欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (2): 511-517.doi: 10.3724/SP.J.1006.2022.11025

• 研究简报 • 上一篇    下一篇

小麦-中间偃麦草2A/6St代换系014-459的分子细胞遗传学鉴定

陶军1,2(), 兰秀锦1,*()   

  1. 1四川农业大学小麦研究所, 四川成都 611130
    2绵阳市农业科学研究院, 四川绵阳 621023
  • 收稿日期:2021-03-09 接受日期:2021-06-16 出版日期:2022-02-12 网络出版日期:2021-06-29
  • 通讯作者: 兰秀锦
  • 作者简介:E-mail: tj4bmy@163.com
  • 基金资助:
    本研究由国家自然科学基金项目资助(31970243);This study was supported by the National Natural Science Foundation of China(31970243)

Molecular cytogenetic identification of wheat-Thinopyrum intermedium 2A/6St substitution strain 014-459

TAO Jun1,2(), LAN Xiu-Jin1,*()   

  1. 1Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    2Mianyang Academy of Agricultural Sciences, Mianyang 621023, Sichuan, China
  • Received:2021-03-09 Accepted:2021-06-16 Published:2022-02-12 Published online:2021-06-29
  • Contact: LAN Xiu-Jin

摘要:

中间偃麦草是小麦遗传改良的有用资源, 育成了大量的小麦-中间偃麦草附加系、代换系及部分双二倍体。中4是小麦-中间偃麦草部分双二倍体, 很方便与普通小麦杂交并被广泛用于小麦的遗传改良。014-459是中4与普通小麦杂交后代, 具有一些特殊特性, 材料014-459与一些普通小麦杂交, 无论正反交, 其F1表现为不育, 而与另一些普通小麦的杂交F1表现为可育, 此外, 材料014-459粗蛋白和湿面筋含量很高。基于014-459的这些特性, 猜测其可能具有中间偃麦草染色体片段, 为此对014-459进行了细胞学鉴定。FISH和GISH以及PLUG标记分析用来分析材料014-459的染色体组成情况。连续的FISH和GISH试验证实小麦-中间偃麦草部分双二部体中4与小麦杂交后代品系014-459的1对小麦2A染色体被来自中间偃麦草的1对St染色体代换, PLUG标记分析证实这1对St染色体属于第6同源群, 可能来自中间偃麦草的St染色体被代换进小麦中造成了材料014-459的一些特性。对品系014-459的分子细胞遗传学鉴定对促进中间偃麦草6St染色体在小麦中利用及小麦品质改良有积极作用。

关键词: GISH, FISH, 代换系, 拟鹅冠草, 细胞遗传学

Abstract:

Thinopyrum intermedium is a valuable resource for wheat genetic improvement, and numerous wheat-Th. intermedium chromosome addition and substitution lines and partial amphiploids have been developed. Zhong 4 is a wheat-Th. intermedium partial amphidiploid, which can easily hybridize with wheat and is extensively utilized for wheat improvement. The strain 014-459 was a progeny of partial amphidiploid Zhong 4 descendant of wheat and Th. intermedium with some special characteristics such as high crude protein and wet gluten content and partial F1 of common wheat cultivars and strain 014-459 were sterility while a few others were fertility despite reciprocal cross. Molecular cytogenetic identification of strain 014-459 were detected for speculated contained fragment of Th. intermedium chromosomes based on its special characters. Genomic composition of strain 014-459 was detected by FISH, GISH, and PLUG (polymerase chain reaction-based landmark unique gene) marker analysis. Combined FISH/GISH analysis confirmed that a pair of wheat 2A chromosomes in strain 014-459 of the hybrid progeny between wheat-Thinopyrum intermedium partial amphidiploid Zhong 4 and wheat was replaced by a pair of St chromosomes from Thinopyrum intermedium. PLUG marker analysis verified that this pair belonged to the sixth homologous group. The special characters of strain 014-459 might be attributable to the substitution of Th. intermedium St chromosome into wheat. The study of molecular cytogenetic identification of strain 014-459 was probably beneficial to quality improvement and utilization of 6St chromosome of Th. intermedium in wheat breeding.

