欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (11): 2220-2231.doi: 10.3724/SP.J.1006.2021.03018

• 耕作栽培·生理生化 • 上一篇    下一篇

增温增CO2浓度对玉米||花生体系玉米生长发育及产量的影响

王飞(), 郭彬彬, 孙增光, 尹飞, 刘领, 焦念元*(), 付国占   

  1. 河南科技大学农学院 / 河南省旱地农业工程技术研究中心, 河南洛阳 471023
  • 收稿日期:2020-03-21 接受日期:2021-04-26 出版日期:2021-11-12 网络出版日期:2021-06-05
  • 通讯作者: 焦念元
  • 作者简介:E-mail: 1216677627@qq.com
  • 基金资助:
    河南省自然科学基金项目(182300410014);河南省自然科学基金项目(212300410342);河南省科技攻关项目(182102110180)

Effects of elevated temperature and CO2 concentration on growth and yield of maize under intercropping with peanut

WANG Fei(), GUO Bin-Bin, SUN Zeng-Guang, YIN Fei, LIU Ling, JIAO Nian-Yuan*(), FU Guo-Zhan   

  1. College of Agriculture, Henan University of Science and Technology / Henan Dryland Agricultural Engineering Technology Research Center, Luoyang, 471023, Henan, China
  • Received:2020-03-21 Accepted:2021-04-26 Published:2021-11-12 Published online:2021-06-05
  • Contact: JIAO Nian-Yuan
  • Supported by:
    Natural Science Foundation of Henan Province(182300410014);Natural Science Foundation of Henan Province(212300410342);Tackling Key Scientific and Technological Problems in Henan Province(182102110180)

摘要:

为了明确气候变化对玉米||花生体系中玉米生长发育及产量的影响, 本研究以玉米||花生2∶4模式为研究对象, 采用开顶式气室, 2018年设2个处理, 分别是TC (ambient temperature and ambient CO2 concentration, 环境温度和环境CO2浓度)、+T+C (elevated temperature and elevated CO2 concentration, 增温且增CO2浓度); 2019年设3个处理, 分别是TC、+TC (elevated temperature and ambient CO2 concentration, 增温和环境CO2浓度)、+T+C; 分别在P0 (0 kg P2O5 hm-2)和P180 (180 kg P2O5 hm-2) 2个水平下, 研究增温增CO2浓度对间作玉米生长、干物质积累与分配、光合速率及产量的影响。结果表明: (1) 与环境温度和环境CO2浓度相比, 增温(+TC)处理的间作玉米出苗至吐丝、吐丝至成熟和出苗至成熟的天数分别缩短4、2和6 d; 增温后, 同时升高CO2浓度, 间作玉米出苗至吐丝的天数缩短3 d、而吐丝至成熟和出苗至成熟的天数却分别增加5 d和2 d; 与TC相比, +T+C处理, 间作玉米出苗至吐丝和出苗至成熟的天数分别缩短4~7 d和2~4 d, 吐丝至成熟的天数增加1~4 d。(2) 间作玉米单株叶面积、净光合速率和光合势在吐丝期前表现为+T+C>+TC>TC, 吐丝至乳熟期表现为+T+C>TC>+TC, 乳熟期后表现为TC>+T+C>+TC。与TC相比, +T+C处理的间作玉米穗粒数和百粒重分别提高4.14%~65.70%和1.70%~14.00%。(3) 与TC处理相比, +TC处理, 间作玉米收获期干物质量提高7.39%~21.30%, 产量提高19.18%~28.07%; +T+C处理, 间作玉米收获期干物质量提高10.0%~57.7%, 产量提高4.41%~52.00%; 施磷能提高增温增CO2浓度处理间作玉米产量。这表明增温和增CO2浓度通过提高间作玉米生育前期净光合速率、叶面积指数和光合势, 缩短其营养生长期, 延长籽粒灌浆时间, 增加穗粒数和粒重, 来促进干物质积累和产量的提高; 增温、增CO2浓度对间作玉米吐丝前具有互促效应, 而吐丝后表现为增CO2浓度能弥补增温对间作玉米生长的抑制效应。

关键词: 气候变化, 间作玉米, 生长, 干物质积累, 产量

Abstract:

