欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (11): 2232-2249.doi: 10.3724/SP.J.1006.2021.02086

• 耕作栽培·生理生化 • 上一篇    下一篇

侧深施氮对水稻产量及氮素吸收利用的影响

黄恒1(), 姜恒鑫1, 刘光明1, 袁嘉琦1, 汪源1, 赵灿1, 王维领1, 霍中洋1,*(), 许轲1, 戴其根1, 张洪程1, 李德剑2, 刘国林2   

  1. 1扬州大学 / 江苏省作物遗传生理国家重点实验室培育点 / 粮食作物现代产业技术协同创新中心, 江苏扬州 225009
    2江苏省兴化市农业局, 江苏兴化 225700
  • 收稿日期:2020-12-03 接受日期:2021-04-26 出版日期:2021-11-12 网络出版日期:2021-05-17
  • 通讯作者: 霍中洋
  • 作者简介:E-mail: 632423039@qq.com
  • 基金资助:
    国家重点研发计划项目(2016YFD0200805);国家重点研发计划项目(2018YFD0300802);江苏省重点研发计划项目(BE2020319);江苏省重点研发计划项目(BE2019377);江苏省重点研发计划项目(BE2018362)

Effects of side deep placement of nitrogen on rice yield and nitrogen use efficiency

HUANG Heng1(), JIANG Heng-Xin1, LIU Guang-Ming1, YUAN Jia-Qi1, WANG Yuan1, ZHAO Can1, WANG Wei-Ling1, HUO Zhong-Yang1,*(), XU Ke1, DAI Qi-Gen1, ZHANG Hong-Cheng1, LI De-Jian2, LIU Guo-Lin2   

  1. 1Jiangsu Key Laboratory of Crop Genetics and Physiology / Co-Innovation Center for Modern Production Technology of Grain Crops / Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Bureau of Agriculture of Xinghua County of Jiangsu Province, Xinghua 225700, Jiangsu, China
  • Received:2020-12-03 Accepted:2021-04-26 Published:2021-11-12 Published online:2021-05-17
  • Contact: HUO Zhong-Yang
  • Supported by:
    National Key Research and Development Program of China(2016YFD0200805);National Key Research and Development Program of China(2018YFD0300802);Key Research Program of Jiangsu Province(BE2020319);Key Research Program of Jiangsu Province(BE2019377);Key Research Program of Jiangsu Province(BE2018362)

摘要:

水稻机插侧深施肥是一种高效、优质、安全的栽培技术。深入研究侧深施肥条件下不同施肥方式对水稻产量及氮素利用效率的影响, 有利于完善水稻侧深施肥技术体系。本研究以江苏优质食味水稻代表性品种南粳9108和南粳5718为材料, 设置4种不同的侧深施施肥方式, 分别为: 100%基肥侧深施FM1 (fertilization method 1)、70%基肥侧深施+30%分蘖肥FM2 (fertilization method 2)、70%基肥侧深施+30%穗肥FM3 (fertilization method 3)、35%基肥侧深施+35%分蘖肥+30%穗肥FM4 (fertilization method 4), 并设置常规施肥对照CFM (conventional fertilization method)和不施氮处理0N (no nitrogen)。研究了不同施肥方式 (处理)对水稻产量及构成因素、茎蘖动态、叶面积指数、光合势、干物质积累、群体生长率、氮素利用效率等方面的影响。结果表明, 与其他处理相比, FM3和FM4在稳定穗数的基础上, 显著提高了群体颖花量和千粒重, 经济产量最高。FM3生育中、后期的叶面积指数和干物质积累量尤其是抽穗至成熟期的干物质积累显著高于其他处理, 拔节后的氮素积累量和全生育期总吸氮量、氮素农学利用率、氮素生理利用率、氮素吸收利用率、和氮素偏生产力也均显著高于其他处理。同时, FM3比CFM及FM4减少施肥次数1~2次, 节省了用工及成本, 利于规模化生产, 是一种兼具高产、轻简与高效的水稻施肥方式。

关键词: 侧深施肥, 粳稻, 施肥方式, 产量, 氮肥利用效率

Abstract:

Lateral deep fertilization is an efficient, high-quality, and safe cultivation technology of rice mechanical transplanting. In order to improve the technical system of lateral deep fertilization, we investigated the effects of different fertilization methods on rice yield and nitrogen use efficiency under the condition of lateral deep fertilization. In this study, Nanjing 9108 and Nanjing 5718, the representative varieties of quality and delicious rice of Jiangsu, were used as materials. Four different lateral deep fertilization methods were arranged, including 100% base fertilizer side deep application FM1 (fertilization method 1), 70% base fertilizer side deep application + 30% tillering fertilizer FM2 (fertilization method 2), 70% base fertilizer side deep application + 30% panicle fertilizer FM3 (fertilization method 3), and 35% base fertilizer side deep application + 35% tillering fertilizer + 30% panicle fertilizer FM4 (fertilization method 4). In addition, the conventional fertilization method and no nitrogen treatment were added. The effects of different treatments on rice yield, leaf area index, photosynthetic potential, dry matter accumulation, population growth rate, and nitrogen use efficiency were compared. The results revealed that the yield of FM3 and FM4 were higher than those of other treatments. The main reason was that the spikelet number of the population was significantly higher than that of other treatments on the basis of stable panicle number. The leaf area index and dry matter accumulation of FM3 treatment were higher in the middle and late growth stages, especially from heading to maturity stage. Nitrogen accumulation of FM3 was less before jointing stage, but nitrogen accumulation after jointing stage and the total nitrogen uptake during the whole growth period were significantly higher than those of other treatments. Moreover, the nitrogen agronomic utilization rate, nitrogen physiological utilization rate, nitrogen absorption utilization rate, and nitrogen partial productivity of FM3 were significantly higher than those of the other treatments. At the same time, compared with CFM and FM4, FM3 can reduce fertilization times by 1-2 times, save labor and cost, and is conducive to large-scale production. It is a high-yield, simple and efficient fertilization method for rice.

