欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (2): 353-366.doi: 10.3724/SP.J.1006.2022.14006

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能

董衍坤1(), 黄定全2, 高震2, 陈栩2,*()   

  1. 1福建农林大学资源与环境学院, 福建福州 350002
    2福建农林大学海峡联合研究院园艺植物生物学及代谢组学研究中心, 福建福州350002
  • 收稿日期:2021-01-11 接受日期:2021-04-26 出版日期:2022-02-12 网络出版日期:2021-05-18
  • 通讯作者: 陈栩
  • 作者简介:E-mail: dongyk1124@163.com
  • 基金资助:
    本研究由国家重点研发计划“七大农作物育种”专项课题作物器官发育与养分高效利用的互作机制项目资助(2016YFD0100705)

Identification, expression profile of soybean PIN-Like (PILS) gene family and its function in symbiotic nitrogen fixation in root nodules

DONG Yan-Kun1(), HUANG Ding-Quan2, GAO Zhen2, CHEN Xu2,*()   

  1. 1College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2021-01-11 Accepted:2021-04-26 Published:2022-02-12 Published online:2021-05-18
  • Contact: CHEN Xu
  • Supported by:
    This study was supported by the National Key Research and Development Program of China “Seven Major Crop Breeding” Special Topic Crop Organ Development and Nutrient Efficient Use Interaction Mechanism(2016YFD0100705)

摘要:

植物激素生长素在植物的生长发育过程中发挥了至关重要的作用, 它的稳态和浓度梯度建立控制了几乎所有器官的极性建成。生长素在特定细胞中合成、运输、感知以及代谢降解建立了符合器官发育的生长素浓度梯度。在豆科植物中, 根与土壤微生物互作形成了根瘤这一特殊的器官, 进行生物固氮。然而, 生长素稳态控制生物固氮的功能还未知。拟南芥中的研究表明, PIN-Like (PILS)蛋白协助调节的细胞内生长素稳态, 并介导下游细胞核内的生长素信号传递。本研究以大豆作为研究模型, 在大豆基因组中鉴定获得19个PILS家族基因(GmPILS), 不均匀分布于大豆10条染色体上。GmPILS在大豆9种组织部位中表现出多种表达模式, 且具有明显的组织表达特异性。GmPILS1eGmPILS1f在根瘤菌体区域富集表达, 使用人工微RNA沉默(artificial microRNA interference, amiRNAi)下调GmPILS1eGmPILS1f在根瘤的表达, 导致根瘤的固氮酶活性上升, 而过量表达GmPILS1f导致根瘤的固氮酶活性下降, 因此GmPILS1eGmPILS1f可能参与大豆固氮酶活性的调节。这些结果为进一步解析大豆GmPILS家族基因的功能和作用机制奠定了基础, 同时也为结瘤固氮在农业育种中的应用提供了有价值的基因资源。

关键词: 大豆, PIN-Like (PILS)基因家族, 根瘤, 共生固氮

Abstract:

Plant hormone auxin plays a vital role in the growth and development of plants. Auxin homeostasis and concentration gradient establishment control the polar formation of almost all organs. The synthesis, transportation, perception, and metabolic degradation of auxin in specific cells establish a concentration gradient of auxin in accordance with organ development. In legumes, roots interact with soil microorganisms to form a special organ called nodules, which is used for biological nitrogen fixation. However, the function of auxin homeostasis control of biological nitrogen fixation is unknown. Studies showed that PIN-Like (PILS) proteins in Arabidopsis helped to regulate intracellular auxin homeostasis and mediate auxin signal transmission in the downstream nucleus. In this study, 19 PILS family genes (GmPILSs) were identified in soybean genome and distributed unevenly on 10 chromosomes of soybean. GmPILSs exhibited a variety of expression patterns in nine tissue parts of soybean, and had obvious specificity of tissue expression. GmPILS1e and GmPILS1f were enriched and expressed in the rhizobia region, and the expression of GmPILS1e and GmPILS1f in nodules was down-regulated by artificial microRNA interference (amiRNAi), resulting in the increase of nitrogenase activity in the nodules. However, the overexpression of GmPILS1f leaded to the decrease nitrogenase activity in root nodules, GmPILS1e and GmPILS1f might participate in the regulation of soybean nitrogenase activity. These results lay the foundation for further analysis of the function and mechanism of soybean GmPILS family genes, and also provide valuable genetic resources for the application of nodulation and nitrogen fixation in agricultural breeding.

