欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (8): 1472-1480.doi: 10.3724/SP.J.1006.2021.02056

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因

张波(), 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎*()   

  1. 广东省植物分子育种重点实验室/亚热带农业生物资源保护与利用国家重点实验室/华南农业大学, 广东广州 510642
  • 收稿日期:2020-08-17 接受日期:2021-01-13 出版日期:2021-08-12 网络出版日期:2021-02-25
  • 通讯作者: 王少奎
  • 作者简介:E-mail: zhangboscau@163.com
  • 基金资助:
    国家重点研发计划项目(2016YFD0100406);广东省基础与应用基础研究重大项目(2019B030302006);广东省特支计划项目(2016TX03N224)

Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9

ZHANG Bo(), PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui*()   

  1. Guangdong Provincial Key Laboratory of Plant Molecular Breeding/State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/South China Agricultural University, Guangzhou 510642, Guangdong, China
  • Received:2020-08-17 Accepted:2021-01-13 Published:2021-08-12 Published online:2021-02-25
  • Contact: WANG Shao-Kui
  • Supported by:
    National Key Research and Development Program of China(2016YFD0100406);Key Projects of Basic Research and Applied Basic Research of Guangdong Province(2019B030302006);Special Support Program of Guangdong Province for High-level Talents(2016TX03N224)

摘要:

水稻粒型是由多基因控制的复杂数量性状, 是稻米产量和品质的重要影响因子, 水稻粒型基因的定位与遗传研究有助于稻米产量与品质的协同改良。本研究利用巴西陆稻IAPAR9为供体、以华南地区高产籼稻品种华粳籼74为受体, 构建的153份水稻单片段代换系材料, 连续两季通过单因素方差分析和邓肯氏多重比较, 结合代换片段重叠群作图, 定位了13个控制水稻粒型及粒重的QTL。这13个位点分别分布于水稻1、2、4、5、6、7、9和11号染色体上, 包括9个控制谷粒长的QTL、1个控制谷粒宽的QTL和3个控制千粒重的QTL。其中, qGL1-2qTGW1-2qGL11为新鉴定的QTL位点。新的粒型QTL定位将为进一步的基因克隆与粒型遗传调控网络解析提供依据和线索, 也可为稻米产量与品质协同改良提供新的种质资源。

关键词: 水稻, 单片段代换系, 粒型, QTL定位

Abstract:

Rice grain size is a complex quantitative trait controlled by multiple genes. Grain size is an important factor affecting rice yield and quality. The mapping and genetic analysis of genes controlling rice grain size are essential for the concurrent improvement of rice yield and quality. Here 13 QTLs for grain size were detected using 153 rice single-segment substitution lines in rice, which were derived from HJX74 as the receptor parent, and IAPAR9 as the donor parent. One-way ANOVA and Duncan’s multiple comparison were employed to detect the genetic bases of rice grain size in two consecutive years. Based on the substitution mapping using overlapped substitution-fragment in the SSSLs, a total of 13 grain size-related QTLs were detected on chromosomes 1, 2, 4, 5, 6, 7, 9, and 11, including nine QTLs controlling grain length, one QTL controlling grain width, and three QTLs controlling 1000-grain weight. Furthermore, qGL1-2, qTGW1-2, and qGL11 were novel identified QTLs. This study provided new basis for cloning and functional analysis of genes regulating grain size.

Key words: rice, single segment substitution line, grain size, QTL mapping

图1

IAPAR9与HJX74的粒型 a, b: HJX74和IAPAR9的粒型, 标尺为5 mm; c: HJX74和IAPAR9的粒长; d: HJX74和IAPAR9的粒宽; e: HJX74和IAPAR9的粒重。**表示HJX74的粒长、粒宽和千粒重与IAPAR9之间的差异达到极显著水平(P < 0.01), t检验。"

附表1

引物名称及序列"

