欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (8): 1437-1449.doi: 10.3724/SP.J.1006.2021.01077

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦B-box基因家族全基因组鉴定与表达分析

王艳朋(), 凌磊, 张文睿, 王丹, 郭长虹*()   

  1. 哈尔滨师范大学生命科学与技术学院/黑龙江省分子细胞遗传与遗传育种重点实验室, 黑龙江哈尔滨 150025
  • 收稿日期:2020-09-18 接受日期:2021-01-13 出版日期:2021-08-12 网络出版日期:2021-02-22
  • 通讯作者: 郭长虹
  • 作者简介:E-mail: 13694609045@163.com
  • 基金资助:
    国家重点基础研究发展计划(973计划)前期研究计划项目(2011CB111500);哈尔滨师范大学研究生创新基金项目(HSDSSCX2020-08)

Genome-wide identification and expression analysis of B-box gene family in wheat

WANG Yan-Peng(), LING Lei, ZHANG Wen-Rui, WANG Dan, GUO Chang-Hong*()   

  1. Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province/College of Life Science and Technology, Harbin Normal University, Harbin 150025, Heilongjiang, China
  • Received:2020-09-18 Accepted:2021-01-13 Published:2021-08-12 Published online:2021-02-22
  • Contact: GUO Chang-Hong
  • Supported by:
    Preliminary Research Project of the National Basic Research Program of China (973 Program)(2011CB111500);Graduate innovation fund of Harbin Normal University(HSDSSCX2020-08)

摘要:

B-box (BBX)是一类含有1个或2个B-box结构域的锌指蛋白, 在植物生长发育中起着重要作用。本研究明确小麦B-box转录因子的数量、基因结构和分类进化关系, 研究各基因成员在不同组织中的特异性表达以及对非生物胁迫的响应。从小麦全基因组中鉴定得到87个B-box基因家族成员, 所有TaBBXs蛋白均含有B-box结构域。TaBBXs编码146~489个氨基酸, 理论等电点为4.32~10.42。染色体定位分析表明, TaBBXs分布在除1A、1B和1D之外的18条小麦染色体上。通过系统发育分析将TaBBXs划分为5个亚家族, 有0~4个内含子。在同组内同一个系统进化树分支中的亚族成员具有高度相似的基因结构。qRT-PCR分析的20个TaBBXs基因, 具有不同的组织表达模式, 16个基因在叶中有较高表达, TaBBX10TaBBX39仅在叶中有较高表达, 而TaBBX74在穗中表达, TaBBX43在根中特异性表达。在不同逆境胁迫下, TaBBXs呈现不同表达模式, 11个基因在低温胁迫后上调表达, 12个基因在ABA处理后下调表达, 盐胁迫后10个基因出现上调表达, 干旱胁迫后7个基因出现下调表达, TaBBX10TaBBX39TaBBX60、TaBBX67TaBBX74基因在2种或2种以上胁迫下有显著的上调表达。

关键词: 小麦, 全基因组, B-box基因家族, 非生物胁迫, 基因表达

Abstract:

B-box (BBX) is a class of zinc finger proteins that contain one or two B-box domains and play important roles in plant growth and development. The number, gene structure and phylogenetic relationship of wheat B-box transcription factors, as well as their expression specificity in different tissues and response to abiotic stress were investigated. A total of 87 members of B-box gene family were identified from wheat genome and all contained the B-box domain. TaBBXs encoded 146 to 489 amino acids and the isoelectric points ranged from 4.32 to 10.42. Chromosome mapping showed that these genes were distributed on 18 wheat chromosomes except 1A, 1B, and 1D. Based on phylogenetic analysis, TaBBXs were divided into five subfamilies, with 0-4 introns. The members of the subfamily in the same phylogenetic tree branch in the same group had highly similar gene structures. The qRT-PCR revealed that the investigated 20 genes had different expression patterns, and most genes were highly expressed in leaves, and TaBBX10 and TaBBX39 were only highly expressed in leaves, while TaBBX74 was expressed in spikes, TaBBX43 was specifically expressed in roots. These genes showed different expression patterns under different stress. 11 genes were up-regulated after low temperature stress, 13 genes were down-regulated after ABA treatment, 10 genes were up-regulated after salt stress, and 7 genes were down-regulated after drought stress. TaBBX10, TaBBX39, TaBBX60, TaBBX67, and TaBBX74 were significantly up-regulated under two or more stresses.

