,51:1244-1260 (in Chinese with English abstract).
[15] Zeng W Y, Sun Z D, Lai Z G, Yang S Z, Chen H Z, Yang X H, Tao J R, Tang X M. Determination of the miRNAs related to bean pyralid larvae resistance in soybean using small RNA and transcriptome sequencing. Int J Mol Sci, 2019,20:2966.
doi: 10.3390/ijms20122966
[16] 郭东全, 杨向东, 包绍君, 包绍君, 郭三堆, 康岭生, 尹爱萍, 钱雪艳, 赵桂兰. 转CryIACpTI双价抗虫基因大豆的获得与稳定表达. 中国农业科学, 2008,41:2957-2962.
Guo D Q, Yang X D, Bao S J, Guo S D, Kang L S, Yin A P, Qian X Y, Zhao G L. Synchronous expression of CryIA and CpTI genes in soybean and analysis of their resistance to insect pests. Sci Agric Sin, 2008,41:2957-2962 (in Chinese with English abstract).
[17] 陈秀华, 柏锡, 潘欣, 翟红, 才华, 纪魏, 李勇, 朱延明. 转Cryllem基因大豆的培育及抗虫性检测. 大豆科学, 2009,28:959-963.
Chen X H, Bai X, Pan X, Zhai H, Cai H, Ji W, Li Y, Zhu Y M. Cultivation of cryllem gene transformed soybean and insect resistant assay. Soybean Sci, 2009,28:959-963 (in Chinese with English abstract).
[18] 武小霞, 李静, 王志坤, 刘珊珊, 李海燕, 武天龙, 李文滨. Cry1Ia1基因转化大豆及抗虫性的初步评价. 上海交通大学学报(农业科学版), 2010,28:413-419.
Wu X X, Li J, Wang Z K, Liu S S, Li H Y, Wu T L, Li W B. Transformation of Cry1Ia1 into soybean and rough assessing its resistance to soybean pests. J Shanghai Jiaotong Univ (Agric Sci), 2010,28:413-419 (in Chinese with English abstract).
[19] 朱延明, 郜庭, 张凤, 柏锡, 才华, 纪魏, 罗晓. Cry2Aa9m抗虫基因植物表达载体构建及对大豆的遗传转化. 东北农业大学学报, 2013,44(1):1-6.
Zhu Y M, Gao T, Zhang F, Bo X, Cai H, Ji W, Luo X. Construction of plant expression vector of insect-resistant gene cry2Aa9m and transformation into Glycine max L. Merr. J Nor Agric Univ, 2013,44(1):1-6 (in Chinese with English abstract).
[20] 蓝岚, 吴帅, 申丽威, 王志坤, 孟凡立, 宋波, 拓云, 刘珊珊. 根癌农杆菌介导大豆转Bt-cryIA抗虫基因. 中国油料作物学报, 2013,35:29-35.
Lan L, Wu S, Shen L W, Wang Z K, Meng F L, Song B, Tuo Y, Liu S S. Transgenic of soybean with Bt-cryIA gene mediated by Agrobacterium tumefaciens. Chin J Oil Crop Sci, 2013,35:29-35 (in Chinese with English abstract).
[21] 高嵩. 抗虫基因Cry1Ab13在大豆中的遗传转化及抗虫性鉴定. 吉林农业大学硕士学位论文, 吉林长春, 2015.
Gao S. Identification on Insect-resistant Gene of Cry1Ab13 Transformation into Glycine max L. Merr. MS Thesis of Jilin Agricultural University, Changchun, Jilin, China, 2015 (in Chinese with English abstract).
[22] Berman K H, Harrigan G G, Riordan S G. Compositions of seed, forage, and processed fractions from insect-protected soybean MON 87701 are equivalent to those of conventional soybean. J Agric Food Chem, 2009,57:11360-11369.
doi: 10.1021/jf902955r
[23] Beazley K A, Burns W C, Cole II R H, Macrae T C, Miklos J A, Ruschke L G, Tian K R, Wei L P, Wu K S. Soybean transgenic event mon87751 and methods for detection and use thereof. 14303042. U.S. Patent Application 14/303, 2014-06-12.