标记名称
Marker
基因
Gene
序列
Sequence (5′-3′)
标记名称
Marker
基因
Gene
序列
Sequence (5′-3′)
xp14F LGY3 TGTCAACAGAAACCAGCAAAA RMw513F GW5 GTATTTGTTTGTCGCATTC
xp14R TGGTCGATCAATTCCTCTGC RMw513R TAGGACCATAGATGTGAGTTA
GS3R1 gs3 AGGCTGGCTTACTCGCTG RM574F GS5 GGCGAATTCTTTGCACTTGG
GS3R2 CAGCAGGCTGGCTTACTCTATT RM574R ACGGTTTGGTAGGGTGTCAC
GS3F CTGTATATATATTTCTTGCAGGGTG Indel-1F GW7 CCATAGTAAGACGACCTT
RM186F GL3.1 TCCTCCATCTCCTCCGCTCCCG Indel-1R GATATTCTGTCAGCAGTT
RM186R GGGCGTGGTGGCCTTCTTCGTC PSM710F gw8 GCCAGCCAAGAAAAGCGACA
PSM710R TCTTGAGATCCCACTCCATG

图2

HJX74与IAPAR9的粒型基因分子标记多态性 白色线段指示相关引物经PCR扩增获得的目的条带, 其余带纹为引物非特异性扩增条带。"

图3

代换片段在水稻染色体上的覆盖率 遗传距离(单位: cM)见左侧标尺; 染色体上黑色部分代表该区域可以被来自IAPAR9的代换片段所覆盖; 蓝色字体突出显示相关位点上已克隆的水稻粒型基因。"

附表2

单片段代换系代换片段分布"

染色体
Chr.
单片段材料数量
No. of SSSLs
代换片段总长度
TL (cM)
代换片段平均长度
CL (cM)
代换片段覆盖率
CP (%)
Chr. 1 30 571.00 19.03 59.16
Chr. 2 22 526.00 23.91 78.31
Chr. 3 4 112.40 28.10 35.21
Chr. 4 14 380.70 27.19 43.90
Chr. 5 12 179.30 14.94 53.98
Chr. 6 24 541.40 22.56 73.55
Chr. 7 7 75.20 10.74 19.27
Chr. 8 8 181.40 22.68 66.91
Chr. 9 9 256.70 28.52 85.03
Chr. 10 6 160.60 26.77 55.93
Chr. 11 16 320.60 20.04 60.04
Chr. 12 1 6.90 6.90 3.15
平均Mean 12.75 276.02 20.95 52.87

图4

亲本和SSSL材料粒长、粒宽和千粒重频次分布 a~c: 2018晚季亲本和SSSL的粒长、粒宽和千粒重的频次分布; d~f: 2019早季亲本和SSSL的粒长、粒宽和千粒重的频次分布。"

图5

13个粒型及千粒重性状QTL在水稻染色体上的分布 遗传距离见左侧标尺; 染色体右侧的黑色矩形代表QTL及其定位区间。"

表1

利用SSSL定位到的粒型QTL及其加性效应"