Key words: wheat, genome-wide, B-box gene family, abiotic stress, gene expression

表1

本试验所用引物"

基因
Gene
正向引物
Forward primer (5′-3′)
反向引物
Reverse primer (5′-3′)
TaBBX01 AACGGGGGAGTGTTACTTCT AGTTGGAGCAGAGGAACCGA
TaBBX06 AACTCGCCAAGTCGGAGGA AGCTGCTGATACGGAGGTACA
TaBBX08 TACCGCCGACGTGTTCTT TCAGAGGAGGATACGCTGTG
TaBBX10 CTCGCATCGTCCTCTCCAA TCTGCTGGCATGAAGGTACA
TaBBX12 CACAGCGTATCGTCGTCTGA ATCTCCTCGTGCTCCTCCAT
TaBBX13 TCGAACAAGCCGTATCAGCA AGAAGGAGGAGCCGAGAGAC
TaBBX14 AGCCGGAGGTAATCAAAGCC GAGGAGGACGACAACGATCC
TaBBX18 GGGTTCTCCGGGTTCGAC CCTCTAACTCTTGCTCCGGC
TaBBX35 TGACATTGAAAGGCTGCGT TGACATTGAAAGGCTGCGT
TaBBX39 ACCGCCGATTCCTCATCAC CCAATGTCGTCTTCTCCTCCT
TaBBX43 CTCCGAGTACCTCACCAAGAC CAATGCTCCTGCCTCATCCA
TaBBX46 CACGCGGTACATGGCACG CCGGTGCGCTTGACGAAG
TaBBX52 CCGAACTGCGAGGAAGGAATA GCTGGCTGATGTGTAGGAAGT
TaBBX60 GCCGAACTGTGAGGAAGGAA AGGCTGATGCGTAGGAAGTG
TaBBX62 CACGACGGGCGGGTAAAG GGCTCCTTTTCAAGAACTGCG
TaBBX67 GAGAAGGAAGGGAGCGAGTG GCTGGACTGGACCGTATTGT
TaBBX74 GCAACCAAGAGCAGTATGTGAT TGTTGACGGAATCTGTGTAAGC
TaBBX76 AGGTAAGCTCATGCACCTCG CGTCTCGCTGTCGATCCTTG
TaBBX77 GACGAGCCCATTCACAGCG GGCAGATGTTGGTGAGGTAGTC
TaBBX86 AGGGCGGGAAGATGGACTAC ATGAGGAGCTGTAGGTCTGC
TaActin TACTCCCTCACAACAACCG AGAACCTCCACTGAGAACAA

附表1

B-box家族的基本信息分析"