To clarify the effects of climate change on the growth development and yield of maize in the system of maize intercropping peanut, we performed the planting pattern of two rows maize intercropping and four rows peanut. Field experiments were carried out with TC (ambient temperature and ambient CO2 concentration), +T+C (elevated temperature and elevated CO2 concentration) in 2018, and TC, +TC (elevated temperature and ambient CO2 concentration), and +T+C in 2019, with two phosphorus levels of P0 (P2O5 0 kg hm-2) and P180 (P2O5 180 kg hm-2), respectively. The effects of elevated temperature and CO2 concentration on growth, dry matter accumulation and distribution, photosynthesis and yield of intercropping maize were studied. Results were as follows: (1) Compared with TC, the numbers of days from emergence to silking, silking to maturity, and emergence to maturity of intercropping maize under +TC were shortened respective by 4, 2, and 6 days. Compared with +TC, the number of days from emergence to silking of intercropping maize under +T+C was shortened by three days, while the numbers of days from silking to maturity, and emergence to maturity were increased by five days and two days. Compared with TC, the number of days from emergence to silking, and emergence to maturity of intercropping maize under +T+C was shortened by 4-7 days and 2-4 days, respectively; and the number of days from emergence to maturity was extended by 1-4 days. (2) The leaf area, net photosynthetic rate, and leaf area duration of intercropping maize were +T+C>+TC>TC before silking, +T+C>TC>+TC from silking to milk stage, and +T >+T+C>+TC after milk stage. Compared with TC, ear grain number and 100-grain weight of intercropping maize under +T+C were increased by 4.14%-65.70% and 1.70%-14.0%, respectively. (3) Compared with TC, the dry matter of intercropping maize at maturity stage increased by 7.39%-21.30% and the yield increased by 19.18%-28.07% under +TC. The dry matter and yield of intercropping maize increased by 10.0%-57.7% and 4.41%-52.00% under +T+C, respectively. The grain yield of intercropping maize was improved by applying phosphorus after increasing temperature and CO2 concentration. These results indicated that elevated temperature and CO2 concentration could promote dry matter accumulation and grain yield improvement by increasing net photosynthetic rate, leaf area index, and leaf area duration of intercropping maize at early growth stage, shortening vegetative growth period, prolonging grain filling time, and increasing ear grain number and grain weight per panicle. Elevated temperature and CO2 concentration had mutual promoting effect on the growth of intercropping maize before silking stage, while increasing CO2 concentration could make up for the inhibiting effect of increasing temperature on the growth of intercropping maize after silking.

Key words: climatic change, intercropping maize, growth, dry matter accumulation, yield

图1

生长季田间温度和CO2浓度变化(2018年和2019年) TC: 环境温度和环境CO2浓度; +TC: 增温和环境CO2浓度[环境温度+(2.0±0.5)℃和环境CO2浓度390 μmol mol-1]; +T+C: 增温且增CO2浓度[环境温度+(2.0±0.5)℃和CO2浓度约为(700±50) μmol mol-1]。"

图2

增温增CO2浓度气室模式图(2018年和2019年)"

表1

增温和增温增CO2浓度对间作玉米生育进程的影响"

年份
Year
磷水平
P-level
处理
Treatment
生育日期 Growth date (month/day) 生长天数 Growth days (d)
ES R1 R6 ES-R1 R1-R6 ES-R6
2018 P0 TC 6/10 7/30 9/16 50 48 98
+T+C 6/10 7/24 9/14 44 52 96
P180 TC 6/10 7/25 9/22 45 59 104
+T+C 6/10 7/21 9/19 41 60 101
年份
Year
磷水平
P-level
处理
Treatment
生育日期 Growth date (month/day) 生长天数 Growth days (d)
ES R1 R6 ES-R1 R1-R6 ES-R6
2019 P0 TC 6/24 8/15 10/4 52 50 102
+TC 6/24 8/11 9/28 48 48 96
+T+C 6/24 8/9 9/30 46 52 98
P180 TC 6/24 8/10 10/8 47 60 107
+TC 6/24 8/6 10/2 43 58 101
+T+C 6/24 8/3 10/5 40 63 103

图3

增温增CO2浓度对间作玉米株高及穗发育的影响 处理同表1。"

图4

增温和增温增CO2浓度对间作玉米单株叶面积的影响 不同小写字母表示处理在同一苗后天数时0.05水平下差异显著。处理同表1。"