性状
Trait
位点
QTL
染色体
Chr.
区间
Marker interval
加性效应Additive effect PP-value
2018 2019 2018 2019
粒长Grain length qGL1-1 1 PSM13-RM84 -0.19 -0.11 0.0025 0.0188
qGL1-2 1 OSR23-RM104 0.30 0.31 0.0001 0.0005
qGL2 2 RM250-RM166 -0.19 -0.15 <0.0001 0.0029
qGL4 4 RM317-PSM110 -0.23 -0.15 0.0002 0.0081
qGL5 5 RM164-RM161 -0.19 -0.12 0.0002 0.0289
qGL6 6 PSM136-RM275 -0.22 -0.15 <0.0001 0.0227
qGL7 7 RM505-PSM432 0.37 0.43 0.0003 <0.0001
qGL9 9 PSM399-RM105 -0.20 -0.15 <0.0001 0.0084
qGL11 11 RM209-RM21 -0.17 -0.16 0.0005 0.0023
粒宽Grain width qGW2 2 RM263-RM525 0.09 0.08 0.0003 0.0039
千粒重1000-grain weight qTGW1-1 1 PSM13-RM84 -1.46 -1.32 <0.0001 0.0016
qTGW1-2 1 OSR23-RM104 0.65 1.25 0.0003 0.0011
qTGW4 4 RM127-RM280 -1.31 -1.45 <0.0001 <0.0001
[1] 杨维丰, 詹鹏麟, 林少俊, 苟亚军, 张桂权, 王少奎. 水稻粒形的遗传研究进展. 华南农业大学学报, 2019,40(5):203-210.
Yang W F, Zhan P L, Lin S J, Gou Y J, Zhang G Q, Wang S K. Research progress of grain shape genetics in rice. J South China Agric Univ, 2019,40(5):203-210 (in Chinese with English abstract).
[2] 侯俊, 周浩, 高冠军, 李平波, 何予卿, 张庆路. 利用F2和F3群体定位水稻粒形和千粒重QTL. 分子植物育种, 2019,17:3938-3944.
Hou J, Zhou H, Gao G J, Li P B, He Y Q, Zhang Q L. Mapping QTL for rice grain shape and 1000-grain weight using F2 and F3 populations. Mol Plant Breed, 2019,17:3938-3944 (in Chinese with English abstract).
[3] 李永洪, 李传旭, 刘成元, 何珊, 向箭宇, 谢戎. 利用岗46 B/A 232 RILs群体定位籼稻粒形和粒重的QTL. 分子植物育种, 2018,16:3956-3966.
Li Y H, Li C X, Liu C Y, He S, Xiang J Y, Xie R. Location of the QTL of grain shape and grain weight of indica rice by Gang 46B/A232RILs. Mol Plant Breed, 2018,16:3956-3966 (in Chinese with English abstract).
[4] 方先文, 张云辉, 肖西林, 张所兵, 林静, 汪迎节. 基于重组自交系群体的水稻粒形QTL定位. 江苏农业学报, 2017,33:241-247.
Fang X W, Zhang Y H, Xiao X L, Zhang S B, Lin J, Wang Y J. Mapping of QTLs for grain shape using recombinant inbred lines in rice (Oryza sativa L.). Jiangsu J Agric Sci, 2017,33:241-247 (in Chinese with English abstract).
[5] 李生强, 崔国昆, 关成冉, 王俊, 梁国华. 基于水稻单片段代换系的粒形QTL定位. 中国水稻科学, 2011,25:163-168.
Li S Q, Cui G K, Guan C R, Wang J, Liang G H. QTL detection for grain shape using chromosome single segment substitution lines. Chin J Rice Sci, 2011,25:163-168 (in Chinese with English abstract).
[6] 叶少平, 张启军, 李杰勤, 赵兵, 李平. 用(培矮64s/Nipponbare) F2群体对水稻产量构成性状的QTL定位分析. 作物学报, 2005,31:1620-1627.
Ye S P, Zhang Q J, Li J Q, Zhao B, Li P. QTL mapping for yield component traits using (Pei’ai 64s/Nipponbare) F2 population. Acta Agron Sin, 2005,31:1620-1627 (in Chinese with English abstract).
[7] 刘冠明, 李文涛, 曾瑞珍, 张泽民, 张桂权. 水稻单片段代换系代换片段的QTL鉴定. 遗传学报, 2004,31:1395-1400.
Liu G M, Li W T, Zeng R Z, Zhang Z M, Zhang G Q. Identification of QTLs on substituted segments in single segment substitution lines of rice. Acta Genet Sin, 2004,31:1395-1400 (in Chinese with English abstract).
[8] 张丽霞, 刘丕庆, 刘学义. 染色体单片段代换系的构建及应用于QTL精细定位. 分子植物育种, 2004,2:743-746.
Zhang L X, Liu P Q, Liu X Y. Construction of chromosome single segment substitution lines and QTL fine mapping. Mol Plant Breed, 2004,2:743-746 (in Chinese with English abstract).