Key words: GISH, FISH, substitution strain, Pseudoroegneria strigosa, cytogenetics

图1

减数分裂图 A、B为减数分裂中期I; C、D、E为后期I; F、G、H为末期I。"

图2

原位杂交及花粉母细胞减数分裂图 A: 品系014-459FISH图, Oligo-pSc119.2-2(绿), oligo-pTa535-2(红); B: 品系014-459GISH图, 中间偃麦草DNA作探针, 中国春DNA为封阻; C: 品系014-459GISH图, 拟鹅冠草DNA为探针, 中国春DNA为封阻; D: 品系014-459FISH图, St2-80为探针, 中国春DNA为封阻; E: 品系014-459花粉母细胞减数分裂中期GISH图, 探针为中间偃麦草DNA, 封阻为中国春DNA。"

图3

原位杂交图 A: 品系014-459FISH图, Oligo-pSc119.2-2(绿), oligo-pTa535-2(红); B: 品系014-459GISH图, 中间偃麦草DNA作探针, 中国春DNA为封阻; C: 品系014-459GISH图, 黑麦DNA为探针, 中国春DNA为封阻。"

图4

PLUG标记分析结果 A: TNAC1763扩增产物(Taq I酶切), 箭头示St特异带; B: TNAC1178扩增产物(Taq I酶切), 箭头示CS (中国春)特异带, 014-459及St (拟鹅冠草)未扩出这条带。"