Key words: side deep placement of nitrogen, japonica rice, fertilization methods, yield, nitrogen use efficiency

表1

试验处理设计"

处理
Treatment
基肥N
Basic fertilizer N (kg hm-2)
分蘖肥N
Tiller fertilizer N (kg hm-2)
穗肥N
Earing fertilizer
N (kg hm-2)
总N
Total N
(kg hm-2)
施肥次数Fertilization times
不施氮肥0N 0 0 0 0 0
常规施肥对照CFM 105 105 90 300 4
100%基肥一次性侧深施FM1 300 0 0 300 1
70%基肥侧深施+30%分蘖肥FM2 210 90 0 300 2
70%基肥侧深施+30%穗肥FM3 210 0 90 300 2
35%基肥侧深施+35%分蘖肥+30%穗肥FM4 105 105 90 300 4

表2

侧深施肥不同施肥方式对水稻产量及其构成因素的影响"

年份
Year
品种
Variety
处理
Treatment
产量
Grain yield
(t hm-2)
穗数
Panicles per
(×104 hm-2)
每穗粒数Spikelets per panicle 结实率
Filled grains rate (%)
千粒重
1000-grain weight (g)
2019 南粳9108
Nanjing 9108
0N 7.21 d 255.07 d 115.44 e 96.94 a 28.91 a
CFM 10.07 bc 351.85 c 126.95 d 94.58 b 26.50 bc
FM1 9.45 c 351.80 c 114.95 e 89.72 f 26.28 cd
FM2 10.46 b 374.07 b 130.98 c 90.93 e 25.87 d
FM3 11.34 a 401.82 a 138.61 a 91.85 d 26.63 b
FM4 10.91 a 372.60 b 134.01 b 92.54 c 26.75 b
南粳5718
Nanjing 5718
0N 8.25 d 265.95 d 112.56 e 97.68 a 30.43 a
CFM 10.37 bc 362.82 c 121.66 d 95.74 b 28.14 bc
FM1 10.12 c 374.73 b 109.42 f 91.03 e 27.50 c
FM2 10.45 b 375.67 b 126.71 c 91.41 e 27.71 c
FM3 11.24 a 411.37 a 133.96 a 92.37 d 28.35 b
FM4 11.10 a 405.87 a 128.53 b 93.42 c 28.53 b
2020 南粳9108
Nanjing 9108
0N 6.77 c 244.68 d 114.29 d 95.91 a 28.55 a
CFM 9.80 b 343.93 c 127.38 c 94.30 ab 26.48 bc
FM1 9.90 b 371.12 b 118.34 d 89.24 c 26.39 c
FM2 10.27 ab 374.21 b 129.11 bc 92.12 b 26.11 d
FM3 10.73 a 397.91 a 132.83 ab 92.90 b 26.68 b
FM4 10.59 a 403.12 a 133.42 a 93.15 b 26.72 b
南粳5718
Nanjing 5718
0N 7.77 c 276.31 d 111.24 d 96.08 a 30.80 a
CFM 10.09 b 356.03 c 121.14 c 94.73 b 28.18 b
FM1 10.18 b 379.91 b 113.24 d 91.45 d 27.87 c
FM2 10.58 ab 386.11 b 122.45 bc 93.17 c 27.89 c
FM3 10.92 a 409.22 a 126.38 a 93.83 c 28.00 bc
FM4 10.71 a 405.25 a 124.25 ab 93.64 c 28.11 b
方差分析Variance analysis Y ** ** ** ** **
V ** ** ** ** **
T ** ** ** ** **
Y×T ns ns ** ** ns
Y×V ** ns ns ns ns
V×T ** ** ** ns ns
Y×V×T ** ns ns ns ns

表3

侧深施肥不同施肥方式对水稻茎蘖动态的影响"

年份
Year
品种
Variety
处理
Treatment
分蘖盛期
Peak seeding stage
(×104 hm-2)
拔节期
Jointing stage
(×104 hm-2)
抽穗期
Heading stage
(×104 hm-2)
成熟期
Maturity stage
(×104 hm-2)
茎蘖成穗率
Percentage of productive tiller
(%)
2019 南粳9108
Nanjing 9108
0N 342.20 e 327.37 e 257.53 c 257.43 d 74.54 a
CFM 515.20 d 503.79 d 355.11 b 353.44 c 68.29 b
FM1 611.79 a 585.48 a 355.46 b 355.47 c 57.50 c
FM2 622.08 a 594.71 a 381.68 a 379.14 b 60.13 c
FM3 589.87 b 580.07 ab 408.13 a 408.34 a 68.12 b
FM4 569.61 c 555.34 c 396.63 a 394.82 a 65.41 b
南粳5718
Nanjing 5718
0N 366.13 d 346.88 e 268.24 d 268.41 c 72.64 a
CFM 534.42 c 512.33 d 368.71 c 366.47 b 67.89 b
FM1 631.77 a 622.97 a 380.50 b 377.59 b 59.31 c
FM2 629.59 a 620.22 a 381.83 b 379.71 b 59.67 c
FM3 604.49 b 597.85 ab 415.67 a 415.21 a 68.05 b
FM4 589.76 b 567.67 c 410.78 a 408.88 a 68.82 b
2020 南粳9108
Nanjing 9108
0N 340.22 e 323.89 e 257.35 d 257.21 d 71.92 a
CFM 511.02 d 500.43 d 353.11 c 350.78 c 67.30 b
FM1 610.85 a 582.14 a 353.26 c 351.25 c 60.75 c
FM2 618.56 a 590.85 a 377.48 b 376.22 b 60.50 c
FM3 586.39 b 576.39 ab 402.11 a 400.12 a 67.86 b
FM4 567.11 c 551.56 c 393.15 a 392.22 a 71.08 a
南粳5718
Nanjing 5718
0N 361.25 d 343.58 e 264.58 c 264.23 c 76.49 a
CFM 530.68 c 510.15 d 362.15 b 361.75 b 67.09 b
FM1 628.55 a 620.05 a 377.22 b 376.19 b 60.44 c
年份
Year
品种
Variety
处理
Treatment
分蘖盛期
Peak seeding stage
(×104 hm-2)
拔节期
Jointing stage
(×104 hm-2)
抽穗期
Heading stage
(×104 hm-2)
成熟期
Maturity stage
(×104 hm-2)
茎蘖成穗率
Percentage of productive tiller
(%)
FM2 627.15 a 615.64 a 379.29 b 378.05 b 61.57 c
FM3 601.25 b 592.61 ab 411.39 a 410.05 a 68.06 b
FM4 585.28 b 564.55 c 408.12 a 407.56 a 69.24 b
方差分析Variance analysis Y ns ns ns ns ns
V ** * * * ns
T ** ** ** ** **
Y×T ns ns ns ns ns
Y×V ns ns ns ns ns
V×T ** ** ** ** **
Y×V×T ns ns ns ns ns