基因名
Gene name
基因登录号
Gene ID
染色体位点
Chromosome location
基因长度
Length (bp)
氨基酸长度
Length (aa)
等电点
Isoelectric point (pI)
分子量
Molecular weight (kD)
外显子个数
Exon number
分组
Group
结构域类型
Domain type
TaBBX01 TraesCS2A02G119600 2A:70102039-70104699 1149 382 5.73 40010.83 4 1BBX + CCT
TaBBX02 TraesCS2A02G348900 2A:587750669-587751938 765 254 4.95 27209.52 2 2BBX
TaBBX03 TraesCS2A02G353900 2A:594579959-594581671 951 316 5.56 33724.51 2 2BBX+ CCT
TaBBX04 TraesCS2A02G366100 2A:610710308-610712939 789 262 4.79 28237.51 2 2BBX
TaBBX05 TraesCS2A02G388500 2A:635722864-635724553 777 258 5.82 27357.5 3 2BBX
TaBBX06 TraesCS2B02G140300 2B:106954443-106956656 1164 387 5.44 40384.32 4 1BBX + CCT
TaBBX07 TraesCS2B02G367300 2B:523760095-523761742 774 257 4.89 27492.85 2 2BBX
TaBBX08 TraesCS2B02G372000 2B:530306217-530307895 960 319 5.56 33908.66 2 2BBX+ CCT
TaBBX09 TraesCS2B02G406600 2B:575903665-575905255 795 264 5.82 27823.99 3 2BBX
TaBBX10 TraesCS2D02G121400 2D:70622968-70625567 1146 381 5.72 39968.91 4 1BBX + CCT
TaBBX11 TraesCS2D02G347300 2D:445396017-445397519 777 258 4.81 27494.76 2 2BBX
TaBBX12 TraesCS2D02G351900 2D:450234732-450236192 960 319 5.56 33936.74 2 2BBX+ CCT
TaBBX13 TraesCS2D02G386300 2D:491429370-491431171 789 262 5.82 27600.81 3 2BBX
TaBBX14 TraesCS3A02G139300 3A:117227850-117230216 1050 349 5.15 37168.47 3 2BBX
TaBBX15 TraesCS3B02G156900 3B:150154692-150156947 1050 349 5.22 37477.8 3 2BBX
TaBBX16 TraesCS3D02G139600 3D:99748881-99751184 1050 349 5.32 37482.8 3 2BBX
TaBBX17 TraesCS4A02G140600 4A:216145053-216148012 1239 412 5.5 45256.44 5 1BBX + CCT
TaBBX18 TraesCS4A02G268500 4A:580733925-580736107 1233 410 5.85 44829.19 2 1BBX + CCT
TaBBX19 TraesCS4B02G045700 4B:32896523-32898695 1236 411 6.04 44870.33 2 1BBX + CCT
TaBBX20 TraesCS4B02G155800 4B:281732350-281735921 1194 397 6.06 43627.8 3 1BBX + CCT
TaBBX21 TraesCS4D02G046200 4D:21774703-21776886 1233 410 5.85 44816.25 2 1BBX + CCT
TaBBX22 TraesCS4D02G167300 4D:288428472-288432595 1194 397 6.1 43454.51 3 1BBX + CCT
TaBBX23 TraesCS5A02G166100 5A:355071283-355072804 981 326 5.78 35576.36 2 1BBX + CCT
TaBBX24 TraesCS5A02G317100 5A:528110873-528114741 636 211 5.74 23146.7 5 2BBX
TaBBX25 TraesCS5A02G336000 5A:545058736-545059411 540 179 5.29 19206.94 2 1BBX
TaBBX26 TraesCS5A02G336100 5A:545073760-545074317 441 146 4.57 15371.44 2 1BBX
TaBBX27 TraesCS5A02G339000 5A:546563819-546564523 705 234 9.27 24319.82 1 1BBX
TaBBX28 TraesCS5A02G339100 5A:546575974-546576576 603 200 10.42 21432.56 1 1BBX
TaBBX29 TraesCS5B02G163500 5B:302753429-302754975 978 325 5.96 35477.32 2 1BBX + CCT
TaBBX30 TraesCS5B02G317700 5B:501954375-501958483 636 211 5.85 23088.66 5 2BBX
TaBBX31 TraesCS5B02G335200 5B:518472466-518473347 468 155 5 16721.09 2 1BBX
TaBBX32 TraesCS5B02G335300 5B:518481548-518484145 1107 368 6.23 39645.26 4 1BBX + CCT
TaBBX33 TraesCS5B02G337400 5B:520970152-520970850 699 232 9.02 24101.56 1 1BBX
TaBBX34 TraesCS5B02G337500 5B:521031958-521032572 615 204 9.65 21590.87 1 1BBX
TaBBX35 TraesCS5D02G170700 5D:267762539-267764201 978 325 5.96 35519.42 2 1 1BBX + CCT
TaBBX36 TraesCS5D02G323400 5D:415613354-415617623 636 211 5.85 23084.67 5 2BBX
TaBBX37 TraesCS5D02G341000 5D:429289528-429291886 1083 360 6.33 38690.35 4 1BBX + CCT
TaBBX38 TraesCS5D02G343300 5D:431251824-431252543 720 239 9.03 25267.96 1 1BBX
TaBBX39 TraesCS6A02G143900 6A:121616223-121619829 645 214 4.72 22147.27 2 2BBX
TaBBX40 TraesCS6A02G150900 6A:134947729-134949478 1095 364 5.68 37982.35 3 2BBX+ CCT
TaBBX41 TraesCS6A02G216400 6A:398252913-398254425 771 256 5.14 27782.32 2 2BBX
TaBBX42 TraesCS6A02G218900 6A:405166583-405168134 966 321 5.24 33625.42 2 2BBX+ CCT
TaBBX43 TraesCS6A02G239300 6A:449584187-449585880 711 236 5.77 25104.96 3 2BBX
