欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (9): 1806-1815.doi: 10.3724/SP.J.1006.2021.04162

• 研究简报 • 上一篇    下一篇

干旱条件下棉花根际真菌多样性分析

岳丹丹(), 韩贝, Abid Ullah, 张献龙, 杨细燕*   

  1. 华中农业大学作物遗传改良国家重点实验室, 湖北武汉 430070
  • 收稿日期:2020-07-20 接受日期:2021-01-21 出版日期:2021-09-12 网络出版日期:2021-02-25
  • 通讯作者: 杨细燕
  • 作者简介:E-mail: ddyue@webmail.hzau.edu.cn
  • 基金资助:
    国家重点研发计划项目“大田经济作物优质丰产的生理基础与调控”(2018YFD1000907)

Fungi diversity analysis of rhizosphere under drought conditions in cotton

YUE Dan-Dan(), HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan*   

  1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2020-07-20 Accepted:2021-01-21 Published:2021-09-12 Published online:2021-02-25
  • Contact: YANG Xi-Yan
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Agronomic Management for High-quality and High-yield of Field Cash Crops”(2018YFD1000907)

摘要:

植物根际微生物群落对植物生长和适逆性至关重要, 本研究对干旱条件下棉花根际真菌群落进行分析, 旨在探明干旱胁迫对棉花根际真菌多样性和群落结构的影响, 为利用有益微生物提高棉花水分利用率提供理论依据。以陆地棉Jin 668 (Gossypium hirsutum cv. Jin668)为试验材料, 采用盆栽控水方式, 对处于开花期的棉花根际土壤(SDP)和未种植棉花土壤(SOPD)进行干旱处理, 正常浇水的棉花根际土壤(SPN)和无棉花土壤(SNPN)为对照。从中采集土壤样品, 提取DNA, 采用Illumina Miseq对真菌ITS1区域进行高通量测序, 研究土壤中真菌多样性。结果共鉴定到970个OTUs, SNPN、SOPD、SPN和SDP样品中真菌OTUs数量分别为481、528、743和752个, 其中288个OTUs为所有组共有。对获得OTUs进行门、纲、目、科和属5个分类水平的划分表明, 棉花根际真菌群落结构主要由子囊菌门(82.70%)和担子菌门(10.15%)组成; 干旱处理使粪壳菌纲(Sordariomycetes)、粪壳菌目(Sordariales)和毛壳菌科(Chaetomiaceae)丰度显著降低, 而散囊菌目(Eurotiales)、发菌科(Trichocomaceae)、曲霉属(Aspergillus)和青霉属(Penicillum)的丰度显著增加。多样性分析结果显示, 与未种棉花的土壤相比, 有棉花的土壤中真菌群落的α多样性显著增加; 同时, SPN和SDP之间的真菌群落结构更相似, 而与SNPN和SOPD间差异较大。研究表明, 棉花根际存在丰富的真菌群落, 干旱对土壤中真菌的丰度和多样性有显著影响。本研究从微生物的角度为提高棉花耐旱性的研究提供新见解。

关键词: 棉花, 干旱, 真菌群落多样性, 根际微生物, 高通量测序

Abstract:

Plant rhizosphere microorganisms play important roles in plant growth and the adaptability of plants to adverse environmental stresses. In this study, cotton rhizosphere fungal communities were analyzed under drought conditions, aiming to explore the effects of drought stress on the diversity and community structures of cotton rhizosphere fungi, and to provide a theoretical basis for improving cotton water use efficiency by using beneficial microorganisms. Drought stress was applied to upland cotton (Gossypium hirsutum cv. Jin 668) at flowering stage (SDP), while the soil without plants was also subjected to drought (SOPD). Simultaneously, the plants (SPN) and pots without plants (SNPN) regularly watered were used as controls. The soil samples were collected, the microbial DNA was isolated, and Illumina Miseq was conducted for a high-throughput sequencing of fungi ITS1 regions to study the diversity of the rhizosphere fungal communities. As a result, a total of 970 OTUs were identified, and the numbers of fungal OTUs in the samples of SNPN, SOPD, SPN, and SDP were 481, 528, 743, and 752, respectively, among which 288 OTUs were shared by all samples. The OTUs were classified to different levels of phyla, class, order, family, and genus of fungi. The rhizosphere fungal community of cotton was predominantly consisted of the phyla Ascomycota (82.70%) and Basidiomycota (10.15%). The abundance of Sordariomycetes, Sordariales, and Chaetomiaceae decreased, while the abundance of Eurotiales, Trichocomaceae, Aspergillus, and Penicillum increased significantly under drought stress. Moreover, the diversity of fungal community in the soil with cotton plants significantly higher than that in the soil without cotton plants. Meanwhile, the fungi community structures of SPN and SDP resembling each other and differing greatly from SNPN and SOPD. These results revealed that the cotton rhizosphere had a rich pool of fungal communities, and drought stress had a significant effect on the abundances and diversity of fungi in cotton rhizosphere. This study provided new insights for the researches of improving drought tolerance of cotton in terms of soil microorganisms.

Key words: cotton, drought, fungal community diversity, rhizosphere, high-throughput sequencing

图1

微生物群落的OTU分类 A: 样本OTUs数量的Venn图; B:不同分类级别下样本OTUs数。SNPN: 正常浇水的土壤样品; SOPD: 未种棉花干旱处理的土壤样品; SPN: 正常浇水棉花根际土壤样品; SDP: 干旱处理的棉花根际土壤样品。"

图2

正常和干旱下土壤真菌α多样性分析 A: 稀疏曲线; B: 物种累积曲线; C: 丰度等级曲线。缩写同图1。 "

表1

微生物多样性指数"

样品
Sample
Chao1指数
Chao1 index
ACE指数
ACE index
辛普森指数
Simpson index
香农指数
Shannon index
SNPN 304.33±15.04 b 316.50±19.09 b 0.79±0.11 b 4.14±0.29 b
SOPD 334.50±12.02 b 334.50±12.02 b 0.89±0.00 b 4.50±0.09 b
SPN 544.40±14.91 a 567.03±15.54 a 0.90±0.02 a 4.58±0.19 a
SDP 525.31±17.30 a 527.92±14.83 a 0.92±0.01 a 5.01±0.10 a

表2

各分类水平的微生物类群数统计表"

样品
Sample

Phylum

Class

Order

Family

Genus

Species
SNPN 9.00±0.00 a 15.00±1.00 b 39.33±2.89 b 62.50±3.54 a 88.50±2.12 b 158.00±2.83 d
SOPD 8.67±1.15 a 15.67±3.06 ab 43.00±5.00 ab 67.00±2.00 a 95.67±4.04 a 168.00±1.41 c
SPN 9.00±0.00 a 18.67±1.53 ab 45.00±4.58 a 68.67±2.08 a 103.50±2.83 a 182.00±1.41 b
SDP 9.00±0.00 a 20.00±1.00 a 51.00±4.58 a 70.00±0.00 a 109.00±2.83 a 194.00±1.41 a

图3

分类单元的分布和丰度图 A~E表示分类单元在门、纲、目、科和属水平上的百分比。缩写同图1。 "

图4

系统进化树和热图的分类分析 A: 显示样本群体中从门到属水平的所有分类群的层次关系的分类层次树; B: 综合群体组成的热水平图和聚类分析。缩写同图1。 "

图5

β多样性分析 A: 主成分分析的二维排序; B: 加权UniFrac的PCoA分析; C: 加权UniFrac距离的多组方框图; D: PLS-判别式分析。缩写同图1。 "