表4

侧深施肥不同施肥方式对水稻叶面积指数的影响"

年份
Year
品种
Variety
处理
Treatment
拔节期
Jointing stage
抽穗期
Heading stage
成熟期
Maturity stage
2019 南粳9108
Nanjing 9108
0N 1.68 c 3.69 c 1.49 c
CFM 4.15 b 6.41 b 3.81 ab
FM1 4.81 a 6.74 a 3.94 a
FM2 4.69 a 6.77 a 3.96 a
FM3 4.28 b 6.65 a 4.05 a
FM4 4.26 b 6.65 a 3.98 a
南粳5718
Nanjing 5718
0N 2.53 c 4.06 c 2.07 c
CFM 4.50 b 7.02 b 4.10 ab
FM1 5.31 a 7.19 a 4.16 a
FM2 5.29 a 7.27 a 4.21 a
FM3 4.69 b 7.24 a 4.25 a
FM4 4.66 b 7.25 a 4.21 a
2020 南粳9108
Nanjing 9108
0N 1.81 c 3.81 c 1.58 c
CFM 4.41 b 6.62 b 4.01 b
年份
Year
品种
Variety
处理
Treatment
拔节期
Jointing stage
抽穗期
Heading stage
成熟期
Maturity stage
FM1 4.98 a 6.62 b 4.09 b
FM2 4.96 a 6.79 b 4.11 b
FM3 4.52 b 6.97 a 4.35 a
FM4 4.50 b 6.96 a 4.33 a
南粳5718
Nanjing 5718
0N 2.88 c 4.14 c 2.21 c
CFM 4.87 b 7.12 b 4.26 b
FM1 5.28 a 7.12 b 4.27 b
FM2 5.26 a 7.25 b 4.28 b
FM3 4.98 b 7.47 a 4.46 a
FM4 5.00 b 7.46 a 4.45 a
方差分析Variance analysis Y ns ns ns
V ** ** **
T ** ** **
Y×V ns ns ns
Y×T ns ns ns
V×T ** ** **
Y×V×T ns ns ns

表5

侧深施肥不同施肥方式对水稻光合势的影响"

年份
Year
品种
Variety
处理
Treatment
播种期至拔节期
S-J
(×104 m2 d hm-2)
拔节期至抽穗期
J-H
(×104 m2 d hm-2)
抽穗期至成熟期
H-M
(×104 m2 d hm-2)
2019 南粳9108
Nanjing 9108
0N 55.83 c 88.23 d 172.98 d
CFM 138.55 b 174.01 c 342.01 c
FM1 160.13 a 190.15 a 357.59 a
FM2 156.78 a 188.72 a 356.02 a
FM3 142.99 b 179.95 b 359.85 b
FM4 142.73 b 179.73 b 355.96 b
南粳5718
Nanjing 5718
0N 84.55 c 108.45 d 203.11 d
CFM 150.24 b 189.86 c 370.95 c
FM1 176.95 a 205.62 a 380.09 a
年份
Year
品种
Variety
处理
Treatment
播种期至拔节期
S-J
(×104 m2 d hm-2)
拔节期至抽穗期
J-H
(×104 m2 d hm-2)
抽穗期至成熟期
H-M
(×104 m2 d hm-2)
FM2 177.63 a 206.88 a 381.55 a
FM3 156.87 b 197.01 b 385.70 b
FM4 155.68 b 196.33 b 383.45 b
2020 南粳9108
Nanjing 9108
0N 56.73 c 88.87 d 173.62 d
CFM 139.49 b 174.47 c 342.49 c
FM1 162.13 a 190.99 a 357.97 a
FM2 157.28 a 189.24 a 356.44 a
FM3 143.77 b 180.63 b 360.13 b
FM4 143.23 b 180.19 b 356.26 b
南粳5718
Nanjing 5718
0N 84.95 c 108.91 d 207.15 d
CFM 151.26 b 190.18 c 373.85 c
FM1 177.25 a 206.00 a 380.13 a
FM2 178.13 a 207.26 a 385.59 a
FM3 157.19 b 197.55 b 385.90 b
FM4 156.30 b 196.59 b 384.13 b
方差分析Variance analysis Y ns ns ns
V ** ** **
T ** ** **
Y×V ns ns ns
Y×T ns ns ns
V×T ** ** **
Y×V×T ns ns ns

表6

侧深施肥不同施肥方式对水稻干物质积累的影响"

