作物学报 ›› 2022, Vol. 48 ›› Issue (2): 353-366.doi: 10.3724/SP.J.1006.2022.14006
DONG Yan-Kun1(), HUANG Ding-Quan2, GAO Zhen2, CHEN Xu2,*()
摘要:
植物激素生长素在植物的生长发育过程中发挥了至关重要的作用, 它的稳态和浓度梯度建立控制了几乎所有器官的极性建成。生长素在特定细胞中合成、运输、感知以及代谢降解建立了符合器官发育的生长素浓度梯度。在豆科植物中, 根与土壤微生物互作形成了根瘤这一特殊的器官, 进行生物固氮。然而, 生长素稳态控制生物固氮的功能还未知。拟南芥中的研究表明, PIN-Like (PILS)蛋白协助调节的细胞内生长素稳态, 并介导下游细胞核内的生长素信号传递。本研究以大豆作为研究模型, 在大豆基因组中鉴定获得19个PILS家族基因(GmPILS), 不均匀分布于大豆10条染色体上。GmPILS在大豆9种组织部位中表现出多种表达模式, 且具有明显的组织表达特异性。GmPILS1e和GmPILS1f在根瘤菌体区域富集表达, 使用人工微RNA沉默(artificial microRNA interference, amiRNAi)下调GmPILS1e和GmPILS1f在根瘤的表达, 导致根瘤的固氮酶活性上升, 而过量表达GmPILS1f导致根瘤的固氮酶活性下降, 因此GmPILS1e和GmPILS1f可能参与大豆固氮酶活性的调节。这些结果为进一步解析大豆GmPILS家族基因的功能和作用机制奠定了基础, 同时也为结瘤固氮在农业育种中的应用提供了有价值的基因资源。
[1] | Sauer M, Kleine-Vehn J. PIN-FORMED and PIN-LIKES auxin transport facilitators. Development, 2019, 146: dev168088. |
[2] | Friml J, Palme K. Polar auxin transport—old questions and new concepts? Plant Mol Biol, 2002,49:273-284. |
[3] | Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 2003,115:591-602. |
[4] | Bohn-Courseau I. Auxin: a major regulator of organogenesis. C R Biol, 2010,333:290-296. |
[5] | Overvoorde P, Fukaki H, Beeckman T. Auxin control of root development. Cold Spring Harb Perspect Biol, 2010,2:a001537. |
[6] | Olatunji D, Geelen D, Verstraeten I. Control of endogenous auxin levels in plant root development. Int J Mol Sci, 2017,18:2587. |
[7] | Korasick D A, Enders T A, Strader L C. Auxin biosynthesis and storage forms. J Exp Bot, 2013,64:2541-2555. |
[8] | Band L R, Wells D M, Fozard J A, Ghetiu T, French A P, Pound M P, Wilson M H, Yu L, Li W, Hijazi H I, Oh J, Pearce S P, Perez-Amador M A, Yun J, Kramer E, Alonso J M, Godin C, Vernoux T, Hodgman T C, Pridmore T P, Swarup R, King J R, Bennett M J. Systems analysis of auxin transport in the Arabidopsis root apex. Plant Cell, 2014,26:862-875. |
[9] | Strader L C, Zhao Y. Auxin perception and downstream events. Curr Opin Plant Biol, 2016,33:8-14. |
[10] | Du Y, Scheres B. Lateral root formation and the multiple roles of auxin. J Exp Bot, 2018,69:155-167. |
[11] | Lareen A, Burton F, Schäfer P. Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol, 2016,90:575-587. |
[12] | Lagunas B, Schäfer P, Gifford M L. Housing helpful invaders: the evolutionary and molecular architecture underlying plant root-mutualist microbe interactions. J Exp Bot, 2015,66:2177-2186. |
[13] | Nishida H, Suzaki T. Nitrate-mediated control of root nodule symbiosis. Curr Opin Plant Biol, 2018,44:129-136. |
[14] | Oldroyd G E, Murray J D, Poole P S, Downie J A. The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet, 2011,45:119-144. |
[15] | Suzaki T, Yoro E, Kawaguchi M. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. Int Rev Cell Mol Biol, 2015,316:111-158. |
[16] | Salvagiotti F, Cassman K G, Specht J E, Walters D T, Weiss A, Dobermann A. Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review. Field Crops Res, 2008,108:1-13. |
[17] | Breakspear A, Liu C, Roy S, Stacey N, Rogers C, Trick M, Morieri G, Mysore K S, Wen J, Oldroyd G E, Downie J A, Murray J D. The root hair “infectome” of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infection. Plant Cell, 2014,26:4680-4701. |
[18] | Van Noorden G E, Kerim T, Goffard N, Wiblin R, Pellerone F I, Rolfe B G, Mathesius U. Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti. Plant Physiol, 2007,144:1115-1131. |
[19] | Takanashi K, Sugiyama A, Yazaki K. Involvement of auxin distribution in root nodule development of Lotus japonicus. Planta, 2011,234:73-81. |
[20] | Suzaki T, Yano K, Ito M, Umehara Y, Suganuma N, Kawaguchi M. Positive and negative regulation of cortical cell division during root nodule development in Lotus japonicus is accompanied by auxin response. Development, 2012,139:3997-4006. |
[21] | Hirsch A M, Bhuvaneswari T V, Torrey J G, Bisseling T. Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc Natl Acad Sci USA, 1989,86:1244-1248. |
[22] | Rightmyer A P, Long S R. Pseudonodule formation by wild-type and symbiotic mutant Medicago truncatula in response to auxin transport inhibitors. Mol Plant Microbe Interact, 2011,24:1372-1384. |