表2

间作玉米单株叶面积、光合势、净光合速率、干物质和产量的处理间方差分析(F值)"

单株叶面积
Leaf-area per plant (m2 plant-1)
光合势
Leaf area duration
(m2 m-2 d)
净光合速率
Pn
(μmol CO2 m-2 s-1)
干物质
Dry matter
(g plant-1)
产量
Yield
(kg hm-2)
增温且增CO2浓度
Elevated temperature and CO2 concentration
18.2** 4.68 42.6** 74.0** 180**
磷肥
P
48.8** 60.3** 78.8** 53.2** 524**
磷肥×增温且增CO2浓度
P × Elevated temperature and CO2 concentration
0.003 0.171 50.6** 0.047 0.226

图5

增温和增温增CO2浓度对间作玉米光合势的影响 处理同表1。"

图6

增温和增温增CO2浓度对间作玉米穗位叶净光合速率的影响 SS: 吐丝期; FS: 灌浆期; MS: 乳熟期; DS: 蜡熟期。不同小写字母表示处理在同一生育时期时0.05水平下差异显著。处理同表1。"

图7

增温和增温增CO2浓度对间作玉米干物质积累的影响 处理同表1。"

表3

增温和增温增CO2浓度对间作玉米收获期干物质积累与分配的影响"

年份
Year
磷水平
P-level
处理
Treatment
干物质积累 Dry matter accumulation (g plant-1) 干物质分配 Dry matter distribution (%)

Stem

Leaf
苞叶
Husk
穗轴
Cob
籽粒
Kernel

Stem

Leaf
苞叶
Husk
穗轴
Cob
籽粒
Kernel
2018 P0 TC 48.5 b 14.8 b 8.40 a 14.2 b 96.8 c 26.5 bc 8.10 ab 4.60 a 7.77 a 53.0 a
+T+C 50.6 b 15.7 b 9.78 a 16.2 ab 111.0 ab 24.9 c 7.72 b 4.81 a 7.97 a 54.6 a
P180 TC 65.5 a 16.5 b 11.7 a 17.1 a 98.7 bc 31.3 a 7.88 ab 5.58 a 8.16 a 47.1 b
+T+C 66.2 a 21.8 a 11.9 a 17.5 a 116.0 a 28.4 ab 9.34 a 5.10 a 7.50 a 49.7 b
2019 P0 TC 30.0 d 15.4 c 6.48 d 9.11 c 65.1 d 23.8 ab 12.2 a 5.14 a 7.22 b 51.6 bc
+TC 32.7 cd 15.3 c 8.55 bc 11.6 bc 84.8 cd 21.4 ab 10.0 b 5.59 a 7.58 b 55.4 ab
+T+C 40.8 c 17.4 c 9.12 bc 14.0 b 118.0 b 20.5 b 8.73 b 4.58 a 7.02 b 59.2 a
P180 TC 54.7 b 27.0 b 11.4 b 19.6 a 104.3 bc 25.2 a 12.4 a 5.25 a 9.03 a 48.1 c
+TC 58.0 ab 28.3 b 11.0 b 19.0 a 120.0 b 24.5 ab 12.0 a 4.66 a 8.04 b 50.8 bc
+T+C 65.0 a 34.4 a 15.2 a 21.4 a 159.0 a 22.0 ab 11.7 a 5.15 a 7.25 b 53.9 b

表4

增温和增温增CO2浓度对间作玉米产量及其构成的影响"