年份
Year
品种
Variety
处理
Treatment
拔节期
Jointing stage
(t hm-2)
抽穗期
Heading stage
(t hm-2)
成熟期
Maturity stage
(t hm-2)
收获指数
Harvest index
(%)
2019 南粳9108
Nanjing 9108
0N 2.73 d 7.02 c 13.20 c 54.62 a
CFM 3.37 c 10.57 b 19.77 b 50.94 b
FM1 4.72 a 10.62 ab 18.67 b 50.62 b
FM2 4.70 a 11.63 a 20.13 ab 51.96 b
FM3 3.75 b 11.70 a 21.77 a 52.09 b
FM4 3.73 b 11.63 a 21.66 a 50.37 b
南粳5718
Nanjing 5718
0N 3.07 d 8.40 b 14.69 d 56.16 a
CFM 3.83 c 11.37 b 21.87 b 47.42 b
FM1 4.98 a 11.75 ab 20.60 c 49.13 b
FM2 4.93 a 12.19 a 21.61 b 48.36 b
FM3 4.41 b 12.56 a 23.10 a 48.66 b
FM4 4.41 b 12.52 a 23.04 a 48.18 b
2020 南粳9108
Nanjing 9108
0N 2.43 d 6.51 c 11.95 c 56.65 a
CFM 3.56 c 10.25 b 19.47 b 50.34 b
FM1 4.86 a 11.01 ab 19.26 b 51.40 b
FM2 4.89 a 11.34 a 20.23 ab 50.77 b
FM3 4.03 b 11.28 a 20.78 a 51.64 b
FM4 4.05 b 11.31 a 20.84 a 50.82 b
南粳5718
Nanjing 5718
0N 2.62 d 7.59 b 13.27 d 58.54 a
CFM 3.73 c 10.77 b 21.42 b 47.10 b
FM1 5.31 a 12.25 ab 20.70 c 49.18 b
FM2 5.33 a 12.82 a 22.11 ab 47.85 b
FM3 4.42 b 12.45 a 22.86 a 47.77 b
FM4 4.43 b 12.48 a 22.97 a 46.63 b
方差分析Variance analysis Y ns ns ns ns
V ns ** ** ns
T ** ** ** **
Y×V ns ns ns ns
Y×T ns ns ns ns
V×T ** ** ** *
Y×V×T ns ns ns ns

表7

侧深施肥不同施肥方式对水稻群体生长率的影响"

年份
Year
品种
Variety
处理
Treatment
播种期至拔节期
S-J
(g m -2 d-1)
拔节期至抽穗期
J-H
(g m -2 d-1)
抽穗期至成熟期
H-M
(g m -2 d-1)
2019 南粳9108
Nanjing 9108
0N 4.71 d 20.92 d 6.12 c
CFM 6.79 c 24.62 b 10.72 a
FM1 8.73 a 22.00 c 8.18 b
FM2 8.70 a 22.08 c 7.82 b
FM3 7.47 b 26.07 a 11.00 a
FM4 7.46 b 26.00 a 10.95 a
南粳5718
Nanjing 5718
0N 5.04 d 21.05 d 6.23 c
CFM 7.16 c 25.09 b 11.41 a
FM1 8.92 a 23.21 c 8.75 b
FM2 8.90 a 23.28 c 9.03 b
FM3 7.62 b 27.22 a 11.43 a
FM4 7.63 b 27.10 a 11.42 a
2020 南粳9108
Nanjing 9108
0N 4.85 d 21.00 d 6.18 c
CFM 6.87 c 24.70 b 10.78 a
FM1 8.77 a 22.02 c 8.24 b
FM2 8.74 a 22.14 c 7.88 b
FM3 7.51 b 26.15 a 11.02 a
FM4 7.44 b 26.02 a 10.99 a
南粳5718
Nanjing 5718
0N 5.08 d 21.17 d 6.27 c
CFM 7.20 c 25.15 b 11.45 a
FM1 8.98 a 23.27 c 8.85 b
FM2 8.92 a 23.34 c 9.09 b
FM3 7.64 b 27.28 a 11.47 a
FM4 7.67 b 27.14 a 11.48 a
方差分析Variance analysis Y ns ns ns
V ** ** **
T ** ** *
Y×V ns ns ns
Y×T ns ns ns
V×T ** * *
Y×V×T ns ns ns

表8

侧深施肥不同施肥方式对水稻氮素积累的影响"

年份
Year
品种
Variety
处理
Treatment
拔节期
Jointing stage
(×10-2 t hm-2)
抽穗期
Heading stage
(×10-2 t hm-2)
成熟期
Maturity stage
(×10-2 t hm-2)
2019 南粳9108
Nanjing 9108
0N 3.97 e 9.80 d 11.76 d
CFM 6.48 d 16.91 c 20.86 bc
FM1 10.54 ab 16.93 c 20.48 c
FM2 10.76 a 17.66 ab 21.40 b
FM3 7.67 c 18.17 a 22.53 a
FM4 7.55 c 17.90 ab 22.10 a
南粳5718
Nanjing 5718
0N 3.85 d 9.80 d 11.80 d
CFM 6.07 c 18.16 c 22.45 bc
FM1 10.46 a 18.58 c 22.34 c
FM2 10.55 a 18.93 ab 22.83 b
FM3 7.38 b 19.67 a 24.45 a
FM4 7.30 b 19.45 ab 24.01 a
2020 南粳9108
Nanjing 9108
0N 3.99 e 9.84 d 11.78 d
CFM 6.52 d 16.93 c 20.90 bc
FM1 10.58 ab 16.97 c 20.52 c
FM2 10.80 a 17.70 ab 21.42 b
FM3 7.69 c 18.21 a 22.55 a
FM4 7.59 c 17.94 ab 22.12 a
南粳5718
Nanjing 5718
0N 3.87 d 9.86 d 11.84 d
CFM 6.11 c 18.20 c 22.49 bc
FM1 10.50 a 18.64 c 22.38 c
年份
Year
品种
Variety
处理
Treatment
拔节期
Jointing stage
(×10-2 t hm-2)
抽穗期
Heading stage
(×10-2 t hm-2)
成熟期
Maturity stage
(×10-2 t hm-2)
FM2 10.61 a 18.97 ab 22.87 b
FM3 7.42 b 19.71 a 24.47 a
FM4 7.34 b 19.47 ab 24.05 a
方差分析Variance analysis Y ns ns ns
V ** ** **
T ** ** **
Y×V ns ns ns
Y×T ns ns ns
V×T ** ** **
Y×V×T ns ns ns

表9

侧深施肥不同施肥方式对水稻氮素吸收速率的影响"