TaBBX44 TraesCS6A02G286400 6A:518666410-518670650 972 323 6.65 35122.47 3 2BBX+ CCT
TaBBX45 TraesCS6A02G289400 6A:521451709-521454099 1110 369 5.91 41051.82 2 2BBX+ CCT
TaBBX46 TraesCS6A02G293200 6A:524718099-524720326 1281 426 6.81 46496.91 2 1BBX + CCT
TaBBX47 TraesCS6B02G172300 6B:184884215-184886653 645 214 4.89 22154.35 2 2BBX
TaBBX48 TraesCS6B02G179000 6B:198984566-198986312 1125 374 5.28 38846.14 3 2BBX+ CCT
TaBBX49 TraesCS6B02G246500 6B:439021199-439022376 783 260 4.98 28026.56 2 2BBX
TaBBX50 TraesCS6B02G248400 6B:445852206-445853977 966 321 5.34 33887.8 2 2BBX+ CCT
TaBBX51 TraesCS6B02G285200 6B:514117744-514119320 717 238 6.04 25141.06 3 2BBX
TaBBX52 TraesCS6B02G315400 6B:563320471-563324616 1173 390 4.96 42531.41 4 2BBX+ CCT
TaBBX53 TraesCS6B02G319500 6B:567397520-567399497 1113 370 5.58 41154.91 2 2BBX+ CCT
TaBBX54 TraesCS6B02G323400 6B:572391940-572393940 1287 428 6.4 46597.09 2 1BBX + CCT
TaBBX55 TraesCS6D02G133100 6D:100871867-100874382 645 214 4.97 22054.19 2 2BBX
TaBBX56 TraesCS6D02G140900 6D:110442898-110444721 1095 364 5.68 38019.41 3 2BBX+ CCT
TaBBX57 TraesCS6D02G199200 6D:277099701-277101029 783 260 5.14 28221.83 2 2BBX
TaBBX58 TraesCS6D02G202000 6D:284849813-284850866 954 317 5.17 33352.08 2 2BBX+ CCT
TaBBX59 TraesCS6D02G221700 6D:312763126-312764854 717 238 5.77 25258.08 3 2BBX
TaBBX60 TraesCS6D02G267100 6D:377220309-377224969 1179 392 4.79 43027.95 4 2BBX+ CCT
TaBBX61 TraesCS6D02G269500 6D:379572086-379574125 1110 369 5.5 40998.72 2 2BBX+ CCT
TaBBX62 TraesCS6D02G274100 6D:382588127-382590143 1305 434 6.12 47026.54 2 1BBX + CCT
TaBBX63 TraesCS7A02G108400 7A:65969778-65975971 1080 359 5.1 38311.73 3 2BBX
TaBBX64 TraesCS7A02G108700 7A:66173971-66174456 486 161 8.98 17172.82 1 1BBX
TaBBX65 TraesCS7A02G132100 7A:85159979-85160728 750 249 7.65 25502.35 1 1BBX + CCT
TaBBX66 TraesCS7A02G206200 7A:168812422-168813720 1299 432 5.32 47132.21 1 1BBX + CCT
TaBBX67 TraesCS7A02G211300 7A:174203246-174205720 1158 385 6.06 42218.87 2 2BBX+ CCT
TaBBX68 TraesCS7A02G218600 7A:185642724-185648145 1191 396 4.92 43615.36 4 2BBX+ CCT
TaBBX69 TraesCS7A02G263500 7A:261221617-261225670 1473 490 6.1 52005.04 4 1BBX + CCT
TaBBX70 TraesCS7A02G383400 7A:558402604-558404184 852 283 5.04 29956.59 3 2BBX
TaBBX71 TraesCS7A02G497200 7A:686936894-686938479 1119 372 5.96 39566.55 2 2BBX+ CCT
TaBBX72 TraesCS7B02G006400 7B:3684186-3689427 1017 338 4.83 36159.24 4 2BBX
TaBBX73 TraesCS7B02G113400 7B:131376607-131378427 1299 432 5.3 47173.18 1 1BBX + CCT
TaBBX74 TraesCS7B02G118300 7B:137793769-137796142 1152 383 6.24 42114.89 2 2BBX+ CCT
TaBBX75 TraesCS7B02G125500 7B:146898679-146904866 1014 337 4.32 36449.17 3 2BBX
TaBBX76 TraesCS7B02G161500 7B:220866464-220870459 1467 488 6.44 51810.89 4 1BBX + CCT
TaBBX77 TraesCS7B02G286300 7B:521577849-521579171 936 311 5.69 33195.49 2 2BBX
TaBBX78 TraesCS7B02G400600 7B:667070044-667071768 1119 372 5.9 39407.46 2 2BBX+ CCT
TaBBX79 TraesCS7D02G103300 7D:63325536-63331403 1092 363 5.03 38772.21 3 2BBX
TaBBX80 TraesCS7D02G131700 7D:83472836-83474058 753 250 6.09 25596.33 1 1BBX + CCT
TaBBX81 TraesCS7D02G209000 7D:167228163-167229829 1299 432 5.26 47125.17 1 1BBX + CCT
TaBBX82 TraesCS7D02G213000 7D:171311981-171314465 1119 372 6.31 41073.77 2 2BBX+ CCT
TaBBX83 TraesCS7D02G220300 7D:180685905-180691434 1191 396 4.92 43609.35 4 2BBX+ CCT
TaBBX84 TraesCS7D02G264300 7D:244952312-244956390 1470 489 6.21 51903.89 4 1BBX + CCT
TaBBX85 TraesCS7D02G379900 7D:492148581-492150240 858 285 5.02 30133.81 3 2BBX
TaBBX86 TraesCS7D02G484400 7D:594729348-594730950 1119 372 5.86 39527.57 2 2BBX+ CCT
TaBBX87 TraesCSU02G091500 Un:81434193-81437118 1110 369 6.21 40011.43 4 1BBX + CCT