[1] Salina E A, Adonina I G, Badaeva E D, Kroupin P Y, Stasyuk A I, Leonova I N, Shishkina A A, Divashuk M G, Starikova E V, Khuat T M L. A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases. Euphytica, 2015,204:91-101.
[2] Chen Q, Conner R L, Ahmad F, Laroche A, Fedak G, Thomas J B. Molecular characterization of the genome composition of partial amphiploids derived from Triticum aestivum×Thinopyrum ponticum and T. aestivum×T. intermedium as sources of resistance to wheat streak mosaic virus and its vector, Aceria tosichella. Theor Appl Genet, 1998,97:1-8.
[3] Bao Y, Li X, Liu S, Cui F, Wang H. Molecular cytogenetic characterization of a new wheat-Thinopyrum intermedium partial amphiploid resistant to powdery mildew and stripe rust. Cytogenet Genome Res, 2009,126:390-395.
[4] 祁适雨, 于世选, 张耀辉, 于光华, 宋凤英. 春小麦与天蓝冰草远缘杂交育种的研究. 中国农业科学, 1979,12(2):1-11.
Qi S Y, Yu S S, Zhang Y H, Yu G H, Song F Y. Studies on wheat breeding by distant hybridization between wheat and Agropyron glaucum. Sci Agric Sin, 1979,12(2):1-11 (in Chinese with English abstract).
[5] Li H, Wang X. Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J Genet Genom, 2009,36:557-565.
[6] Li G, Wang H, Lang T, Li J, La S, Yang E, Yang Z. New molecular markers and cytogenetic probes enable chromosome identification of wheat- Thinopyrum intermedium introgression lines for improving protein and gluten contents. Planta, 2016,244:1-12.
[7] Georgieva M, Sepsi A, Tyankova N, Molnár-Láng M. Molecularcytogeneticcharacterization of two high protein wheat-Thinopyrum intermedium partialamphiploids. J Appl Genet, 2011,52:269-277.
[8] 祁适雨, 肖志敏, 辛文利, 孙连发, 张延滨, 何孟元, 卜秀玲, 韩方普, 辛志勇, 马有志. “远中”号小偃麦在小麦育种中的应用. 麦类作物学报, 2000,20:10-15.
Qi S Y, Xiao Z M, Xin W L, Sun L F, Zhang Y B, He M Y, Pu X L, Han F P, Xin Z Y, Ma Y Z. Utilization of Yuanzhong octopioidy Trititrigia in wheat breeding. J Triticeae Crops, 2000,20:10-15 (in Chinese with English abstract).
[9] 薛秀庄, 王祥正. 八倍体小偃麦中3、中4、中5在小麦育种中的应用. 陕西农业科学, 1989, (5):1-5.
Xue X Z, Wang X Z. Utilization of octoploid tritrigia Zhong 3, Zhong 4 and Zhong 5. Shaanxi J Agric Sci, 1989, ( 5):1-5 (in Chinese with English abstract).
[10] 王黎明, 林小虎, 张平杰, 张志雯, 王玉海, 赵逢涛, 高居荣, 李文才, 李兴峰, 王洪刚. 小麦-中间偃麦草二体异代换系山农0095的选育及其鉴定. 中国农业科学, 2005,38:1958-1964.
Wang L M, Lin X H, Zhang P J, Zhang Z W, Wang Y H, Zhao F T, Gao J R, Li W C, Li X F, Wang H G. Breeding and characterization of wheat-Thinopyrum intermedium alien substitution line Shannong 0095. Sci Agric Sin, 2005,38:1958-1964 (in Chinese with English abstract).
[11] 张耀辉, 宋建荣, 岳维云, 吕莉莉, 王希恩. 八倍体小偃麦中5的利用. 甘肃农业科技, 2007, ( 10):8-10.
Zhang Y H, Song J R, Yue W Y, Lyu L L, Wang X E. The use of octoploid tritelytrigia variety, Zhong 5. Gansu Agric Sci Technol, 2007, ( 10):8-10 (in Chinese).
[12] 杨永乾, 李小军, 宋杰, 孙玉, 茹振钢. 小麦-中间偃麦草代换系中233的分子细胞学鉴定. 麦类作物学报, 2014,34:449-453.
Yang Y Q, Li X J, Song J, Sun Y, Ru Z G. Molecular and cytological identification of wheat-Thinopyrum intermedium alien substitution line Zhong 233. J Triticeae Crops, 2014,34:449-453 (in Chinese with English abstract).
[13] 李爱博, 李金荷, 宋建荣, 王化俊, 张耀辉, 尚勋武, 曹世勤, 李葆春. 小麦-中间偃麦草抗锈易位系中梁27的鉴定及分析. 麦类作物学报, 2015,35(11):27-31.
Li A B, Li J H, Song J R, Wang H J, Zhang Y H, Shang X W, Cao S Q, Li B C. Idientification and analysis of Zhongliang 27, a wheat-Thinopyrum intermedium translocation line with resistance to stripe rust. J Triticeae Crops, 2015,35(11):27-31 (in Chinese with English abstract).
[14] Stebbins G L, Pun F T. Artificial and natural hybrids in the Gramineae, tribe hordeae: VI. Chromosome pairing in Secale cereale × Agropyron intermedium and the problem of genome homologies in the Triticinae. Genetics, 1953,38:600-608.
[15] Dewey D R. The genome structure of intermediate wheatgrass. J Hered, 1962,53:282-290.
[16] Xu J, Conner R L. Intravarietal variation in satellites and C-banded chromosomes of Agropyron intermedium ssp. Trichophorum cv. Greenleaf. Genome, 1994,37:305-310.
[17] Liu Z W, Wang R R. Genome analysis of Elytrigia caespitosa, Lophopyrum nodosum, Pseudoroegneria geniculata ssp. scythica and Thinopyrum intermedium (Triticeae: Gramineae). Genome, 1993,36:102-111.
[18] Assadi M, Runemark H. Hybridisation, genomic constitution and generic delimitation in Elymus s. l.(Poaceae: Triticeae). Plant Syst Evol, 1995,194:189-205.
[19] Le H T, Armstrong K C, Miki B. Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Mol Biol Rep, 1990,7:150-158.
[20] Heslopharrison J S, Leitch A R, Schwarzacher T, Anamthawatjónsson K. Detection and characterization of 1B/1R translocations in hexaploid wheat. Heredity, 1990,65:385-392.
[21] Schwarzacher T, Anamthawat-Jónsson K, Harrison G E, Islam A K M R, Jia J Z, King I P, Leitch A R, Miller T E, Reader S M, Rogers W J. Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor Appl Genet, 1992,84:778-786.