年份
Year
品种
Variety
处理
Treatment
播种期至拔节期
S-J
拔节期至抽穗期
J-H
抽穗期至成熟期
H-M
2019 南粳9108
Nanjing 9108
0N 0.43 d 1.29 c 0.21 d
CFM 0.71 c 2.31 a 0.43 b
FM1 1.17 a 1.47 b 0.38 c
FM2 1.19 a 1.52 b 0.40 c
FM3 0.84 b 2.33 a 0.47 a
FM4 0.83 b 2.29 a 0.46 a
南粳5718
Nanjing 5718
0N 0.42 d 1.32 c 0.21 d
CFM 0.67 c 2.68 a 0.47 b
FM1 1.16 a 1.57 b 0.41 c
FM2 1.16 a 1.63 b 0.42 c
FM3 0.80 b 2.68 a 0.51 a
FM4 0.81 b 2.72 a 0.52 a
2020 南粳9108
Nanjing 9108
0N 0.45 d 1.31 c 0.23 d
CFM 0.73 c 2.33 a 0.45 b
FM1 1.17 a 1.51 b 0.42 c
FM2 1.21 a 1.54 b 0.42 c
年份
Year
品种
Variety
处理
Treatment
播种期至拔节期
S-J
拔节期至抽穗期
J-H
抽穗期至成熟期
H-M
南粳5718
Nanjing 5718
0N 0.44 d 1.34 c 0.23 d
FM3 0.86 b 2.35 a 0.49 a
FM4 0.85 b 2.31 a 0.48 a
CFM 0.69 c 2.70 a 0.49 b
FM1 1.18 a 1.59 b 0.43 c
FM2 1.20 a 1.65 b 0.44 c
FM3 0.82 b 2.72 a 0.53 a
FM4 0.83 b 2.74 a 0.54 a
方差分析Variance analysis Y ns ns ns
V ** ** **
T ** ** **
Y×V ns ns ns
Y×T ns ns ns
V×T ** ** **
Y×V×T ns ns ns

表10

侧深施肥不同施肥方式对水稻氮效率的影响"