[9] Visscher P M, Brown M A, McCarthy M I, Yang J. Five years of GWAS discovery. Am J Hum Genet, 2012,90:7-24.
doi: 10.1016/j.ajhg.2011.11.029
[10] Visscher P M, Wray N R, Zhang Q, Sklar P, McCarthy M I, Brown M A, Yang J. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet, 2017,101:5-22.
doi: 10.1016/j.ajhg.2017.06.005
[11] Abe A, Kosugi S, Yoshida K, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R. Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol, 2012,30:174-179.
doi: 10.1038/nbt.2095
[12] Lyn Y, Wang Y X, Noushin J, Hu H T, Chen P, Shang L G, Lin H Y, Dong G J, Hu J, Gao Z Y, Qiao Q, Zhang Y, Guo L B. Genome-wide association analysis and allelic mining of grain shape-related traits in rice. Rice Sci, 2019,26:384-392.
doi: 10.1016/j.rsci.2018.09.002
[13] 涂坦, 付洪. 水稻主要粒型基因及其遗传调控的研究进展. 山地农业生物学报, 2016,35(5):58-65.
Tu T, Fu H. Research progress in major genes controlling grain shape of rice and their genetic regulation. J Mount Agric Biol, 2016,35(5):58-65 (in Chinese with English abstract).
[14] Song X J, Huan W, Shi M, Zhu M Z, Lin X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007,39:623-630.
doi: 10.1038/ng2014
[15] Hu J, Wang Y, Fang Y, Zeng L J, Xu J, Yu P H, Shi Z Y, Pan J, Zhang D, Kang S J, Zhu L, Dong G J, Guo L B, Zeng D L, Zhang G H, Xie L H, Xiong G S, Li J Y, Qian Q. A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant, 2015,8:1455-1465.
doi: 10.1016/j.molp.2015.07.002
[16] Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006,112:1164-1171.
doi: 10.1007/s00122-006-0218-1
[17] Qi P, Lin Y S, Song X J, Shen J B, Huang W, Shan J X, Zhu M Z, Jiang L W, Gao J P, Lin H X. The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res, 2012,22:1666-1680.
doi: 10.1038/cr.2012.151
[18] Xia D, Zhou H, Liu R J, Dan W H, Li P B, Wu B, Chen J X, Wang L Q, Gao G J, Zhang Q L, He Y Q. GL3.3, a novel QTL encoding a GSK3/SHAGGY-like Kinase, epistatically interacts with GS3 to Produce extra-long grains in rice. Mol Plant, 2018,11:754-756.
doi: 10.1016/j.molp.2018.03.006
[19] Hu Z J, Lu S J, Wang M J, He H H, Sun L, Wang H R, Liu X H, Jiang L, Sun J L, Xin X Y, Kong W, Chu C C, Xue H W, Yang J S, Luo X J, Liu J X. A novel QTL qTGW3 encodes the GSK3/SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Mol Plant, 2018,11:736-749.
doi: 10.1016/j.molp.2018.03.005
[20] Ying Z J, Ma M, Bai C, Huang X H, Liu J L, Fan Y Y, Song X J. TGW3, a major QTL that negatively modulates grain length and weight in rice. Mol Plant, 2018,11:750-753.
doi: 10.1016/j.molp.2018.03.007
[21] Liu J F, Chen J, Zheng X M, Wu F Q, Lin Q B, Heng Y Q, Tian P, Cheng Z J, Yu X W, Zhou K N, Zhang X, Guo X P, Wang J L, Wang H Y, Wan J M. GW5 acts in the brassinosteroid signaling pathway to regulate grain width and weight in rice. Nat Plants, 2017,3:17043.
doi: 10.1038/nplants.2017.43
[22] Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L, Zhai H Q, Wan J M. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res, 2008,18:1199-1209.