图1

小麦B-box基因家族的保守结构域"

附图1

小麦、拟南芥和水稻B-box基因系统进化树"

图2

小麦B-box基因家族进化树"

图3

小麦B-box基因家族成员在染色体上的位置和基因复制 每个彩色条代表一条染色体, 基因命名是根据它们在染色体上的位置来标记的, 片段复制基因用彩色线条连接。"

附图2

小麦B-box同源基因进化树 红色:位于2A、2B和2D染色体上的基因;黑色:位于3A、3B和3D染色体上的基因;黄色:位于4A、4B和4D染色体上的基因;棕色:位于5A、5B和5D染色体上的基因;蓝色:位于6A、6B和6D染色体上的基因;橘色:位于7A、7B和7D染色体上的基因。"

图4

小麦B-box基因家族基因结构"

表2

预测小麦B-box家族基因启动子中顺式调控元件"

顺式作用元件
cis-elements
基因数目
Number of genes
顺式作用元件的功能
Functions of cis-elements
CAAT-box 87 Common cis-acting element in promoter and enhancer regions
TATA-box 87 Core promoter element around -30 of transcription start
CGTCA-motif 75 cis-acting regulatory element involved in the MeJA-responsiveness
TGACG-motif 75 cis-acting regulatory element involved in the MeJA-responsiveness
ABRE 84 cis-acting element involved in the abscisic acid responsiveness
ARE 67 cis-acting regulatory element essential for the anaerobic induction
MBS 49 MYB binding site involved in drought-inducibility
LTR 57 cis-acting element involved in low-temperature responsiveness
W box 51 Wounding and pathogen responsiveness.
TGA-element 42 Auxin-responsive element
GC-motif 51 Enhancer-like element involved in anoxic specific inducibility
CCAAT-box 24 MYBHv1 binding site
TCA-element 30 cis-acting element involved in salicylic acid responsiveness
P-box 31 Gibberellin-responsive element
WUN-motif 20 Wound-responsive element
ERE 18 Ethylene-responsive element
GARE-motif 23 Gibberellin-responsive element
TC-rich repeats 27 cis-acting element involved in defense and stress responsiveness
AuxRR-core 18 cis-acting regulatory element involved in auxin responsiveness

图5

小麦B-box基因家族在不同组织中的表达分析"

图6

小麦B-box基因家族在不同处理下的表达分析 A: 对照; B: 20% PEG处理6 h; C: 4℃处理6 h; D: 0.2 mol L-1 NaCl处理6 h; E: 100 μmol L-1 ABA处理6 h。*表示在0.05水平上显著; **表示在0.01水平上显著。"