年份
Year
品种
Variety
处理Treatment 氮素农学利用率
N agronomic
efficiency
(kg kg-1)
氮素生理
利用率
N physiological
efficiency
(kg kg-1)
氮素吸收
利用率
N recovery
efficiency
(%)
氮素谷物
生产效率
N grain
production efficiency
(kg kg-1)
氮素干物质生产效率
N dry matter production efficiency
(kg kg-1)
百千克籽粒
需氮量
N requirement
for 100-kg grain
(kg)
氮素偏
生产力
N partial factor
productivity
(kg kg-1)
2019 南粳9108
Nanjing 9108
0N 61.31 a 107.51 a 1.63 b
CFM 9.93 b 31.43 b 30.33 c 48.27 b 99.36 b 2.07 a 33.57 d
FM1 7.47 c 25.69 c 29.07 c 46.14 c 93.07 c 2.17 a 31.50 e
FM2 10.83 b 33.71 b 32.13 b 48.88 b 88.79 c 2.05 a 34.87 c
FM3 13.77 a 38.35 a 35.90 a 50.33 b 99.68 b 1.99 a 37.80 a
FM4 12.33 a 35.78 a 34.47 a 49.37 b 102.49 ab 2.03 a 36.37 b
南粳5718
Nanjing 5718
0N 69.92 a 104.08 a 1.43 b
CFM 8.07 b 22.91 b 35.50 c 46.19 b 98.74 b 2.16 a 34.57 b
FM1 7.23 c 20.74 c 35.13 c 44.30 c 95.26 c 2.21 a 33.73 c
FM2 8.33 b 24.95 b 36.77 b 45.77 b 101.99 a 2.18 a 34.83 b
FM3 10.97 a 27.64 a 42.17 a 45.97 b 99.63 ab 2.18 a 37.47 a
FM4 10.50 a 27.34 a 40.70 a 46.23 b 98.78 b 2.16 a 37.00 a
2020 南粳9108
Nanjing 9108
0N 57.47 a 105.45 a 1.74 b
CFM 11.10 b 33.22 b 30.40 c 46.89 b 99.12 b 2.13 a 33.67 b
FM1 10.43 c 25.81 c 29.13 c 48.25 c 92.63 c 2.07 a 31.00 c
FM2 11.67 b 34.31 b 32.13 b 45.95 b 88.23 c 2.09 a 34.23 b
FM3 13.20 a 36.77 a 35.90 a 47.58 b 99.62 b 2.10 a 35.77 a
FM4 12.73a 36.94 a 34.47 a 47.88 b 100.45 ab 2.09 a 35.30 a
南粳5718
Nanjing 5718
0N 65.63 a 101.26 a 1.52 b
CFM 9.73 b 23.78 b 35.50 c 44.86 b 97.56 b 2.23 a 33.63 b
FM1 9.03 c 21.87 c 35.13 c 42.49 c 90.54 c 2.20 a 31.93 c
FM2 10.37 b 25.48 b 37.77 b 46.26 b 100.25 a 2.16 a 34.27 b
FM3 11.50 a 28.94 a 42.10 a 44.63 b 98.53 ab 2.24 a 36.40 a
FM4 10.80 a 28.08 a 40.70 a 44.53 b 96.52 b 2.25 a 35.70 a
方差分析
Variance analysis
Y ns ns ns ns ns ns ns
V ** ** ** ** ns ns **
T ** ** ** ** ** ns **
Y×V ns ns ns ns ns ns ns
Y×T ns ns ns ns ns ns ns
V×T ** ** ** ** ** ns **
Y×V×T ns ns ns ns ns ns ns
[1] 朱兆良, 金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013, 19: 259-273.
Zhu Z L, Jin J Y. Fertilizer use and food security in China. Plant Nutur Fert Sci, 2013, 19: 259-273 (in Chinese with English abstract).
[2] 彭少兵, 黄见良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森, Buresh R, Witt C. 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002, 35: 1095-1103.
Peng S B, Huang J L, Zhong X H, Yang J C, Wang G H, Zou Y B, Zhang F S, Zhu Q S, Buresh R, Witt C. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Sci Agric Sin, 2002, 35: 1095-1103 (in Chinese with English abstract).
[3] 张卫峰, 马林, 黄高强, 武良, 陈新平, 张福锁. 中国氮肥发展、贡献和挑战. 中国农业科学, 2013, 46: 3161-3171.
Zhang W F, Ma L, Huang G Q, Wu L, Chen X P, Zhang F S. The development and contribution of nitrogenous fertilizer in China and challenges faced by the country. Sci Agric Sin, 2013, 46: 3161-3171 (in Chinese with English abstract).
[4] Zhao X, Zhou Y, Min J, Wang S Q, Shi W M, Xing G X. Nitrogen runoff dominates water nitrogen pollution from rice-wheat rotation in the Taihu Lake region of China. Agric Ecosyst Environ, 2012, 156: 1-11.
doi: 10.1016/j.agee.2012.04.024
[5] 汪军, 王德建, 张刚. 太湖地区稻麦轮作体系下秸秆还田配施氮肥对水稻产量及经济效益的影响. 中国生态农业学报, 2011, 19: 265-270.
Wang J, Wang J D, Zhang G. Effects of different N-fertilizer rates with straw incorporation on rice yield and economic benefit of rice-wheat rotation system in Taihu Lake region. Chin J Eco-Agric, 2011, 19: 265-270 (in Chinese with English abstract).
[6] Cui Z, Zhang H, Chen X. Pursuing sustainable productivity with millions of smallholder farmers. Nature, 2018, 555: 363-366.
doi: 10.1038/nature25785
[7] 钟雪梅, 黄铁平, 彭建伟, 卢文璐, 康兴蓉, 孙梦飞, 宋思明, 唐启源, 陈裕新, 湛冬至, 周旋. 机插同步一次性精量施肥对双季稻养分累积及利用率的影响. 中国水稻科学, 2019, 33: 436-446.
Zhong X M, Huang T P, Peng J W, Lu W L, Kang X R, Sun M F, Song S M, Tang Q Y, Chen Y X, Zhan D Z, Zhou X. Effects of machine-transplanting synchronized with one-time precision fertilization on nutrient uptake and use efficiency of double cropping rice. Chin J Rice Sci, 2019, 33: 436-446 (in Chinese with English abstract).
[8] 张爱平, 刘汝亮, 杨世琦, 张晴雯, 李友宏, 杨正礼. 基于缓释肥的侧条施肥技术对水稻产量和氮素流失的影响. 农业环境科学学报, 2012, 31: 555-562.
Zhang A P, Liu R L, Yang S Q, Zhang Q W, Li Y H, Yang Z L. Effect of side bar fertilization technology based on slow-release fertilizer on rice yield and nitrogen losses. Agron-Environ Sci, 2012, 31: 555-562 (in Chinese with English abstract).
[9] 陈立才, 李艳大, 秦战强, 黄俊宝, 吴罗发, 王康军, 周明. 侧深施用控释肥对机插中稻生长、产量及氮肥农学效率的影响. 安徽农业大学学报, 2020, 47: 839-844.
Chen L C, Li Y D, Qin Z Q, Huang B J, Wu L F, Wang K J, Zhou M. Effects of side deep apply controlled release fertilizer on growth, yield and nitrogen agronomic efficiency in transplanted middle-season rice. J Anhui Agric Univ, 2020, 47: 839-844 (in Chinese with English abstract).