[24] Fast B J, Schafer A C, Johnson T Y, Potts B L, Herman R A. Insect-protected event DAS-81419-2 soybean (Glycine max L.) grown in the United States and Brazil is compositionally equivalent to nontransgenic soybean. J Agric Food Chem, 2015,63:2063-2073.
doi: 10.1021/jf505015y
[25] Takagi H, Tamiru M, Abe A, Yoshide K, Uemura A, Yaegashi H, Obara T, Oikawa K, Utsushi H, Kanzaki E, Mitsuoka C, Natsume S, Kosugi S, Kanzaki H, Matsumrua H, Urasaki N, Kamoun S, Terauchi R. MutMap accelerates breeding of a salt-tolerant rice cultivar. Nat Biotechnol, 2015,33:445-449.
doi: 10.1038/nbt.3188
[26] Takagi H, Abe A, Yoshide K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Innan H, Cano L M, Kamoun S, Terauchi R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J, 2013,74:174-183.
doi: 10.1111/tpj.2013.74.issue-1
[27] Lu H F, Liu T, Joël K, Wang S H, Qi J J, Zhou Q, Sun J J, Zhang Z H, Weng Y Q, Huang S W. QTL-seq identifies an early flowering QTL located near flowering locus T in cucumber. Theor Appl Genet, 2014,127:1491-1499.
doi: 10.1007/s00122-014-2313-z
[28] Illa-Berenguer E, Houten J V, Huang Z J, Knaap E. Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theor Appl Genet, 2015,128:1329-1342.
doi: 10.1007/s00122-015-2509-x
[29] Zhong C, Sun S, Li Y, Duan C, Zhu Z. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean. Theor Appl Genet, 2018,131:525-538.
doi: 10.1007/s00122-017-3016-z
[30] Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue. Focus, 1990,12:13-15.
doi: 10.1103/PhysRevFocus.12.13
[31] Li H, Duibin R, Notes A. Fast and accurate short-read alignment with Burrows-Wheeler transform. Bioinformatics, 2009,25:1754-1760.
doi: 10.1093/bioinformatics/btp324
[32] Li H, Duibin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 2010,26:589-595.
doi: 10.1093/bioinformatics/btp698
[33] McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabrie S, Daly M, Depristo M A. The genome analysis toolkit: a MapReduce framework for analyzing next generation DNA sequencing data. Genome Res, 2010,20:1297-1303.
doi: 10.1101/gr.107524.110
[34] Balentin A B, Tatiana P, Kevin B, Pierre C, Julie C, Gudrun S, Isabelle J L, Olivier D, Emmanuel B. Control-FREEC: a tool for assessing copy number and allelic content using next generation sequencing data. Bioinformatics, 2012,28:423-425.
doi: 10.1093/bioinformatics/btr670
[35] Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of genetic variants from next-generation sequencing data. Nucleic Acids Res, 2010,38:e164.
doi: 10.1093/nar/gkq603
[36] Jia W, Qiu K, He M, Song P, Zhou Q, Zhou F, Yu Y, Zhu D, Nickerson M L, Wan S, Liao X, Zhu X, Peng S, Li Y, Wang J, Guo G. SOAPfuse: an algorithm for identifying fusion transcripts from paired-end RNA-Seq data. Genome Biol, 2013,14:R12.
doi: 10.1186/gb-2013-14-2-r12
[37] Trapell C, Pacher L, Salzberg S L. TopHat: Discovering splice junctions with RNA-Seq. Bionformatics, 2009,25:1105-1111.
doi: 10.1093/bioinformatics/btp120
[38] Trapell C, Roberts A, Goff L, Pertea G, Kim D, Kelley D R, Pimental H, Salzberg S L, Rinn J L, Pachter L. Differential gene and transcript expression analysis of RNA-Seq experiments with TopHat and Cufflinks. Nat Protoc, 2012,7:562-578.
doi: 10.1038/nprot.2012.016
[39] Benjamini Y, Yektieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat, 2001,29:1165-1188.