doi: 10.1038/cr.2008.307
[23] Li Y B, Fan C C, Xing Y Z, Jiang Y H, Luo L J, Sun L, Shao D, Xu C J, Li X H, Xiao J H, He Y Q, Zhang Q F. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet, 2011,43:1266-1269.
doi: 10.1038/ng.977
[24] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013,45:707-711.
doi: 10.1038/ng.2612
[25] Shi C L, Dong N Q, Guo T, Ye W W, Shan J X, Lin H X. A quantitative trait locus GW6 controls rice grain size and yield through the gibberellin pathway. Plant J, 2020,103:1174-1188.
doi: 10.1111/tpj.v103.3
[26] Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015,47:949-954.
doi: 10.1038/ng.3352
[27] Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015,47:944-948.
doi: 10.1038/ng.3346
[28] Si L Z, Chen J Y, Huang X H, Gang H, Luo J H, Hou Q Q, Zhou T Y, Lu T T, Zhu J J, Shang-Guan Y Y, Chen E W, Gong C X, Zhao Q, Jing Y F, Zhao Y, Li Y, Cui L L, Fan D L, Lu Y Q, Weng Q J, Wang Y C, Zhan Q L, Liu K Y, Wei X H, An K, An G, Han B. OsSPL13 controls grain size in cultivated rice. Nat Genet, 2016,48:447-456.
doi: 10.1038/ng.3518
[29] Wang S K, Wu K, Yuan Q B, Liu X Y, Liu Z B, Lin X Y, Zeng R Z, Zhu H T, Dong G J, Qian Q, Zhang G Q, Fu X D. Control of grain size, shape and quality by OsSPLl6 in rice. Nat Genet, 2012,44:950-954.
doi: 10.1038/ng.2327
[30] Zhao D S, Li Q F, Zhang C Q, Zhang C, Yang Q Q, Pan L X, Ren X Y, Lu J, Gu M H, Liu Q Q. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality. Nat Commun, 2018,9:1240.
doi: 10.1038/s41467-018-03616-y
[31] 张桂权. 基于SSSL文库的水稻设计育种平台. 遗传, 2019,41:754-760.
Zhang G Q. The platform of breeding by design based on the SSSL library in rice. Hereditas, 2019,41:754-760 (in Chinese with English abstract).
[32] Andrews P B, Bishop M, Issar S, Nesmith D, Pfenning F, Xi H W. TPS: a theorem-proving system for classical type theory. J Autom Reason, 1996,16:321-353.
doi: 10.1007/BF00252180
[33] Paterson A H, DeVerna J W, Lanini B, Tanksley S D. Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics, 1990,124:735-742.
pmid: 1968874
[34] Mackay T F C. Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat Rev Genet, 2014,15:22.
doi: 10.1038/nrg3627
[35] Liu Q, Han R X, Wu K, Zhang J Q, Ye Y F, Wang S S, Chen J F, Pan Y J, Li Q, Xu X P, Zhou J W, Tao D Y, Wu Y J, Fu X D. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat Commun, 2018,9:852.
doi: 10.1038/s41467-018-03047-9
[36] 王军, 周勇, 杨杰, 朱金燕, 范方军, 李文奇, 梁国华, 仲维功. 利用染色体单片段代换系定位水稻粒重QTL. 华北农学报, 2013,28(6):11-17.
Wang J, Zhou Y, Yang J, Zhu J Y, Fan F J, Li W Q, Liang G H, Zhong W G. Mapping of QTLs for grain weight using chromosome single segment substitution lines in rice. Acta Agric Boreali-Sin, 2013,28(6):11-17 (in Chinese with English abstract).
[37] 邹德堂, 刘忠良, 赵宏伟, 孙健, 郑洪亮, 陈宾宾, 刘博文. 利用F2:3和BC2F2群体定位水稻粒型和粒重QTL. 东北农业大学学报, 2014,45(9):9-17.