[10] 马昕, 杨艳明, 刘智蕾, 孙彦坤, 于彩莲, 彭显龙. 机械侧深施控释掺混肥提高寒地水稻的产量和效益. 植物营养与肥料学报, 2017, 23: 1095-1103.
Ma X, Yang Y M, Liu Z L, Sun Y K, Yu C L, Peng X L. Yield increasing effect of mechanical topdressing of polymer-coated urea mixed with compound fertilizer in cold area rice. Plant Nutr Fert Sci, 2017, 23: 1095-1103 (in Chinese with English abstract).
[11] 朱从桦, 张玉屏, 向镜, 张义凯, 武辉, 王亚梁, 朱德峰, 陈惠哲. 侧深施氮对机插水稻产量形成及氮素利用的影响. 中国农业科学, 2019, 52: 4228-4239.
Zhu C H, Zhang Y P, Xiang J, Zhang Y K, Wu H, Wang Y L, Zhu D F, Chen H Z. Effects of side deep fertilization on yield formation and nitrogen utilization of mechanized transplanting rice. Sci Agric Sin, 2019, 52: 4228-4239 (in Chinese with English abstract).
[12] 赵海成, 杜春影, 魏媛媛, 陈立强, 赫臣, 王文玉, 芦佳浩, 李红宇, 吕艳东, 郑桂萍. 施肥方式和氮肥运筹对寒地水稻产量与品质的影响. 中国土壤与肥料, 2019, (3):76-86.
Zhao H C, Du C Y, Wei Y Y, Chen L Q, He C, Wang W Y, Lu H J, Li H Y, Lyu Y D, Zheng G P. Effects of fertilization methods and nitrogen management on yield and quality of rice in cold region. China Soils Fert, 2019, (3):76-86 (in Chinese with English abstract).
[13] 朱从桦, 陈惠哲, 张玉屏, 向镜, 张义凯, 易子豪, 朱德峰. 机械侧深施肥对机插早稻产量及氮肥利用率的影响. 中国稻米, 2019, 25(1):40-43.
Zhu C H, Chen H Z, Zhang Y P, Xiang J, Zhang Y K, Yi Z H, Zhu D F. Effects of mechanical lateral deep fertilization on yield and nitrogen use efficiency of machine transplanted early rice. Chin Rice, 2019, 25(1):40-43 (in Chinese).
[14] 王晓丹, 王亚梁, 宋文健, 张玉屏, 向镜, 张义凯, 祁军, 陈惠哲. 施肥方式对机插早稻产量形成的影响. 中国稻米, 2020, 26(4):77-80.
Wang X D, Wang Y L, Song W J, Zhang Y P, Xiang J, Zhang Y K, Qi J, Chen H Z. Effects of fertilization methods on yield formation of early rice by machine transplanting. Chin Rice, 2020, 26(4):77-80 (in Chinese).
[15] 季雅岚, 吴文革, 孙雪原, 许有尊, 周永进, 习敏, 何超波, 蔡海涛. 机插秧同步侧深施肥技术对水稻产量及肥料利用率的影响. 中国稻米, 2019, 25(3):101-104.
Ji Y L, Wu W G, Sun X Y, Xu Y Z, Zhou Y J, Xi M, He C B, Cai H T. Effect of synchronous side deep fertilization on rice yield and fertilizer utilization efficiency. Chin Rice, 2019, 25(3):101-104 (in Chinese).
[16] Pan S, Wen X, Wang Z. Benefits of mechanized deep placement of nitrogen fertilizer in direct-seeded rice in south China. Field Crops Res, 2017, 203: 139-149.
doi: 10.1016/j.fcr.2016.12.011
[17] 怀燕, 陈照明, 张耿苗, 姜铭北, 许剑锋, 王强. 水稻侧深施肥技术的氮肥减施效应. 浙江大学学报(农业与生命科学版), 2020, 46: 217-224.
Huai Y, Chen Z M, Zhang G M, Jiang M B, Xu J F, Wang Q. Nitrogen reduction effect of side-deep placement of fertilizer on the rice production. J Zhejiang Univ (Agric Life Sci Edn), 2020, 46: 217-224 (in Chinese with English abstract).
[18] Xie X B, Shan S L, Wang Y, Cao F B, Chen J N, Huang M, Zou Y B. Dense planting with reducing nitrogen rate increased grain yield and nitrogen use efficiency in two hybrid rice varieties across two light conditions. Field Crops Res, 2019, 236: 24-32.
doi: 10.1016/j.fcr.2019.03.010
[19] 张洪程, 吴桂成, 戴其根, 霍中洋, 许轲, 高辉, 魏海燕, 端木银熙, 孙菊英, 赵品恒, 沙安勤, 周有炎, 李德剑, 肖跃成, 王宝金, 吴爱国. 粳型杂交水稻超高产形成规律与栽培途径的探讨. 杂交水稻, 2010, 25(S1):346-353.
Zhang H C, Wu G C, Dai Q G, Huo Z Y, Xu K, Gao H, Wei H Y, Duan-Mu Y X, Sun J Y, Zhao P H, Sha A Q, Zhou Y Y, Li D J, Xiao Y C, Wang B C, Wu A G,. Study on the formation law and cultivation way of super high yield of japonica hybrid rice . Hybrid Rice, 2010, 25(S1):346-353 (in Chinese).
[20] 杨建昌, 杜永, 吴长付, 刘立军, 王志琴, 朱庆森. 超高产粳型水稻生长发育特性的研究. 中国农业科学, 2006, 39: 1336-1345.
Yang J C, Du Y, Wu C F, Liu L J, Wang Z Q, Zhu Q S. Growth and development characteristics of super-high-yielding mid-season japonica rice. Sci Agric Sin, 2006, 39: 1336-1345 (in Chinese with English abstract).
[21] 胡群, 夏敏, 张洪程, 曹利强, 郭保卫, 魏海燕, 陈厚存, 戴其根, 霍中洋, 许轲, 林昌明, 韩宝富. 氮肥运筹对钵苗机插优质食味水稻产量及氮素吸收利用的影响. 作物学报, 2016, 42: 1666-1676.
Hu Q, Xia M, Zhang H C, Cao L Q, Guo B W, Wei H Y, Chen H C, Dai Q G, Huo Z Y, Xu K, Lin C M, Han B F. Effect of nitrogen application regime on yield, nitrogen absorption and utilization of mechanical pot-seedling transplanting rice with good taste quality. Acta Agron Sin, 2016, 42: 1666-1676 (in Chinese with English abstract).
[22] 朱从桦, 李旭毅, 陈惠哲, 武辉, 欧阳裕元, 余俊奇, 黄豹明, 罗粞. 侧深施氮对机械直播水稻产量及氮素利用的影响. 核农学报, 2020, 34: 2051-2058.
Zhu C Y, Li Y X, Chen H Z, Wu H, Ouyang Y Y, Yu J Q, Huang B M, Luo X. Effects of lateral and deep nitrogen application on yield and nitrogen utilization of mechanical direct seeding rice. Acta Agric Nucl Sin, 2020, 34: 2051-2058 (in Chinese with English abstract).
[23] Liu T Q, Fan D J, Zhang X X, Chen J, Li C F, Cao C G. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crop Res, 2015, 184: 80-90.
doi: 10.1016/j.fcr.2015.09.011
[24] 许轲, 张军, 张洪程, 花劲, 郭保卫, 霍中洋, 戴其根, 魏海燕, 高辉, 周培建, 程飞虎, 黄大山, 陈忠平, 陈国梁. 双季晚粳稻氮肥精确运筹研究. 植物营养与肥料学报, 2014, 20: 1063-1075.