[40] 张之昊, 王俊, 刘章雄, 邱丽娟. 基于BSA-seq技术挖掘大豆中黄622的多小叶基因. 作物学报, 2020,46:1839-1849.
Zhang Z H, Wang J, Liu Z X, Qiu L J. Mapping of an incomplete dominant gene controlling multifoliolate leaf by BSA-seq in soybean (Glycine max L.). Acta Agron Sin, 2020,46:1839-1849 (in Chinese with English abstract).
[41] Gao G J, Wang S B, Liu J B, Pan B G, Diao W P, Ge W, Gao C Z, Snyder J C. Rapid identification of QTLs underlying resistance to cucumber mosaic virus in pepper (Capsicum frutescens). Theor Appl Genet, 2017,130:41-52.
doi: 10.1007/s00122-016-2790-3
[42] Ma X, Zheng Z, Lin F S, Ge T T, Sun H M. Genetic analysis and gene mapping of a low stigma exposed mutant gene by high- throughput sequencing. PLoS One, 2018,13:e0186942.
doi: 10.1371/journal.pone.0186942
[43] Zhao C P, Zhao G Y, Geng Z, Wang Z X, Wang K H, Liu S, Zhang H S, Guo B S, Geng J Y. Physical mapping and candidate gene prediction of fertility restorer gene of cytoplasmic male sterility in cotton. BMC Genomics, 2018,19:6.
doi: 10.1186/s12864-017-4406-y
[44] 张尧锋, 张冬青, 余华胜, 林宝刚, 华水金, 丁厚栋, 傅鹰. 基于极端混合池(BSA)全基因组重测序的甘蓝型油菜有限花序基因定位. 中国农业科学, 2018,51:3029-3039.
Zhang Y F, Zhang D Q, Yu H S, Lin B G, Hua S J, Ding H D, Fu Y. Location and mapping of the determinate growth habit of Brassica napus by bulked segregant analysis (BSA) using whole genome re-sequencing. Sci Agric Sin, 2018,51:3029-3039 (in Chinese with English abstract).
[45] Liang D N, Chen M Y, Qi X H, Xu Q, Zhou F C, Chen X H. QTL Mapping by SLAF-seq and expression analysis of candidate genes for aphid resistance in cucumber. Front Plant Sci, 2016,7:1000.
[46] Song Q J, Jenkins J W, Hyten D L. Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genomics, 2016,17:1.
[47] 王正朝, 黄瑞华, 潘玲梅, 李学斌, 石放雄. 环核苷酸门控离子通道的结构、功能及活性调节. 中国生物化学与分子生物学报, 2006,22:282-288.
Wang Z C, Huang R H, Pan L M, Li X B, Shi F X. Molecular structures, physiological roles and regulatory mechanisms of cycli nucleotide-gated ion channels. Chin J Biochem Mol Biol, 2006,22:282-288 (in Chinese with English abstract).
[48] 吴巨友, 薛亚男, 张绍铃. 植物环核苷酸门控离子通道基因的功能及其调控. 西北植物学报, 2020,30:1716-1720.
Wu J Y, Xue Y N, Zhang S L. Function and modulation of plant cyclic nucleotide-gated channels. Acta Bot Boreali-Occident Sin, 2020,30:1716-1720 (in Chinese with English abstract).
[49] Dangl J L, Dietrich R A, Richberg M H. Death don’t have no mercy: cell death programs in plant-microbe interactions. Plant Cell, 1996,8:1793-1807.
doi: 10.2307/3870230
[50] Hetherington A M, Brownlee C. The generation of Ca2+ signals in plants. Annu Rev Plant Biol, 2004,55:401-427.
pmid: 15377226
[51] Flynn G E, Johnson J P, Zagotta W N. Cyclic nucleotide-gated channels: shedding light on the opening of a channel pore. Nat Rev Neurosci, 2001,2:643-651.
pmid: 11533732
[52] 刘海娇, 杜立群, 林金星, 李瑞丽. 植物环核苷酸门控离子通道及其功能研究进展. 植物学报, 2015,50:779-789.