[1] 解松峰, 吉万全, 张耀元, 张俊杰, 胡卫国, 李俊, 王长有, 张宏, 陈春环. 小麦重要产量性状的主基因+多基因混合遗传分析. 作物学报, 2020,46:365-384.
Xie S F, Ji W Q, Zhang Y Y, Zhang J J, Hu W G, Li J, Wang C Y, Zhang H, Chen C H. Genetic effects of important yield traits analyzed by mixture model of major gene plus polygene in wheat. Acta Agron Sin, 2020,46:365-384 (in Chinese with English abstract).
[2] 刘登才, 张连全, 郝明, 黄林, 甯顺腙, 袁中伟, 姜博, 颜泽洪, 伍碧华, 郑有良. 小麦族的基因组显性及其育种学意义. 作物学报, 2020,46:1465-1473.
Liu D C, Zhang L Q, Hao M, Huang L, Ning S Z, Yuan Z W, Jiang B, Yan Z H, Wu B H, Zheng Y L. Genome dominance and the breeding significance in Triticeae. Acta Agron Sin, 2020,46:1465-1473 (in Chinese with English abstract).
[3] Choulet F, Alberti A, Theil S, Glover N, Barbe V, Daron J, Pingault L, Sourdille P, Couloux A, Paux E, Leroy P, Mangenot S, Guilhot N, Le Gouis J, Balfourier F, Alaux m, Jamilloux V, Poulain J, Durand C, Bellec A, Gaspin C, Safar J, Dolezel J, Rogers J, Vandepoele K, Aury J M, Mayer K, Berges H, Quesneville H, Wincker P, Feuillet C. Structural and functional partitioning of bread wheat chromosome 3B. Science, 2014,345:1249721.
doi: 10.1126/science.1249721
[4] IWGSC. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018,361:eaar7191.
doi: 10.1126/science.aar7191
[5] 茹京娜, 于太飞, 陈隽, 陈明, 周永斌, 马有志, 徐兆师, 闵东红. 小麦锌指转录因子TaDi19A对低温的响应及其互作蛋白的筛选. 中国农业科学, 2017,50:2411-2422.
Ru J N, Yu T F, Chen J, Chen M, Zhou Y B, Ma Y Z, Xu Z S, Min D H. Response of wheat Zinc-Finger transcription factor TaDi19A to cold and its screening of interacting proteins. Sci Agric Sin, 2017,50:2411-2422 (in Chinese with English abstract).
[6] Klug A, Schwabe J W. Protein motifs 5. Zinc fingers. FASEB J, 1995,9:597-604.
pmid: 7768350
[7] Putterill J, Robson F, Lee K, Simon R, Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell, 1995,80:847.
pmid: 7697715
[8] Chang C S, Maloof J N, Wu S H. COP1-mediated degradation of BBX22/LZF1 optimizes seedling development in Arabidopsis. Plant Physiol, 2011, 156: 228-239.
doi: 10.1104/pp.111.175042
[9] Gonzalezschain N D, Diazmendoza M, Zurczak M, Suarezlopez P. Potato CONSTANS is involved in photoperiodic tuberization in a graft-transmissible manner. Plant J, 2012,70:678-690.
doi: 10.1111/tpj.2012.70.issue-4
[10] Crocco C D, Holm M, Yanovsky M J, Botto J F. Function of B-box under shade. Plant Signal Behav, 2011,6:101-104.
doi: 10.4161/psb.6.1.14185
[11] Wang Q, Tu X, Zhang J, Chen X, Rao L. Heat stress-induced BBX18 negatively regulates the thermotolerance in Arabidopsis. Mol Biol Rep, 2013,40:2679-2688.
doi: 10.1007/s11033-012-2354-9
[12] Fan X Y, Sun Y, Cao D M, Bai M Y, Luo X M, Yang H J, Wei C Q, Zhu S W, Sun Y, Chong K. BZS1, a B-box protein, promotes photomorphogenesis downstream of both Brassinosteroid and light signaling pathways. Mol Plant, 2012,5:591-600.
doi: 10.1093/mp/sss041
[13] Bai M J, Sun J J, Liu J Y, Ren H R, Wang K, Wang Y L, Wang C Q, Dehesh K. The B-box protein BBX19 suppresses seed germination via induction of ABI5. Plant J, 2019,99:1192-1202.
doi: 10.1111/tpj.v99.6
[14] Yadav A, Lingwan M, Yadukrishnan P, Masakapalli S K, Datta S. BBX31 promotes hypocotyl growth, primary root elongation and UV-B tolerance in Arabidopsis. Plant Signal Behav, 2019,14:e1588672.
doi: 10.1080/15592324.2019.1588672
[15] Gangappa S N, Crocco C D, Johansson H, Datta S, Hettiarachchi C, Holm M, Botto J F. The Arabidopsis B-box protein BBX25 interacts with HY5, negatively regulating BBX22 expression to suppress seedling photomorphogenesis. Plant Cell, 2013,25:1243-1257.