[1] Rapparini F, Peñuelas J. Use of Microbes for the Alleviation of Soil Stresses, New York: Springer, 2014. pp 21-42.
[2] Parida A K, Dagaonkar V S, Phalak M S, Umalkar G V, Aurangabadkar L P. Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnol Rep, 2007, 1:37-48.
doi: 10.1007/s11816-006-0004-1
[3] Ullah A, Sun H, Yang X Y, Zhang X L. Drought coping strategies in cotton: increased crop per drop. Plant Biotechnol J, 2017, 15:271-284.
doi: 10.1111/pbi.12688 pmid: 28055133
[4] Rovira A D. Plant root exudates. Bot Rev, 1969, 35:35-57.
doi: 10.1007/BF02859887
[5] Bai Y, Muller D B, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Munch P C, Spaepen S, Remus-Emsermann M, Huttel B, McHardy A C, Vorholt J A, Schulze-Lefert P. Functional overlap of the Arabidopsis leaf and root microbiota. Nature, 2015, 528:364-369.
doi: 10.1038/nature16192
[6] Wei F, Zhao L, Xu X, Feng H, Shi Y, Deakin G, Feng Z, Zhu H. Cultivar-dependent variation of the cotton rhizosphere and endosphere microbiome under field conditions. Front Plant Sci, 2019, 10:1659.
doi: 10.3389/fpls.2019.01659 pmid: 31921274
[7] Toju H, Peay K G, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, Onoda Y, Yoshida K, Schlaeppi K, Bai Y, Sugiura R, Ichihashi Y, Minamisawa K, Kiers E T. Core microbiomes for sustainable agroecosystems. Nat Plants, 2018, 4:247-257.
doi: 10.1038/s41477-018-0139-4
[8] Lau J A, Lennon J T. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc Natl Acad Sci USA, 2012, 109:14058-14062.
doi: 10.1073/pnas.1202319109
[9] Niu X, Song L, Xiao Y, Ge W. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Front Microbiol, 2017, 8:2580.
doi: 10.3389/fmicb.2017.02580
[10] de Zelicourt A, Al-Yousif M, Hirt H. Rhizosphere microbes as essential partners for plant stress tolerance. Mol Plant, 2013, 6:242-245.
doi: 10.1093/mp/sst028 pmid: 23475999
[11] Yang J, Kloepper J W, Ryu C M. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci, 2009, 14:1-4.
doi: 10.1016/j.tplants.2008.10.004
[12] 赵卫松, 郭庆港, 李社增, 王培培, 鹿秀云, 苏振贺, 张晓云, 马平. 花铃期棉花黄萎病抗病与感病品种对土壤细菌群落结构的影响. 中国农业科学, 2020, 53:942-954.
Zhao W S, Guo Q G, Li S Z, Wang P P, Lu X Y, Su Z H, Zhang X Y, Ma P. Effect of wilt-resistant and wilt-susceptible cotton on soil bacterial community structure at flowering and boll stage. Sci Agric Sin, 2020, 53:942-954 (in Chinese with English abstract).
[13] Edwards J, Johnson C, Santos-Medellín C, Lurie E, Sundaresan V. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA, 2015, 112:911-920.
doi: 10.1073/pnas.1423603112
[14] Walters W A, Jin Z, Youngblut N, Wallace J G, Sutter J, Zhang W, González-Peña A, Peiffer J, Koren O, Shi Q, Knight R, Glavina Del Rio T, Tringe S G, Buckler E S, Dangl J L, Ley R E. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc Natl Acad Sci USA, 2018, 115:7368-7373.
doi: 10.1073/pnas.1800918115
[15] Zolla G, Badri D V, Bakker M G, Manter D K, Vivanco J M. Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Appl Soil Ecol, 2013, 68:1-9.
doi: 10.1016/j.apsoil.2013.03.007
[16] Carvalhais L C, Dennis P G, Badri D V, Kidd B N, Vivanco J M, Schenk P M. Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol Plant-Microbe Interact, 2015, 28:1049-1058.
doi: 10.1094/MPMI-01-15-0016-R
[17] 吴会会, 邹英宁, 吴强盛. 干旱胁迫下菌根真菌对枳根系形态、内源激素和土壤结构的影响. 中国南方果树, 2018, 47(3):14-17.