[23] | Wang Y, Yang W, Zuo Y, Zhu L, Hastwell A H, Chen L, Tian Y, Su C, Ferguson B J, Li X. GmYUC2a mediates auxin biosynthesis during root development and nodulation in soybean. J Exp Bot, 2019,70:3165-3176. |
[24] | Roy S, Robson F, Lilley J, Liu C W, Cheng X, Wen J, Walker S, Sun J, Cousins D, Bone C, Bennett M J, Downie J A, Swarup R, Oldroyd G, Murray J D. MtLAX2, a functional homologue of the Arabidopsis auxin influx transporter AUX1, is required for nodule organogenesis. Plant Physiol, 2017,174:326-338. |
[25] | Kohlen W, Ng J L P, Deinum E E, Mathesius U. Auxin transport, metabolism, and signalling during nodule initiation: indeterminate and determinate nodules. J Exp Bot, 2018,69:229-244. |
[26] | Liu H, Zhang C, Yang J, Yu N, Wang E. Hormone modulation of legume-rhizobial symbiosis. J Integr Plant Biol, 2018,60:632-648. |
[27] | Heckmann A B, Sandal N, Bek A S, Madsen L H, Jurkiewicz A, Nielsen M W, Tirichine L, Stougaard J. Cytokinin induction of root nodule primordia in Lotus japonicus is regulated by a mechanism operating in the root cortex. Mol Plant Microbe Interact, 2011,24:1385-1395. |
[28] | Peláez-Vico M A, Bernabéu-Roda L, Kohlen W, Soto M J, López-Ráez J A. Strigolactones in the Rhizobium-legume symbiosis: stimulatory effect on bacterial surface motility and down-regulation of their levels in nodulated plants. Plant Sci, 2016,245:119-127. |
[29] | Buhian W P, Bensmihen S. Mini-review: nod factor regulation of phytohormone signaling and homeostasis during rhizobia-legume symbiosis. Front Plant Sci, 2018,9:1247. |
[30] | Ferguson B J, Mathesius U. Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol, 2014,40:770-790. |
[31] | Friml J. Auxin transport—shaping the plant. Curr Opin Plant Biol, 2003,6:7-12. |
[32] | Barbez E, Kubes M, Rolcik J, Beziat C, Pencik A, Wang B, Rosquete M R, Zhu J, Dobrev P I, Lee Y, Zazimalova E, Petrasek J, Geisler M, Friml J, Kleine-Vehn J. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature, 2012,485:119-122. |
[33] | Feraru E, Feraru M I, Barbez E, Waidmann S, Sun L, Gaidora A, Kleine-Vehn J. PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2019,116:3893-3898. |
[34] | Beziat C, Barbez E, Feraru M I, Lucyshyn D, Kleine-Vehn J. Light triggers PILS-dependent reduction in nuclear auxin signalling for growth transition. Nat Plants, 2017,3:17105. |
[35] | Feraru E, Vosolsobe S, Feraru M I, Petrasek J, Kleine-Vehn J. Evolution and structural diversification of PILS putative auxin carriers in plants. Front Plant Sci, 2012,3:227. |
[36] | 叶梅霞, 刘军梅, 李昊, 崔东清, 王静澄, 张志毅, 安新民. amiRNAi-实现高效稳定的特异基因沉默新方法. 中国生物工程杂志, 2010,30(8):118-125. |
Ye M X, Liu J M, Li H, Cui D Q, Wang J C, Zhang Z Y, An X M,. amiRNAi: a new approach for highly specific and stable gene silencing. China Biotechnol, 2010,30(8):118-25 (in Chinese with English abstract). | |
[37] | Kereszt A, Li D, Indrasumunar A, Nguyen C D, Nontachaiyapoom S, Kinkema M, Gresshoff P M. Agrobacterium rhizogenes- mediated transformation of soybean to study root biology. Nat Protoc, 2007,2:948-952. |
[38] | Huang D, Sun Y, Ma Z, Ke M, Cui Y, Chen Z, Chen C, Ji C, Tran T M, Yang L, Lam S M, Han Y, Shu G, Friml J, Miao Y, Jiang L, Chen X. Salicylic acid-mediated plasmodesmal closure via remorin-dependent lipid organization. Proc Natl Acad Sci USA, 2019,116:21274-21284. |
[39] | David K A, Apte S K, Banerji A, Thomas J. Acetylene reduction assay for nitrogenase activity: gas chromatographic determination of ethylene per sample in less than one minute. Appl Environ Microbiol, 1980,39:1078-1080. |
[40] | Li X, Zheng J, Yang Y, Liao H. INCREASING NODULE SIZE1 expression is required for normal rhizobial symbiosis and nodule development. Plant Physiol, 2018,178:1233-1248. |
[41] | 王益军, 吕燕萍, 谢秦, 邓德祥, 卞云龙. 高粱全基因组生长素原初响应基因Aux/IAA的序列特征分析. 作物学报, 2010,36:688-694. |
Wang Y J, Lyu Y P, Xie Q, Deng D X, Bian Y L. Whole-genome sequence characterization of primary auxin-responsive Aux/IAA gene family in Sorghum (Sorghum bicolor L.). Acta Agron Sin, 2010,36:688-694 (in Chinese with English abstract). | |
[42] | Dubrovsky J G, Sauer M, Napsucialy-Mendivil S, Ivanchenko M G, Friml J, Shishkova S, Celenza J, Benková E. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci USA, 2008,105:8790-8794. |