Xu K, Zhang J, Zhang H C, Hua J, Guo B W, Huo Z Y, Dai Q G, Wei H Y, Gao H, Zhou P J, Cheng F H, Huang D S, Chen Z P, Chen G L. Nitrogen managements of late japonica rice in double-cropping rice area. Plant Nutur Fert Sci, 2014, 20: 1063-1075 (in Chinese with English abstract).
[25] 丁艳锋, 赵长华, 王强盛. 穗肥施用时期对水稻氮素利用及产量的影响. 南京农业大学学报, 2003, 26(4):5-8.
Ding Y F, Zhao C H, Wang Q S. Effect of application stage of panicle fertilizer on rice grain yield and the utilization of nitrogen. J Nanjing Agric Univ, 2003, 26(4):5-8 (in Chinese with English abstract).
[26] 万靓军, 张洪程, 霍中洋, 林忠成, 戴其根, 许轲, 张军. 氮肥运筹对超级杂交粳稻产量、品质及氮素利用率的影响. 作物学报, 2007, 33: 175-182.
Wan L J, Zhang H C, Huo Z Y, Lin Z C, Dai Q G, Xu K, Zhang J. Effects of nitrogen application regimes on yield, quality, and nitrogen use efficiency of super japonica hybrid rice. Acta Agron Sin, 2007, 33: 175-182 (in Chinese with English abstract).
[27] Hu Q, Jiang W Q, Qiu S, Xing Z P, Hu Y J, Guo B W, Liu G D, Gao H, Zhang H C, Wei H Y. Effect of wide-narrow row arrangement in mechanical pot-seedling transplanting and plant density on yield formation and grain quality of japonica rice. J Integr Agric, 2020, 19: 1197-1214.
doi: 10.1016/S2095-3119(19)62800-5
[28] Hao Z, Chao Y, Kong X S, Hou D P, Gu J F, Liu L J, Wang Z Q, Yang J C. Progressive integrative crop managements increase grain yield, nitrogen use efficiency and irrigation water productivity in rice. Field Crops Res, 2018, 215: 1-11.
doi: 10.1016/j.fcr.2017.09.034
[29] Gu J F, Yin X Y, Stomph T, Wang H Q, Struik P C. Physiological basis of genetic variation in leaf photosynthesis among rice (Oryza sativa L.) introgression lines under drought and well-watered conditions. J Exp Bot, 2012, 63: 5137-5153.
doi: 10.1093/jxb/ers170
[30] 程建平, 赵锋, 曾山, 陈旭阳, 王乐云, 吴金元, 徐双前, 游爱兵, 张旅峰. 机械旱直播直播密度对水稻群体光合和产量形成的影响. 湖北农业科学, 2012, 51: 5275-5278.
Cheng J P, Zhao F, Zeng S, Chen X Y, Wang L Y, Wu J Y, Xu S Q, You A B, Zhang L F. Effect of mechanical dry direct sowing seeding density on photosynthesis and yield formation of rice population. Hubei Agric Sci, 2012, 51: 5275-5278 (in Chinese with English abstract).
[31] 苏祖芳, 郭宏文, 李永丰, 张洪程, 张海泉. 水稻群体叶面积动态类型的研究. 中国农业科学, 1994, 27(4):23-30.
Su Z F, Guo H W, Li Y F, Zhang H C, Zhang H Q. Study on dynamic types of leaf area in rice population. Sci Agric Sin, 1994, 27(4):23-30 (in Chinese with English abstract).
[32] 凌启鸿. 作物群体质量. 上海: 上海科学出版社, 2000. pp 42-16.
Ling Q H. Crop Population Quality. Shanghai: Shanghai Science and Technology Press, 2000. pp 42-216(in Chinese).
[33] 邹应斌, 黄见良, 屠乃美, 李合松, 黄升平, 张杨珠. “旺壮重”栽培对双季杂交稻产量形成及生理特性的影响. 作物学报, 2001, 27: 343-350.
Zou Y B, Huang J L, Tu N M, Li H S, Huang S P, Zhang Y Z. Effects of the VSW cultural method on yield formation and physiological characteristics in double cropping hybrid rice. Acta Agron Sin, 2001, 27: 343-350 (in Chinese with English abstract).
[34] 胡雅杰, 邢志鹏, 龚金龙, 刘国涛, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫, 沙安勤, 周有炎, 罗学超, 刘国林. 钵苗机插水稻群体动态特征及高产形成机制的探讨. 中国农业科学, 2014, 47: 865-879.
Hu Y J, Xing Z P, Gong J L, Liu G T, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W, Sha A Q, Zhou Y Y, Luo X C, Liu G L. Study on population characteristics and formation mechanisms for high yield of pot-seedling mechanical transplanting rice. Sci Agric Sin, 2014, 47: 865-879 (in Chinese with English abstract).
[35] 赵红玉, 徐寿军, 杨成林, 王丽妍. 侧深施肥技术对寒地水稻生长及产量形成的影响. 内蒙古民族大学学报(自然科学版), 2017, 32: 347-352.
Zhao H Y, Xu S J, Yang C L, Wang L Y. Effects of side deep fertilizing on growth and yield of Rice in cold regions. J Inner Mongolia Agric Univ (Nat Sci Edn), 2017, 32: 347-352 (in Chinese with English abstract).
[36] 叶世超, 林忠成, 戴其根, 贾玉书, 顾海燕, 陈京都, 许露生, 吴福观, 张洪程, 霍中洋, 许轲, 魏海燕. 施氮量对稻季氨挥发特点与氮素利用的影响. 中国水稻科学, 2011, 25: 71-78.
Ye S C, Lin Z C, Dai Q G, Jia Y S, Gu H Y, Chen J D, Xu L S, Wu F G, Zhang H C, Huo Z Y, Xu K, Wei H Y. Effects of nitrogen application rate on ammonia volatilization and nitrogen utilization in rice growing season. Chin J Rice Sci, 2011, 25: 71-78 (in Chinese with English abstract).
[37] 丁艳锋, 刘胜环, 王绍华, 王强盛, 黄丕生, 凌启鸿. 氮素基、蘖肥用量对水稻氮素吸收利用的影响. 作物学报, 2004, 30: 739-744.
Ding Y F, Liu S H, Wang S H, Wang Q S, Huang P S, Ling Q H. Effects of the amount of basic and tillering nitrogen applied on absorption and utilization of nitrogen in rice. Acta Agron Sin, 2004, 30: 739-744 (in Chinese with English abstract).
[38] Franciso R, Babcock B A, Hayes D J. Nitrous oxide emission reductions from cutting excessive nitrogen fertilizer applications. Clim Change, 2015, 132: 353-367.
doi: 10.1007/s10584-015-1426-y
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[10] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[15] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!