Key words: Glycine max, PIN-Like (PILS) gene family, nodule, symbiotic nitrogen fixation

表1

GmPILS基因家族基本信息"

基因名称
Gene name
基因ID
Gene ID
氨基酸数量
No. of amino acids
内含子数量
No. of introns
5'-3'坐标
5'-3' corrdinates
GmPILS1a Glyma.10G189100 313 6 Chr10: 42227422-42231792
GmPILS1b Glyma.20G201600 400 10 Chr20: 43857079-43862374
GmPILS1c Glyma.10G189000 400 10 Chr10: 42220046-42225237
GmPILS1d Glyma.20G201700 259 8 Chr20: 43863679-43868413
GmPILS1e Glyma.07G113100 418 9 Chr07: 11724201-11741130
GmPILS1f Glyma.07G113200 418 11 Chr07: 11780634-11792223
GmPILS1g Glyma.03G113600 424 10 Chr03: 32066847-32080424
GmPILS1h Glyma.16G114900 297 6 Chr16: 25456379-25485759
GmPILS1i Glyma.11G088600 415 10 Chr11: 6695030-6700783
GmPILS1j Glyma.01G156200 415 9 Chr01: 49361352-49366442
GmPILS1k Glyma.09G195600 414 10 Chr09: 42022526-42029030
GmPILS1l Glyma.16G115500 414 9 Chr16: 25622503-25630816
GmPILS2a Glyma.09G116100 440 1 Chr09: 26549730-26551878
GmPILS2b Glyma.19G072900 445 1 Chr19: 26101897-26103958
GmPILS5a Glyma.11G087300 419 10 Chr11: 6547702-6555660
GmPILS5b Glyma.01G157700 419 10 Chr01: 49570825-49577993
GmPILS5c Glyma.09G196900 409 9 Chr09: 42160775-42168544
GmPILS6a Glyma.09G271100 414 10 Chr09: 48791789-48796501
GmPILS6b Glyma.18G218300 414 10 Chr18: 50525980-50531206

图1

GmPILS基因家族的基因结构 黄色框代表外显子, 黑色线条代表不同GmPILS基因的内含子。"

图2

GmPILS基因在大豆染色体中的分布"

图3

GmPILS、AtPILS和OsPILS蛋白序列的系统进化树"

图4

GmPILS基因组织表达模式 A: GmPILS基因组织表达模式热图, 从Phytozome数据库中获取GmPILS表达量数据(FPKM)。B: GmPILS1e、GmPILS1f、GmPILS1i、GmPILS1j和GmPILS5a基因组织表达模式热图, GmPILS表达量数据来自qPCP结果。方框内颜色显示大豆PILS基因表达水平。"

图5

GmPILS1e、GmPILS1f、GmPILS1i、GmPILS1j和GmPILS5a在根瘤中的组织化学定位 从左到右分别对应根瘤发育的起始、扩张发育和成熟阶段。标尺为200 µm。"

图6

GmPILS1e和GmPILS1f的亚细胞定位 A~D: 使用烟草叶片进行pro35S:GFP-GmPILS (绿色)或pro35S:GmPILS-GFP (绿色)和pro35S:HDEL-Tdtoamto (红色, 作为内质网定位标记)混合菌液的共转化。基于白色斜线生成了共定位信号轮廓图。标尺为10 μm。"

图7

GmPILS1e和GmPILS1f参与大豆根瘤的固氮酶活性调控 A~G: 在接种根瘤菌21 d 后, 对结瘤的大豆复合植株进行表型分析。A: Mock、GmPILS1e 1f-RNAi#1和GmPILS1e 1f-RNAi#2毛根根瘤对半横切的拍照结果, 标尺为200 µm。B: 利用荧光定量PCR检测Mock、GmPILS1e 1f-RNAi#1和GmPILS1e 1f-RNAi#2毛根根瘤的表达, 以GmELF1b基因作为内参基因。C, D: 检测相同重量Mock、GmPILS1e 1f-RNAi#1和GmPILS1e 1f-RNAi#2毛根根瘤的固氮酶活性。E: 统计Mock, GmPILS1e 1f-RNAi#1和GmPILS1e 1f-RNAi#2毛根根瘤横切的菌体区域的面积占比。F: 利用荧光定量PCR检测Mock和35S::GmPILS1f 毛根根瘤的表达, 以GmELF1b基因作为内参基因。G: 检测Mock和35S::GmPILS1f 毛根根瘤的固氮酶活性。*、**、***分别表示在0.05、0.01和0.001水平差异显著; ns: 无显著性差异。"