年份 Year 磷水平
P-level
处理
Treatment
穗部性状Ear traits 产量及构成Yield and the components
穗长
Ear length (cm)
秃尖长
Bare tip length (cm)
穗行数
Ear row
per ear
行粒数
Grains
per row
产量
Yield
(kg hm-2)
穗粒数
Grains
per ear
百粒重
100-grain weight (g)
穗数
Spikes
per hm2
2018 P0 TC 15.1 b 1.82 a 16.8 a 27.5 c 4725 c 463 b 21.7 c 49,128
+T+C 15.5 b 1.73 a 17.0 a 28.5 bc 4933 c 484 b 22.1 c 49,118
P180 TC 16.3 a 1.04 b 17.7 a 30.3 ab 5867 b 537 a 23.1 b 49,297
+T+C 16.8 a 1.00 b 17.9 a 31.3 a 6292 a 559 a 24.3 a 49,320
2019 P0 TC 11.1 d 2.03 a 15.8 c 19.3 d 3910 f 305 d 24.0 e 49,341
+TC 12.9 c 1.91 a 16.5 abc 25.5 c 5008 e 421 c 25.5 d 49,649
+T+C 14.4 b 1.43 b 16.4 bc 30.8 b 5943 d 505 b 27.4 bc 49,950
P180 TC 14.4 b 0.86 c 16.7 ab 31.2 b 6539 c 522 b 26.3 cd 49,630
+TC 15.4 a 0.47 c 17.3 a 32.0 ab 7793 b 555 ab 28.4 ab 49,642
+T+C 15.8 a 0.46 c 17.3 a 35.1 a 8203 a 609 a 29.8 a 49,670
[1] IPCC: Summary for policymakers. In: Edenhofer O, Pichs- Madruga R, Sokona Y, eds. Climate Change 2014. Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014. pp 25, 77-78.
[2] 金奖铁, 李扬, 李荣俊, 刘秀林, 李林懋. 大气二氧化碳浓度升高影响植物生长发育的研究进展. 植物生理学报, 2019, 55: 558-568.
Jin J T, Li Y, Li R J, Liu X L, Li L M. Advances in studies on effects of elevated atmospheric carbon dioxide concentration on plant growth and development. Plant Physiol J, 2019, 55: 558-568 (in Chinese with English abstract).
[3] 王东明, 陶冶, 朱建国, 刘钢, 朱春梧. 稻米外观与加工品质对大气CO2浓度升高的响应. 中国水稻科学, 2019, 33: 338-346.
Wang D M, Tao Y, Zhu J G, Liu G, Zhu C W. Responses of rice appearance and processing quality to elevated atmospheric CO2 concentration. Chin J Rice Sci, 2019, 33: 338-346 (in Chinese with English abstract).
[4] 马娉, 李如楠, 王斌, 李玉娥, 万运帆, 秦晓波, 刘硕, 高清竹. 双季稻不同生育期净同化速率对大气CO2浓度和温度升高的响应. 应用生态学报, 2020, 31: 872-882.
Ma P, Li R N, Wang B, Li Y E, Wan Y F, Qin X B, Liu S, Gao Z Q. Responses of net assimilation rate to elevated atmospheric CO2 and temperature at different growth stages in a double rice cropping system. Chin J Appl Ecol, 2020, 31: 872-882 (in Chinese with English abstract).
[5] Donnelly A, Craigon J, Black C R, Colls J J, Landon G. Does elevated CO2 ameliorate the impact of O3 on chlorophyll content and photosynthesis in potato (Solanum tuberosum)? Physiol Plant, 2001, 111: 501-511.
pmid: 11299015
[6] Manderscheid R, Burkart S, Bramm A, Weigel H J. Effect of CO2 enrichment on growth and daily radiation use efficiency of wheat in relation to temperature and growth stage. Eur J Agron, 2003, 19: 411-425.
doi: 10.1016/S1161-0301(02)00133-8
[7] 李彦生, 金剑, 刘晓冰. 作物对大气CO2浓度升高生理响应研究进展. 作物学报, 2020, 46: 1819-1830.
doi: 10.3724/SP.J.1006.2020.02027
Li Y S, Jin J, Liu X B. Physiological response of crop to elevated atmospheric carbon dioxide concentration: a review. Acta Agron Sin, 2020, 46: 1819-1830 (in Chinese with English abstract).
[8] Castro J C, Dohleman F G, Bernacchi C J, Long S P. Elevated CO2 significantly delays reproductive development of soybean under free-air concentration enrichment (FACE). J Exp Bot, 2009, 60: 2945-2951.
doi: 10.1093/jxb/erp170
[9] 宋晓雯, 王国骄, 孙备, 刘春溪, 宛涛, 李美松, 殷红, 隋明. 开放式增温对不同耐热性粳稻光合作用和产量的影响. 沈阳农业大学学报, 2019, 50: 648-655.