[43] | Krupinski P, Jönsson H. Modeling auxin-regulated development. Cold Spring Harb Perspect Biol, 2010,2:a001560. |
[44] | Mohanta T K, Mohanta N, Bae H. Identification and expression analysis of PIN-Like (PILS) gene family of rice treated with auxin and cytokinin. Genes (Basel), 2015,6:622-640. |
[45] | Laxmi A, Pan J, Morsy M, Chen R. Light plays an essential role in intracellular distribution of auxin efflux carrier PIN2 in Arabidopsis thaliana. PLoS One, 2008,3:e1510. |
[46] | Halliday K J, Martínez-García J F, Josse E M. Integration of light and auxin signaling. Cold Spring Harb Perspect Biol, 2009,1:a001586. |
[47] | Leyser O. Dynamic integration of auxin transport and signalling. Curr Biol, 2006,16:R424-433. |
[48] | Muday G K, Murphy A S. An emerging model of auxin transport regulation. Plant Cell, 2002,14:293-299. |
[49] | Zazímalová E, Murphy A S, Yang H, Hoyerová K, Hosek P. Auxin transporters—why so many? Cold Spring Harb Perspect Biol, 2010,2:a001552. |
[50] | Petrásek J, Friml J. Auxin transport routes in plant development. Development, 2009,136:2675-2688. |
[51] | Alemneh A A, Zhou Y, Ryder M H, Denton M D. Mechanisms in plant growth-promoting rhizobacteria that enhance legume- rhizobial symbioses. J Appl Microbiol, 2020,129:1133-1156. |
[52] | Hasan S A, Hayat S, Ali B, Ahmad A. A comparative effect of IAA and 4-Cl-IAA on growth, nodulation and nitrogen fixation in Vigna radiate(L.) Wilczek. Acta Physiol Plant, 2008,30:35-41. |
[53] | Kaneshiro T, Kwolek W F. Stimulated nodulation of soybeans by Rhizobium japonicum mutant (B-14075) that catabolizes the conversion of tryptophan to indol-3yl-acetic acid. Plant Sci, 1985,42:141-146. |
[54] | Eli Y, Yaacov O, Amos D. Possible mode of action of Azospirillum brasilense strain Cd on the root morphology and nodule formation in burr medic(Medicago polymorpha). Can J Microbiol, 1990,36:10-14. |
[55] | Chakrabarti J, Chatterjee S, Ghosh S, Chatterjee N C, Dutta S. Synergism of VAM and Rhizobium on production and metabolism of IAA in roots and root nodules of Vigna mungo. Curr Microbiol, 2010,61:203-209. |
[56] | Ghosh P K, Saha P, Mayilraj S, Maiti T K. Role of IAA metabolizing enzymes on production of IAA in root, nodule of Cajanus cajan and its PGP Rhizobium sp. Biocatal Agric Biotechnol, 2013,2:234-239. |
[57] | Hunter W J. Influence of 5-methyltryptophan-resistant Bradyrhizobium japonicum on soybean root nodule indole-3-acetic acid content. Appl Environ Microbiol, 1987,53:1051-1055. |
[58] | Kretovich V L, Alekseeva I I, Tsivina N Z. Content of beta-indolylacetic in root nodules and roots of lupine. Sov Plant Physiol, 1972,19:421-424. |
[59] | Hunter W J. Indole-3-acetic acid production by bacteroids from soybean root nodules. Physiol Plant, 2010,76:31-36. |
[60] | Defez R, Andreozzi A, Dickinson M, Charlton A, Tadini L, Pesaresi P, Bianco C. Improved drought stress response in alfalfa plants nodulated by an IAA over-producing Rhizobium strain. Front Microbiol, 2017,8:2466. |
[61] | Defez R, Andreozzi A, Romano S, Pocsfalvi G, Fiume I, Esposito R, Angelini C, Bianco C. Bacterial IAA-delivery into Medicago root nodules triggers a balanced stimulation of C and N metabolism leading to a biomass increase. Microorganisms, 2019,7:403. |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[3] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
[4] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[5] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[6] | 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209. |
[7] | 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800. |
[8] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[9] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[10] | 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596. |
[11] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[12] | 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537. |
[13] | 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702. |
[14] | 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752. |
[15] | 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790. |
|