Liu H J, Du L Q, Lin J X, Li R L. Recent advances in cyclic nucleotide-gated ion channels with their functions in plants. Chin Bull Bot, 2015,50:779-789 (in Chinese with English abstract).
[53] Eulgem T, Rushton P J, Schemlzer E. Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. EMBO J, 1999,18:4689-4699.
pmid: 10469648
[54] Eulgem T, Rushton P J, Robatzek S, Somssich I E. The WRKY superfamily of plant transcription factors. Trends Plant Sci, 2000,5:199-206.
pmid: 10785665
[55] Rushton P J, Somssich I E, Ringler P, Shen Q. WRKY transcription factors. Trends Plant Sci, 2010,15:247-258.
doi: 10.1016/j.tplants.2010.02.006
[56] Zhou X, Jiang Y, Yu D. WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis. Mol Cell, 2011,31:303-313.
doi: 10.1016/j.molcel.2008.07.004
[57] Grunewald W, Karimi M, Wieczorek K, Van D E, Cappelle E, Chnitzki E, Grundler F, Iize D, Beeckman T, Gheysen G. A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes. Plant Physiol, 2008,148:358-368.
doi: 10.1104/pp.108.119131 pmid: 18599655
[58] Tegeder M. Transporters for amino acids in plant cells: some functions and many unknowns. Curr Opin Plant Biol, 2012,15:315-321.
doi: 10.1016/j.pbi.2012.02.001
[59] 李倩, 王罡, 张松皓, 杨丹, 王昱蓉, 季静, 安婷, 李辰, 马志刚, 史怀宇, 关春峰, 刘玉. 拟南芥AAP6基因的克隆与转化马铃薯的研究. 天津大学学报(自然科学与工程技术版), 2018,51:941-948.
Li Q, Wang G, Zhang S H, Yang D, Wang Y R, Ji J, An T, Li C, Ma Z G, Shi H Y, Guan C F, Liu Y. Cloning and genetic transformation of Arabidopsis thaliana AAP6 gene in potato. J Tianjin Univ (Sci Technol), 2018,51:941-948 (in Chinese with English abstract).
[60] Marella H H, Nielsen E, Schachtman D P, Taylor C G. The amino acid permeases AAP3 and AAP6 are involved in root-knot nematode parasitism of Arabidopsis. Mol Plant Microbe Int, 2013,26:44-54.
doi: 10.1094/MPMI-05-12-0123-FI
[61] Afzal A J, Wood A J, Lightfoot D A. Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol Plant Micober Int, 2008,21:507-517.
[62] Hasegawa P M, Bressan R A, Zhu J K, Bohnert H J. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 2000,51:463-499.
doi: 10.1146/annurev.arplant.51.1.463
[63] Zipfel C. Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol, 2008,20:10-16.
doi: 10.1016/j.coi.2007.11.003 pmid: 18206360
[64] 史伟杰, 刘建伟, 张彦峰, 王晓峰. 拟南芥株型突变体ZRP1的性状特征与基因鉴定分析. 西北植物学报, 2014,34:2153-2158.
Shi W J, Liu J W, Zhang Y F, Wang X F. Characteristics and genetic analysis of plant type mutant zpr1 in Arabidopsis. Acta Bot Boreali-Occident Sin, 2014,34:2153-2158 (in Chinese with English abstract).
[65] 陈发晶, 谭蕊, 黄萌雨, 杜娇, 余洋, 杨宇衡, 毕朝位. 类枯草杆菌蛋白酶在植物和病原物互作中的研究进展. 分子植物育种, 2018,16:3146-3153.
Chen F J, Tan R, Huang M Y, Du J, Yu Y, Yang Y H, Bi C W. Research progress of subtilases in the interaction of plant and pathogen. Mol Plant Breed, 2018,16:3146-3153 (in Chinese with English abstract).
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[3] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[4] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[7] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[8] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[9] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[10] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[11] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[12] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[13] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[14] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[15] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!