[1] Sauer M, Kleine-Vehn J. PIN-FORMED and PIN-LIKES auxin transport facilitators. Development, 2019, 146: dev168088.
[2] Friml J, Palme K. Polar auxin transport—old questions and new concepts? Plant Mol Biol, 2002,49:273-284.
[3] Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 2003,115:591-602.
[4] Bohn-Courseau I. Auxin: a major regulator of organogenesis. C R Biol, 2010,333:290-296.
[5] Overvoorde P, Fukaki H, Beeckman T. Auxin control of root development. Cold Spring Harb Perspect Biol, 2010,2:a001537.
[6] Olatunji D, Geelen D, Verstraeten I. Control of endogenous auxin levels in plant root development. Int J Mol Sci, 2017,18:2587.
[7] Korasick D A, Enders T A, Strader L C. Auxin biosynthesis and storage forms. J Exp Bot, 2013,64:2541-2555.
[8] Band L R, Wells D M, Fozard J A, Ghetiu T, French A P, Pound M P, Wilson M H, Yu L, Li W, Hijazi H I, Oh J, Pearce S P, Perez-Amador M A, Yun J, Kramer E, Alonso J M, Godin C, Vernoux T, Hodgman T C, Pridmore T P, Swarup R, King J R, Bennett M J. Systems analysis of auxin transport in the Arabidopsis root apex. Plant Cell, 2014,26:862-875.
[9] Strader L C, Zhao Y. Auxin perception and downstream events. Curr Opin Plant Biol, 2016,33:8-14.
[10] Du Y, Scheres B. Lateral root formation and the multiple roles of auxin. J Exp Bot, 2018,69:155-167.
[11] Lareen A, Burton F, Schäfer P. Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol, 2016,90:575-587.
[12] Lagunas B, Schäfer P, Gifford M L. Housing helpful invaders: the evolutionary and molecular architecture underlying plant root-mutualist microbe interactions. J Exp Bot, 2015,66:2177-2186.
[13] Nishida H, Suzaki T. Nitrate-mediated control of root nodule symbiosis. Curr Opin Plant Biol, 2018,44:129-136.
[14] Oldroyd G E, Murray J D, Poole P S, Downie J A. The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet, 2011,45:119-144.
[15] Suzaki T, Yoro E, Kawaguchi M. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. Int Rev Cell Mol Biol, 2015,316:111-158.
[16] Salvagiotti F, Cassman K G, Specht J E, Walters D T, Weiss A, Dobermann A. Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review. Field Crops Res, 2008,108:1-13.
[17] Breakspear A, Liu C, Roy S, Stacey N, Rogers C, Trick M, Morieri G, Mysore K S, Wen J, Oldroyd G E, Downie J A, Murray J D. The root hair “infectome” of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infection. Plant Cell, 2014,26:4680-4701.
[18] Van Noorden G E, Kerim T, Goffard N, Wiblin R, Pellerone F I, Rolfe B G, Mathesius U. Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti. Plant Physiol, 2007,144:1115-1131.
[19] Takanashi K, Sugiyama A, Yazaki K. Involvement of auxin distribution in root nodule development of Lotus japonicus. Planta, 2011,234:73-81.
[20] Suzaki T, Yano K, Ito M, Umehara Y, Suganuma N, Kawaguchi M. Positive and negative regulation of cortical cell division during root nodule development in Lotus japonicus is accompanied by auxin response. Development, 2012,139:3997-4006.
[21] Hirsch A M, Bhuvaneswari T V, Torrey J G, Bisseling T. Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc Natl Acad Sci USA, 1989,86:1244-1248.
[22] Rightmyer A P, Long S R. Pseudonodule formation by wild-type and symbiotic mutant Medicago truncatula in response to auxin transport inhibitors. Mol Plant Microbe Interact, 2011,24:1372-1384.
[23] Wang Y, Yang W, Zuo Y, Zhu L, Hastwell A H, Chen L, Tian Y, Su C, Ferguson B J, Li X. GmYUC2a mediates auxin biosynthesis during root development and nodulation in soybean. J Exp Bot, 2019,70:3165-3176.