Zou D T, Liu Z L, Zhao H W, Sun J, Zheng H L, Chen B B, Liu B W. Mapping QTLs for grain shape and weight using F2:3 and BC2F2 population in rice. J Northeast Agric Univ, 2014,45(9):9-17 (in Chinese with English abstract).
[38] 张亚东, 张颖慧, 董少玲, 陈涛, 赵庆勇, 朱镇, 周丽慧, 姚姝, 赵凌, 于新, 王才林. 特大粒水稻材料粒型性状的QTL检测. 中国水稻科学, 2013,27:122-128.
Zhang Y D, Zhang Y H, Dong S L, Chen T, Zhao Q Y, Zhu Z, Zhou L H, Yao S, Zhao L, Yu X, Wang C L. Identification of QTL for rice grain traits based on an extra-large grain material. Chin J Rice Sci, 2013,27:122-128 (in Chinese with English abstract).
[39] 蒋钰东, 罗俊涛, 况浩池, 杨扬, 陈光珍, 何兴材, 付均, 郑军, 曾正明. 利用两个籼稻杂交F2定位水稻粒型、粒重QTLs. 分子植物育种, 2015,13:1689-1694.
Jiang Y D, Luo J T, Kuang H C, Yang Y, Chen G Z, He X C, Fu J, Zheng J, Zeng Z M. Identification of QTLs for grain shape and weight using F2 generation of two indica rice varieties. Mol Plant Breed, 2015,13:1689-1694 (in Chinese with English abstract).
[40] Yu X Q, X S S, Xu Q K, Cui Y J, Gong M, Zeng D L, Zhang Q, Shen L, Jiao G A, Gao Z Y, Hu J, Zhang G H, Zhu L, Guo L B, Ren D Y, Qian Q. ABNORMAL FLOWER AND GRAIN 1 encodes OsMADS6 and determines palea identity and affects rice grain yield and quality. Sci China Life Sci, 2020,63:228-238.
doi: 10.1007/s11427-019-1593-0
[41] 王小雷, 李炜星, 曾博虹, 孙晓棠, 欧阳林娟, 陈小荣, 贺浩华, 朱昌兰. 基于染色体片段置换系对水稻粒形及千粒重QTL检测与稳定性分析. 作物学报, 2020,46:1517-1525.
Wang X L, Li W X, Zeng B H, Sun X T, Ou-Yang L J, Chen X R, He H H, Zhu C L. QTL detection and stability analysis of rice grain shape and thousand-grain weight based on chromosome segment substitution lines. Acta Agron Sin, 2020,46:1517-1525 (in Chinese with English abstract).
[42] Ruan B P, Shang L G, Zhang B, Hu J, Wang Y X, Lin H, Zhang A P, Liu C L, Peng Y L, Zhu L, Ren D Y, Shen L, Dong G J, Zhang G H, Zeng D L, Guo L B, Qian Q, Gao Z Y. Natural variation in the promoter of TGW2 determines grain width and weight in rice. New Phytol, 2020,227:629-640.
doi: 10.1111/nph.v227.2
[43] Lu B Y, Yang C Y, Xie K, Zhang L, Wu T, Li L F, Liu X, Jiang L, Wan J M. Quantitative trait loci for grain-quality traits across a rice F2 population and backcross inbred lines. Euphytica, 2013,192:25-35.
doi: 10.1007/s10681-012-0822-x
[44] Wu W G, Liu X Y, Wang M H, Meyer R S, Luo X J, Ndjiondjop M N, Tan L B, Zhang J W, Wu J Z, Cai H W, Sun C Q, Wang C Q, Wang X K, Wing R A, Zhu Z F. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nat Plants, 2017,3:17064.
doi: 10.1038/nplants.2017.64
[45] Dai Z J, Lu Q, Luan X, Ou-Yang L, Guo J, Liang J Y, Zhu H T, Wang W J, Wang S K, Zeng R Z, Liu Z Q, Zhang Z M, Zhu X Y, Zhang G Q. Development of a platform for breeding by design of CMS restorer lines based on an SSSL library in rice (Oryza sativa L.). Breed Sci, 2016,66:768-775.
doi: 10.1270/jsbbs.16044
[46] Luan X, Dai Z J, Yang W F, Tan Q Y, Lu Q, Guo J, Zhu H T, Liu G F, Wang S K, Zhang G Q. Breeding by design of CMS lines on the platform of SSSL library in rice. Mol Breed, 2019,39:126.
doi: 10.1007/s11032-019-1028-x
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!