Song X W, Wang G J, Sun B, Liu C X, Wan T, Li M C, Yin H, Sui M. Effects of free air temperature increasing on photosynthesis and yield of japonica rice with different heat-tolerance characteristics. J Shenyang Agric Univ, 2019, 50: 648-655 (in Chinese with English abstract).
[10] Imai K, Okamoto-Sato M. Effects of temperature on CO2 dependence of gas exchanges in C3 and C4 crop plants. Jpn J Crop Sci, 1991, 60: 139-145.
doi: 10.1626/jcs.60.139
[11] Vu J C V, Jr L H A, Boote K J, Bowes G. Effects of elevated CO2 and temperature on photosynthesis and Rubisco in rice and soybean. Plant Cell Envion, 1997, 20: 68-76.
[12] Chaturvedi A K, Bahuguna R N, Shah D, Pal M, Jagadish K. High temperature stress during flowering and grain filling offsets beneficial impact of elevated CO2 on assimilate partitioning and sink-strength in rice. Sci Rep, 2017, 7: 8227.
doi: 10.1038/s41598-017-07464-6 pmid: 28811489
[13] Wheeler T R, Hong T D, Ellis R H, Batts G R, Morison J I L, Hadley P. The duration and rate of grain growth, and harvest index of wheat (Triticum aestivum L.) in response to temperature and CO2. J Exp Bot, 1996, 47: 623-630.
doi: 10.1093/jxb/47.5.623
[14] Lal M, Singh K K, Rathore L S, Srinivasanc G, Saseendranb S A. Vulnerability of rice and wheat yields in NW India to future changes in climate. Agric For Meteorol, 1998, 89: 101-114.
doi: 10.1016/S0168-1923(97)00064-6
[15] 李广, 李玥, 黄高宝, 罗珠珠, 王琦, 刘强, 燕振刚, 赵有益. 基于APSIM模型旱地春小麦产量对温度和CO2浓度升高的响应. 中国生态农业学报, 2012, 20: 1088-1095.
Li G, Li Y, Huang G B, Luo Z Z, Wang Q, Liu Q, Yan Z G, Zhao Y Y. Response of dryland spring wheat yield to elevated CO2 concentration and temperature by APSIM model. Chin J Eco-Agric, 2012, 20: 1088-1095 (in Chinese with English abstract).
[16] 赖上坤, 庄时腾, 吴艳珍, 王云霞, 朱建国, 杨连新, 王余龙. 大气CO2浓度和温度升高对超级稻生长发育的影响. 生态学杂志, 2015, 34: 1253-1262.
Lai S K, Zhuang S T, Wu Y Z, Wang Y X, Zhu J G, Yang L X, Wang Y L. Impact of elevated atmospheric CO2 concentration and temperature on growth and development of super rice. Chin J Ecol, 2015, 34: 1253-1262 (in Chinese with English abstract).
[17] 苏营, 张逸飞, 牟文雅, 邢光南, 陈法军. 大豆主要株型和产量指标对大气CO2和温度升高的响应. 生态学报, 2016, 36(9):152-161.
Su Y, Zhang Y F, Mou W Y, Xing G N, Chen F J. Morphological traits and yield of soybean under elevated atmospheric CO2 concentration and temperature. Acta Ecol Sin, 2016, 36(9):152-161 (in Chinese with English abstract).
[18] Jiao N Y, Wang J T, Ma C, Zhang C C, Guo D Y, Zhang F S, Jensen E S. The importance of aboveground and belowground interspecific interactions in determining crop growth and advantages of peanut/maize intercropping. Crop J, 2021, https://doi.org/10.1016/j.cj.2020.12.004.
[19] 焦念元, 宁堂原, 杨萌珂, 付国占, 尹飞, 徐国伟, 李增嘉. 玉米花生间作对玉米光合特性及产量形成的影响. 生态学报, 2013, 33: 4324-4330.
Jiao N Y, Ning T Y, Yang M K, Fu G Z, Yin F, Xu G W, Li Z J. Effects of maize-peanut intercropping on photosynthetic characters and yield forming of intercropped maize. Acta Ecol Sin, 2013, 33: 4324-4330 (in Chinese with English abstract).
[20] 焦念元, 李亚辉, 杨潇, 尹飞, 马超, 齐付国, 刘领, 熊瑛. 玉米/花生间作行比和施磷对玉米光合特性的影响. 应用生态学报, 2016, 27: 2959-2967.