[24] Roy S, Robson F, Lilley J, Liu C W, Cheng X, Wen J, Walker S, Sun J, Cousins D, Bone C, Bennett M J, Downie J A, Swarup R, Oldroyd G, Murray J D. MtLAX2, a functional homologue of the Arabidopsis auxin influx transporter AUX1, is required for nodule organogenesis. Plant Physiol, 2017,174:326-338.
[25] Kohlen W, Ng J L P, Deinum E E, Mathesius U. Auxin transport, metabolism, and signalling during nodule initiation: indeterminate and determinate nodules. J Exp Bot, 2018,69:229-244.
[26] Liu H, Zhang C, Yang J, Yu N, Wang E. Hormone modulation of legume-rhizobial symbiosis. J Integr Plant Biol, 2018,60:632-648.
[27] Heckmann A B, Sandal N, Bek A S, Madsen L H, Jurkiewicz A, Nielsen M W, Tirichine L, Stougaard J. Cytokinin induction of root nodule primordia in Lotus japonicus is regulated by a mechanism operating in the root cortex. Mol Plant Microbe Interact, 2011,24:1385-1395.
[28] Peláez-Vico M A, Bernabéu-Roda L, Kohlen W, Soto M J, López-Ráez J A. Strigolactones in the Rhizobium-legume symbiosis: stimulatory effect on bacterial surface motility and down-regulation of their levels in nodulated plants. Plant Sci, 2016,245:119-127.
[29] Buhian W P, Bensmihen S. Mini-review: nod factor regulation of phytohormone signaling and homeostasis during rhizobia-legume symbiosis. Front Plant Sci, 2018,9:1247.
[30] Ferguson B J, Mathesius U. Phytohormone regulation of legume-rhizobia interactions. J Chem Ecol, 2014,40:770-790.
[31] Friml J. Auxin transport—shaping the plant. Curr Opin Plant Biol, 2003,6:7-12.
[32] Barbez E, Kubes M, Rolcik J, Beziat C, Pencik A, Wang B, Rosquete M R, Zhu J, Dobrev P I, Lee Y, Zazimalova E, Petrasek J, Geisler M, Friml J, Kleine-Vehn J. A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature, 2012,485:119-122.
[33] Feraru E, Feraru M I, Barbez E, Waidmann S, Sun L, Gaidora A, Kleine-Vehn J. PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2019,116:3893-3898.
[34] Beziat C, Barbez E, Feraru M I, Lucyshyn D, Kleine-Vehn J. Light triggers PILS-dependent reduction in nuclear auxin signalling for growth transition. Nat Plants, 2017,3:17105.
[35] Feraru E, Vosolsobe S, Feraru M I, Petrasek J, Kleine-Vehn J. Evolution and structural diversification of PILS putative auxin carriers in plants. Front Plant Sci, 2012,3:227.
[36] 叶梅霞, 刘军梅, 李昊, 崔东清, 王静澄, 张志毅, 安新民. amiRNAi-实现高效稳定的特异基因沉默新方法. 中国生物工程杂志, 2010,30(8):118-125.
Ye M X, Liu J M, Li H, Cui D Q, Wang J C, Zhang Z Y, An X M,. amiRNAi: a new approach for highly specific and stable gene silencing. China Biotechnol, 2010,30(8):118-25 (in Chinese with English abstract).
[37] Kereszt A, Li D, Indrasumunar A, Nguyen C D, Nontachaiyapoom S, Kinkema M, Gresshoff P M. Agrobacterium rhizogenes- mediated transformation of soybean to study root biology. Nat Protoc, 2007,2:948-952.
[38] Huang D, Sun Y, Ma Z, Ke M, Cui Y, Chen Z, Chen C, Ji C, Tran T M, Yang L, Lam S M, Han Y, Shu G, Friml J, Miao Y, Jiang L, Chen X. Salicylic acid-mediated plasmodesmal closure via remorin-dependent lipid organization. Proc Natl Acad Sci USA, 2019,116:21274-21284.
[39] David K A, Apte S K, Banerji A, Thomas J. Acetylene reduction assay for nitrogenase activity: gas chromatographic determination of ethylene per sample in less than one minute. Appl Environ Microbiol, 1980,39:1078-1080.
[40] Li X, Zheng J, Yang Y, Liao H. INCREASING NODULE SIZE1 expression is required for normal rhizobial symbiosis and nodule development. Plant Physiol, 2018,178:1233-1248.
[41] 王益军, 吕燕萍, 谢秦, 邓德祥, 卞云龙. 高粱全基因组生长素原初响应基因Aux/IAA的序列特征分析. 作物学报, 2010,36:688-694.
Wang Y J, Lyu Y P, Xie Q, Deng D X, Bian Y L. Whole-genome sequence characterization of primary auxin-responsive Aux/IAA gene family in Sorghum (Sorghum bicolor L.). Acta Agron Sin, 2010,36:688-694 (in Chinese with English abstract).