Wu H H, Zou Y N, Wu J S. Effects of mycorrhizal fungi on root morphology, endogenous hormones and soil structure of trifoliate orange under drought stress. South China Fruits, 2018, 47(3):14-17 (in Chinese with English abstract).
[18] Pieterse C M, Zamioudis C, Berendsen R L, Weller D M, Van Wees S C, Bakker P A. Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol, 2014, 52:347-375.
doi: 10.1146/annurev-phyto-082712-102340 pmid: 24906124
[19] Hedden P, Thomas S G. Gibberellin biosynthesis and its regulation. Biochem J, 2012, 444:11-25.
doi: 10.1042/BJ20120245
[20] Finkel O M, Castrillo G, Herrera Paredes S, Salas Gonzalez I, Dangl J L. Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol, 2017, 38:155-163.
doi: S1369-5266(17)30015-8 pmid: 28622659
[21] Lundberg D S, Lebeis S L, Paredes S H, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Rio T G D. Defining the core Arabidopsis thaliana root microbiome. Nature, 2012, 488:86-90.
doi: 10.1038/nature11237 pmid: 22859206
[22] 薛英龙, 李春越, 王苁蓉, 王益, 刘津, 常顺, 苗雨, 党廷辉. 丛枝菌根真菌促进植物摄取土壤磷的作用机制. 水土保持学报, 2019, 33(6):10-20.
Xue Y L, Li C Y, Wang C R, Wang Y, Liu J, Chang S, Miao Y, Dang T H. Mechanisms of phosphorus uptake from soils by arbuscular mycorrhizal fungi. J Soil Water Conserv, 2019, 33(6):10-20 (in Chinese with English abstract).
[23] Rapparini F, Peñuelas J. Use of Microbes for the Alleviation of Soil Stresses, New York: Springer, 2014. pp 165-174.
[24] Uehlein N, Fileschi K, Eckert M, Bienert G P, Bertl A, Kaldenhoff R. Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry, 2007, 68:122-129.
doi: 10.1016/j.phytochem.2006.09.033
[25] Miller S H, Browne P, Prigent-Combaret C, Combes-Meynet E, Morrissey J P, O’Gara F. Biochemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species. Environ Microbiol Rep, 2010; 2:403-411.
doi: 10.1111/j.1758-2229.2009.00105.x
[26] Qiao Q, Wang F, Zhang J, Chen Y, Zhang C, Liu G, Zhang H, Ma C, Zhang J. The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage. Sci Rep, 2017, 7:3940.
doi: 10.1038/s41598-017-04213-7
[27] Xi H, Shen J, Qu Z, Yang D, Liu S, Nie X, Zhu L. Effects of long-term cotton continuous cropping on soil microbiome. Sci Rep, 2019, 9:18297.
doi: 10.1038/s41598-019-54771-1
[28] Ullah A, Akbar A, Luo Q, Khan A H, Manghwar H, Shaban M, Yang X. Microbiome diversity in cotton rhizosphere under normal and drought conditions. Microb Ecol, 2019, 77:429-439.
doi: 10.1007/s00248-018-1260-7 pmid: 30196314
[29] Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods, 2010, 7:335-336.
doi: 10.1038/nmeth.f.303 pmid: 20383131
[30] Edgar R C, Haas B J, Clemente J C, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 2011, 27:2194-2200.
doi: 10.1093/bioinformatics/btr381
[31] Koljalg U, Nilsson R H, Abarenkov K, Tedersoo L, Taylor A F, Bahram M, Bates S T, Bruns T D, Bengtsson-Palme J, Callaghan T M, Douglas B, Drenkhan T, Eberhardt U, Duenas M, Grebenc T, Griffith G W, Hartmann M, Kirk P M, Kohout P, Larsson E, Lindahl B D, Lucking R, Martin M P, Matheny P B, Nguyen N H, Niskanen T, Oja J, Peay K G, Peintner U, Peterson M, Poldmaa K, Saag L, Saar I, Schussler A, Scott J A, Senes C, Smith M E, Suija A, Taylor D L, Telleria M T, Weiss M, Larsson K H. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol, 2013, 22:5271-5277.
doi: 10.1111/mec.12481
[32] Chao A, Shen T J. Nonparametric prediction in species sampling. J Agric Biol Environ Statist, 2004, 9:253-269.
doi: 10.1198/108571104X3262