Jiao N Y, Li Y H, Yang X, Yin F, Ma C, Qi F G, Liu L, Xiong Y. Effects of maize/peanut intercropping row ratio and phosphate fertilizer on photosynthetic characteristics of maize. Chin J Appl Ecol, 2016, 27: 2959-2967 (in Chinese with English abstract).
[21] Zuo Y M, Liu Y X, Zhang F S, Peter C. Studies on the improvement iron nutrition of peanut intercropping with maize on nitrogen fixation at early stages of growth of peanut on a calcareous soil. Soil Sci Plant Nutr, 2004, 50: 1071-1078.
doi: 10.1080/00380768.2004.10408576
[22] 焦念元, 陈明灿, 付国占, 宁堂原, 王黎明, 李增嘉. 玉米花生间作复合群体的光合物质积累与叶面积指数变化. 作物杂志, 2007, (1):34-35.
Jiao N Y, Chen M C, Fu G Z, Ning T Y, Wang L M, Li Z J. Photosynthetic matter accumulation and leaf area index change in compound population of maize intercropping peanut. Crops, 2007, (1):34-35 (in Chinese with English abstract).
[23] 王飞, 孙增光, 尹飞, 郭彬彬, 刘领, 焦念元. 增温增CO2对间作玉米光合特性的影响. 中国农业科学, 2021, 54: 58-70.
Wang F, Sun Z G, Yin F, Guo B B, Liu L, Jiao N Y. Effects of elevated temperature and CO2 on the Photosynthetic characteristics of intercropping maize. Sci Agric Sin, 2021, 54: 58-70 (in Chinese with English abstract).
[24] 景立权, 赖上坤, 王云霞, 杨连新, 王余龙. 大气CO2浓度和温度互作对水稻生长发育的影响. 生态学报, 2016, 36: 4254-4265.
Jing L Q, Lai S K, Wang Y X, Yang L X, Wang Y L. Combined effect of increasing atmospheric CO2 concentration and temperature on growth and development of rice: a research review. Acta Ecol Sin, 2016, 36: 4254-4265 (in Chinese with English abstract).
[25] Fang S B, Su H, Liu W, Tan K Y, Ren S X. Infrared warming reduced winter wheat yields and some physiological parameters, which were mitigated by irrigation and worsened by delayed sowing. PLoS One, 2013, 8: e67518.
doi: 10.1371/journal.pone.0067518
[26] Dong W J, Chen J, Zhang B, Tian Y L, Zhang W J. Responses of biomass growth and grain yield of midseason rice to the anticipated warming with FATI facility in East China. Field Crops Res, 2011, 123: 259-265.
doi: 10.1016/j.fcr.2011.05.024
[27] Madan P, Jagadish S V K, Craufurd P Q, Fitzgerald M, Lafarge T, Wheeler T R. Effect of elevated CO2 and high temperature on seed-set and grain quality of rice. J Exp Bot, 2012, 193: 117-130.
[28] Craufurd P Q, Wheeler T R. Climate change and flower time of annual crops. J Exp Bot, 2009, 60: 2529-2539.
doi: 10.1093/jxb/erp196 pmid: 19505929
[29] 蔡创. 冬小麦和水稻生长与产量对CO2浓度和温度同时升高的响应. 南京农业大学博士学位论文, 江苏南京, 2016.
Cai C. Responses of Winter Wheat and Rice Growth and Yield to the Combination of Elevated CO2 and Increased Temperature. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2016 (in Chinese with English abstract).
[30] 汤晓昀, 李志强, 吕军, 刘瑜, 高志建. 施肥对青贮玉米产量及品质的影响研究. 新疆农垦科技, 2017, (6):44-46.
Tang X Y, Li Z Q, Lyu J, Liu Y, Gao Z J. Effects of fertilization on the yield and quality of silage corn was studied. Xinjiang Farm Res Sci Technol, 2017, (6):44-46 (in Chinese).
[31] Ainsworth E A, Long S P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? Ameta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol, 2004, 165: 351-372.
doi: 10.1111/nph.2005.165.issue-2
[32] Sakai H, Hasegawa T, Kobayashi K. Enhancement of rice canopy carbon gain by elevated CO2 is sensitive to growth stage and leaf nitrogen concentration. New Phytol, 2006, 170: 321-332.