[42] Dubrovsky J G, Sauer M, Napsucialy-Mendivil S, Ivanchenko M G, Friml J, Shishkova S, Celenza J, Benková E. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci USA, 2008,105:8790-8794.
[43] Krupinski P, Jönsson H. Modeling auxin-regulated development. Cold Spring Harb Perspect Biol, 2010,2:a001560.
[44] Mohanta T K, Mohanta N, Bae H. Identification and expression analysis of PIN-Like (PILS) gene family of rice treated with auxin and cytokinin. Genes (Basel), 2015,6:622-640.
[45] Laxmi A, Pan J, Morsy M, Chen R. Light plays an essential role in intracellular distribution of auxin efflux carrier PIN2 in Arabidopsis thaliana. PLoS One, 2008,3:e1510.
[46] Halliday K J, Martínez-García J F, Josse E M. Integration of light and auxin signaling. Cold Spring Harb Perspect Biol, 2009,1:a001586.
[47] Leyser O. Dynamic integration of auxin transport and signalling. Curr Biol, 2006,16:R424-433.
[48] Muday G K, Murphy A S. An emerging model of auxin transport regulation. Plant Cell, 2002,14:293-299.
[49] Zazímalová E, Murphy A S, Yang H, Hoyerová K, Hosek P. Auxin transporters—why so many? Cold Spring Harb Perspect Biol, 2010,2:a001552.
[50] Petrásek J, Friml J. Auxin transport routes in plant development. Development, 2009,136:2675-2688.
[51] Alemneh A A, Zhou Y, Ryder M H, Denton M D. Mechanisms in plant growth-promoting rhizobacteria that enhance legume- rhizobial symbioses. J Appl Microbiol, 2020,129:1133-1156.
[52] Hasan S A, Hayat S, Ali B, Ahmad A. A comparative effect of IAA and 4-Cl-IAA on growth, nodulation and nitrogen fixation in Vigna radiate(L.) Wilczek. Acta Physiol Plant, 2008,30:35-41.
[53] Kaneshiro T, Kwolek W F. Stimulated nodulation of soybeans by Rhizobium japonicum mutant (B-14075) that catabolizes the conversion of tryptophan to indol-3yl-acetic acid. Plant Sci, 1985,42:141-146.
[54] Eli Y, Yaacov O, Amos D. Possible mode of action of Azospirillum brasilense strain Cd on the root morphology and nodule formation in burr medic(Medicago polymorpha). Can J Microbiol, 1990,36:10-14.
[55] Chakrabarti J, Chatterjee S, Ghosh S, Chatterjee N C, Dutta S. Synergism of VAM and Rhizobium on production and metabolism of IAA in roots and root nodules of Vigna mungo. Curr Microbiol, 2010,61:203-209.
[56] Ghosh P K, Saha P, Mayilraj S, Maiti T K. Role of IAA metabolizing enzymes on production of IAA in root, nodule of Cajanus cajan and its PGP Rhizobium sp. Biocatal Agric Biotechnol, 2013,2:234-239.
[57] Hunter W J. Influence of 5-methyltryptophan-resistant Bradyrhizobium japonicum on soybean root nodule indole-3-acetic acid content. Appl Environ Microbiol, 1987,53:1051-1055.
[58] Kretovich V L, Alekseeva I I, Tsivina N Z. Content of beta-indolylacetic in root nodules and roots of lupine. Sov Plant Physiol, 1972,19:421-424.
[59] Hunter W J. Indole-3-acetic acid production by bacteroids from soybean root nodules. Physiol Plant, 2010,76:31-36.
[60] Defez R, Andreozzi A, Dickinson M, Charlton A, Tadini L, Pesaresi P, Bianco C. Improved drought stress response in alfalfa plants nodulated by an IAA over-producing Rhizobium strain. Front Microbiol, 2017,8:2466.
[61] Defez R, Andreozzi A, Romano S, Pocsfalvi G, Fiume I, Esposito R, Angelini C, Bianco C. Bacterial IAA-delivery into Medicago root nodules triggers a balanced stimulation of C and N metabolism leading to a biomass increase. Microorganisms, 2019,7:403.
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响[J]. 作物学报, 2022, 48(2): 529-537.
[13] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[14] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[15] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!