[33] Eichmann R, Richards L, Schäfer P. Hormones as go-betweens in plant microbiome assembly. Plant J, 2021, 105:518-541.
doi: 10.1111/tpj.v105.2
[34] Verbon E H, Liberman L M. Beneficial microbes affect endogenous mechanisms controlling root development. Trends Plant Sci, 2016, 21:218-229.
doi: S1360-1385(16)00028-5 pmid: 26875056
[35] Yu C, Hu X M, Deng W, Li Y, Xiong C, Ye C H, Han G M, Li X. Changes in soil microbial community structure and functional diversity in the rhizosphere surrounding mulberry subjected to long-term fertilization. Appl Soil Ecol, 2015, 86:30-40.
doi: 10.1016/j.apsoil.2014.09.013
[36] 赵存鹏, 郭宝生, 刘素恩, 王兆晓, 昭耿, 王凯辉, 耿军义. 粮棉轮作对土壤中养分及真菌多样性的影响. 华北农学报, 2017, 32(6):139-146.
Zhao B C, Guo B S, Liu S E, Wang Z X, Zhao G, Wang K H, Geng J Y. Effect of cotton and grain crops rotation on nutrients contents and diversity of fungi in the soil. Acta Agric Boreali-Sin, 2017, 32(6):139-146 (in Chinese with English abstract).
[37] Rousk J, Brookes P C, Bååth E. Fungal and bacterial growth responses to N fertilization and pH in the 150-year ‘Park Grass’ UK grassland experiment. FEMS Microbiol Ecol, 2011, 76:89-99.
doi: 10.1111/fem.2011.76.issue-1
[38] 刘宇, 韩淑梅, 宋希强, 丁琼, 王鹏, 赵莹. 不同海拔下海南凤仙花可培养根际真菌和细菌群落的季节性变化. 热带生物学报, 2018, 9(1):50-56.
Liu Y, Han S M, Song X Q, Ding Q, Wang P, Zhao Y. Seasonal variation of microbial communities in the rhizosphere of Impatiens hainanensis (Balsaminaceae) at different altitudes. J Trop Biol, 2018, 9(1):50-56 (in Chinese with English abstract).
[39] Butinar L, Zalar P, Frisvad J C, Gunde-Cimerman N. The genus Eurotium members of indigenous fungal community in hypersaline waters of salterns. FEMS Microbiol Ecol, 2005, 51:155-166.
pmid: 16329864
[40] Beever R E, Laracy E P. Osmotic adjustment in the filamentous fungus Aspergillus nidulans. J Bacteriol, 1986, 168:1358-1365.
pmid: 3536874
[41] Araújo C A S, Ferreira P C, Pupin B, Dias L P, Avalos J, Edwards J, Hallsworth J E, Rangel D E N. Osmotolerance as a determinant of microbial ecology: a study of phylogenetically diverse fungi. Fungal Biol, 2020, 124:273-288.
doi: 10.1016/j.funbio.2019.09.001
[42] Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan F A, Khan F, Chen Y, Wu C, Tabassum M A, Chun M X, Afzal M, Jan A, Jan M T, Huang J. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res Int, 2015, 22:4907-4921.
doi: 10.1007/s11356-014-3754-2
[43] Qiao Q, Zhang J, Ma C, Wang F, Chen Y, Zhang C, Zhang H, Zhang J. Characterization and variation of the rhizosphere fungal community structure of cultivated tetraploid cotton. PLoS One, 2019, 14:e0207903.
doi: 10.1371/journal.pone.0207903
[44] Yan N, Marschner P, Cao W, Zuo C, Qin W. Influence of salinity and water content on soil microorganisms. Int Soil Water Conserv, 2015, 3:316-323.
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[3] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[4] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 王霞, 尹晓雨, 于晓明, 刘晓丹. 干旱锻炼对B73自交后代当代干旱胁迫记忆基因表达及其启动子区DNA甲基化的影响[J]. 作物学报, 2022, 48(5): 1191-1198.
[7] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[10] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[11] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[12] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[13] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[14] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[15] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!