doi: 10.1105/tpc.113.109751
[16] An J P, Wang X F, Espley R V, Lin W K, Bi S Q, You C X, Hao Y J. An apple B-box protein MdBBX37 modulates anthocyanin biosynthesis and hypocotyl elongation synergistically with MdMYBs and MdHY5. Plant Cell Physiol, 2020,61:130-143.
doi: 10.1093/pcp/pcz185
[17] Lippuner V, Cyert M S, Gasser C S. Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast. J Biol Chem, 1996,271:12859-12866.
pmid: 8662738
[18] Nagaoka S, Takano T. Salt tolerance-related protein STO binds to a MYB transcription factor homologue and confers salt tolerance in Arabidopsis. J Exp Bot, 2003,54:2231-2237.
doi: 10.1093/jxb/erg241
[19] Min J H, Chung J S, Lee K H, Kim C S. The CONSTANS-like 4 transcription factor, AtCOL4, positively regulates abiotic stress tolerance through an abscisic acid-dependent manner in Arabidopsis. J Integr Plant Biol, 2015,57:313-324.
doi: 10.1111/jipb.12246
[20] Liu X, Li R, Dai Y Q, Yuan L, Sun Q H, Zhang S Z, Wang X Y. A B-box zinc finger protein, MdBBX10, enhanced salt and drought stresses tolerance in Arabidopsis. Plant Mol Biol, 2019,99:437-447.
doi: 10.1007/s11103-019-00828-8
[21] Liu X, Dai Y Q, Li R, Yuan L, Chen X S, Wang X Y. Members of B-box protein family from Malus domestica enhanced abiotic stresses tolerance in Escherichia coli. Mol Biotechnol, 2019,61:421-426.
doi: 10.1007/s12033-019-00172-8
[22] 王日红, 宋敏燕, 王然, 杨英杰. 山梨B-box基因PuBBX24表达特性及其在童期调控中的功能分析. 园艺学报, 2019,46:1458-1472.
Wang R H, Song M Y, Wang R, Yang Y J. Expression characteristics of B-box gene PuBBX24 and its function in juvenile regulation. Acta Hortic Sin, 2019,46:1458-1472 (in Chinese with English abstract).
[23] Khanna R, Wu S H. The Arabidopsis B-box zinc finger family. Plant Cell, 2009,21:3416.
doi: 10.1105/tpc.109.069088
[24] Huang J Y, Zhao X B, Weng X Y, Wang L, Xie W B. The rice B-box zinc finger gene family: genomic identification, characterization, expression profiling and diurnal analysis. PLoS One, 2012,7:e48242.
doi: 10.1371/journal.pone.0048242
[25] Gangappa S N, Botto J F. The BBX family of plant transcription factors. Trends Plant Sci, 2014,19:460-470.
doi: 10.1016/j.tplants.2014.01.010
[26] Chu Z, Wang X, Li Y, Yu H, Li J, Lu Y, Li H, Ouyang B. Genomic organization, phylogenetic and expression analysis of the B-box gene family in tomato. Front Plant Sci, 2016,7:1552.
[27] Talar U, Kiełbowicz-Matuk A, Czarnecka J, Rorat T. Genome- wide survey of B-box proteins in potato (Solanum tuberosum)—Identification, characterization and expression patterns during diurnal cycle, etiolation and de-etiolation. PLoS One, 2017,12:e0177471.
doi: 10.1371/journal.pone.0177471
[28] Shalmani A, Fan S, Jia P, Li G, Muhammad I, Li Y, Sharif R, Dong F, Zuo X, Li K. Genome identification of B-box gene family members in seven rosacea species and their expression analysis in response to flower induction in Malus domestica. Molecules, 2018,23:1763.
doi: 10.3390/molecules23071763
[29] Liu X, Li R, Dai Y Q, Chen X S, Wang X Y. Genome-wide identification and expression analysis of the B-box gene family in the apple (Malus domestica Borkh.) genome. Mol Genet Genome, 2017,293:1-13.
doi: 10.1007/s00438-017-1370-9
[30] Cao Y, Han Y, Meng D, Li D, Jiao C, Jin Q, Lin Y, Cai Y. B-box genes: genome-wide identification, evolution and their contribution to pollen growth in pear (Pyrus bretschneideri Rehd.). BMC Plant Biol, 2017,17:156.
doi: 10.1186/s12870-017-1105-4