pmid: 16608457
[33] Tian Y, Zheng C Y, Chen J, Chen C Q, Deng A X, Song Z W, Zhang B M, Zhang W J. Climate warming increases winter wheat yield but reduces grain nitrogen concentration in east China. PLoS One, 2014, 9: e95108.
doi: 10.1371/journal.pone.0095108
[34] Kim S H, Gitz D C, Sicher R C, Baker J T, Timlin D J, Reddy V R. Temperature dependence of growth, development, and photosynthesis in maize under elevated CO2. Environ Exp Bot, 2007, 61: 224-236.
doi: 10.1016/j.envexpbot.2007.06.005
[35] Clifford S C, Stronach I M, Black C R, Singleton-Jones P R, Crout N M J. Effects of elevated CO2, drought and temperature on the water relations and gas exchange of groundnut (Arachis hypogaea) stands grown in controlled environment glasshouses. Physiol Plant, 2000, 110: 78-88.
doi: 10.1034/j.1399-3054.2000.110111.x
[36] 孟凡超, 张佳华, 姚凤梅. CO2浓度升高和降水增加协同作用对玉米产量及生长发育的影响. 植物生态学报, 2014, 38: 1064-1073.
doi: 10.3724/SP.J.1258.2014.00100
Meng F C, Zhang J H, Yao F M. Interactive effects of elevated CO2 concentration and increasing precipitation on yield and growth development in maize. Chin J Plant Ecol, 2014, 38: 1064-1073 (in Chinese with English abstract).
[37] Baker J T, Allen L H, Boote K J. Response of rice to carbon dioxide and temperature. Agric For Meteorol, 1992, 60: 153-166.
doi: 10.1016/0168-1923(92)90035-3
[38] 王帅, 杨劲峰, 韩晓日, 刘小虎, 战秀梅, 刘顺国. 不同施肥处理对旱作春玉米光合特性的影响. 中国土壤与肥料, 2008, (6):23-27.
Wang S, Yang J F, Han X R, Liu X H, Zhan X M, Liu S G. Effects of different fertilization treatments on the photosynthesis characteristics of dry spring corn. Soils Fert Sci Chin, 2008, (6):23-27 (in Chinese with English abstract).
[39] Long S P, Ainsworth E A, Leakey A D B, Nösberger J, Ort D R. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 2006, 312: 1918-1921.
doi: 10.1126/science.1114722
[40] Cure J D, Acock B. Crop responses to carbon dioxide doubling: a literature survey. Agric For Meteorol, 1986, 38: 127-145.
doi: 10.1016/0168-1923(86)90054-7
[41] 李兆君, 杨佳佳, 范菲菲, 侯云鹏, 谢佳, 梁永超. 不同施肥条件下覆膜对玉米干物质积累及吸磷量的影响. 植物营养与肥料学报, 2011, 17: 571-577.
Li Z J, Yang J J, Fan F F, Hou Y P, Xie J, Liang Y C. Effect of plastic film mulching on dry mass accumulation and phosphorus uptake of corn receiving different fertilizers. Plant Nutr Fert Sci, 2011, 17: 571-577 (in Chinese with English abstract).
[42] Ottman M J, Kimball B A, Pinter P J. Elevated CO2 effects on sorghum growth and yield at high and low soil water content. New Phytol, 2001, 150: 261-273.
doi: 10.1046/j.1469-8137.2001.00110.x
[43] Lyu G H, Wu Y F, Bai W B, Ma B, Wang C Y, Song J Q. Influence of high temperature stress on net photosynthesis, dry matter partitioning and rice grain yield at flowering and grain filling stages. J Integr Agric, 2013, 12: 603-609.
doi: 10.1016/S2095-3119(13)60278-6
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[13] 孔垂豹, 庞孜钦, 张才芳, 刘强, 胡朝华, 肖以杰, 袁照年. 不同施肥水平下丛枝菌根真菌对甘蔗生长及养分相关基因共表达网络的影响[J]. 作物学报, 2022, 48(4): 860-872.
[14] 严圣吉, 邓艾兴, 尚子吟, 唐志伟, 陈长青, 张俊, 张卫建. 我国作物生产碳排放特征及助力碳中和的减排固碳途径[J]. 作物学报, 2022, 48(4): 930-941.
[15] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!