[31] Wei H R, Wang P P, Chen J Q, Li C J, Wang Y Z, Yuan Y B, Fang J G, Leng X P. Genome-wide identification and analysis of B-box gene family in grapevine reveal its potential functions in berry development. BMC Plant Biol, 2020,20:72.
doi: 10.1186/s12870-020-2239-3
[32] Crocco C D, Botto J F. BBX proteins in green plants: insights into their evolution, structure, feature and functional diversification. Gene, 2013,531:44-52.
doi: 10.1016/j.gene.2013.08.037
[33] Zou Z Y, Wang R H, Wang R, Yang S L, Yang Y J. Genome-wide identification, phylogenetic analysis, and expression profiling of the BBX family genes in pear. J Hortic Sci Biotechnol, 2017,93:37-50.
doi: 10.1080/14620316.2017.1338927
[34] Magadum S, Banerjee U, Murugan P, Gangapur D, Ravikesavan R. Gene duplication as a major force in evolution. J Genet, 2013,92:155-161.
doi: 10.1007/s12041-013-0212-8
[35] Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol, 2004,4:10.
doi: 10.1186/1471-2229-4-10
[36] Moore R C, Purugganan M D. The early stages of duplicate gene evolution. Proc Natl Acad Sci USA, 2003,100:15682-15687.
doi: 10.1073/pnas.2535513100
[37] Abdullah S, Jing X Q, Shi Y, Izhar M, Zhou M R, Wei X Y, Chen Q Q, Li W Q, Liu W T, Chen K M. Characterization of B-box gene family and their expression profiles under hormonal, abiotic and metal stresses in Poaceae plant. BMC Genome, 2019,20:27.
doi: 10.1186/s12864-018-5336-z
[38] Hassidim M, Harir Y, Yakir E, Kron I, Green R M. Over- expression of CONSTANS-LIKE 5 can induce flowering in short-day grown Arabidopsis. Planta, 2009,230:481-491.
doi: 10.1007/s00425-009-0958-7 pmid: 19504268
[39] Cheng X F, Wang Z Y. Overexpression of COL9, a CONSTANS-LIKE gene, delays flowering by reducing expression of CO and FT in Arabidopsis thaliana. Plant J, 2005,43:758-768.
doi: 10.1111/tpj.2005.43.issue-5
[40] Li W, Wang J, Sun Q, Li W, Yu Y, Zhao M, Meng Z. Expression analysis of genes encoding double B-box zinc finger proteins in maize. Funct Integr Genome, 2017,17:653-666.
[41] Rengasamy P. World salinization with emphasis on Australia. J Exp Bot, 2006,57:1017-1023.
pmid: 16510516
[42] Cramer G R, Urano K, Delrot S, Pezzotti M, Shinozaki K. Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol, 2011,11:163.
doi: 10.1186/1471-2229-11-163 pmid: 22094046
[43] Yang Y, Ma C, Xu Y, Wei Q, Imtiaz M, Lan H, Gao S, Cheng L, Wang M, Fei Z. A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis. Plant Cell, 2014,26:2038-2354.
doi: 10.1105/tpc.114.124867
[44] 刘焱, 邢立静, 李俊华, 戴绍军. 水稻含有B-box锌指结构域的OsBBX25蛋白参与植物对非生物胁迫的响应. 植物学报, 2012,47:366-378.
doi: 10.3724/SP.J.1259.2012.00366
Liu Y, Xing L J, Li J H, Dai S J. Rice B-box zinc finger protein OsBBX25 is involved in the abiotic response. Chin Bull Bot, 2012,47:366-378 (in Chinese with English abstract).
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[5] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[6] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[7] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[8] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[9] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[10] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[11] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[12] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[13] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[14] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[15] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!