[22] 吉万全, 薛秀庄, 王秋英, 王长有, Fedak G, Patroski R, 刘广田. 中间偃麦草的GISH分析. 西北植物学报, 2001,21:401-405.
Ji W Q, Xue X Z, Wang Q Y, Wang C Y, Fedak G, Patroski R, Liu G T. GISH analysis of Thinopyrum intermedium. Acta Bot Boreal-Occident Sin, 2001,21:401-405 (in Chinese with English abstract).
[23] Zhang X Y, Koul A, Petroski R, Ouellet T, Fedak G, Dong Y S, Nwang R R. Molecular verification and characterization of BYDV-resistant germ plasms derived from hybrids of wheat with Thinopyrum ponticum and Th intermedium. Theor Appl Genet, 1996,93:1033-1039.
[24] Chen Q, Conner R L, Laroche A, Thomas J B. Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome, 1998,41:580-586.
[25] Chen Q. Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe: a landmark approach for Thinopyrum genome research. Cytogenet Genome Res, 2005,109:350-359.
[26] Chen Q, Friebe B, Conner R L, Laroche A, Thomas J B, Gill B S. Molecular cytogenetic characterization of Thinopyrum intermedium-derived wheat germplasm specifying resistance to wheat streak mosaic virus. Theor Appl Genet, 1998,96:1-7.
[27] Tang S, Li Z, Jia X, Larkin P J. Genomic in situ hybridization (GISH) analyses of Thinopyrum intermedium, its partial amphiploid Zhong 5, and disease-resistant derivatives in wheat. Theor Appl Genet, 2000,100:344-352.
[28] 孙善澄. 小偃麦新品种与中间类型的选育途径、程序和方法. 作物学报, 1981,7:51-58.
Sun S C. The approach and methods of breeding new varieties and new species from Agrotriticum hybrids. Acta Agron Sin, 1981,7:51-58 (in Chinese with English abstract).
[29] Liu Z, Li D Y, Zhang X Y. Genetic relationships among five basic genomes St, E, A, band D in Triticeae revealed by genomic southern and insitu hybridization. Integr Plant Biol, 2007,49:1080-1086.
[30] Han F P, Liu B, Fedak G, Liu Z H. Genomic constitution and variation in five partial amphiploids of wheat- Thinopyrum intermedium as revealed by GISH, multicolor GISH and seed storage protein analysis. Theor Appl Genet, 2004,109:1070-1076.
[31] Rayburn A L, Gill B S. Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Rep, 1986,4:102-109.
[32] Rayburn A L, Gill B S. Molecular analysis of D-genome of the Triticea. Theor Appl Genet, 1987,73:385-388.
[33] Mcintyre C L, Pereira S, Moran L B, Appels R. New Secale cereale(rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome, 1990,33:635-640.
[34] Mukai Y, Nakahara Y, Yamamoto M. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome, 1993,36:489-494.
[35] Pedersen C, Langridge P. Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome, 1997,40:589-593.
[36] Tang Z, Yang Z, Fu S. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet, 2014,55:313-318.
[37] Ishikawa G, Nakamura T T, Saito M, Nasuda S, Endo T R, Wu J, Matsumoto T. Localization of anchor loci representing five hundred annotated rice genes to wheat chromosomes using PLUG markers. Theor Appl Genet, 2009,118:499-514.
[38] Hu L J, Li G R, Zeng Z X, Chang Z J, Cheng L, Zhou J P, Yang Z J. Molecular cytogenetic identification of a new wheat- Thinopyrum substitution line with stripe rust resistance. Euphytica, 2011,177:169-177.
[39] 陶军, 兰秀锦. 对具有一个共同亲本的杂种F1育性差异的初步研究. 四川农业大学学报, 2020,38(1):1-7.
Tao J, Lan X J. Preliminary study on fertility difference of F1 hybrids based on a common parent. J Sichuan Agric Univ, 2020,38(1):1-7 (in Chinese with English abstract).
[40] Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet, 2001,103:455-461.
[41] Komuro S, Endo R, Shikata K, Kato A. Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome, 2013; 56:131-137.
[42] Zeng D Y, Luo J T, Li Z L, Chen G, Zhang L Q, Ning S Z, Yuan Z W, Zheng Y L, Hao M, Liu D C. High transferability of homoeolog-specific markers between bread wheat and newly synthesized hexaploid wheat lines. PLoS One, 2016,11:e0162847.
[43] Hao M, Luo J T, Yang M, Zhang L Q, Yan Z H, Yuan Z W, Zheng Y L, Zhang H G, Liu D C. Comparison of homoeologous chromosome pairing between hybrids of wheat genotypes Chinese Spring ph1b and Kaixian-luohanmai with rye. Genome, 2011,54:959-964.
[44] Wang L, Shi Q H, Su H D, Wang Y, Sha L N, Fan X, Kang H Y, Zhang H Q, Zhou Y H. St2-80: a new FISH marker for St genome and genome analysis in Triticeae. Genome, 2017,60:553-563.
[45] Wan Y, Liu K, Wang D, Shewry P R. High-molecular-weight glutenin subunits in the Cylindropyrum and Vertebrata section of the Aegilops genus and identification of subunits related to those encoded by the Dx alleles of common wheat. Theor Appl Genet, 2000,101:879-884.
[46] 茹岩岩, 张学勇, 李大勇, 游光霞, 晏月明. 对基因组原位杂交信号释译可能出现的片面性——来自一个小麦易位系(A-3)中外源遗传物质鉴定的启示. 作物学报, 2002,28:6-10.
Ru Y Y, Zhang X Y, Li D Y, You G X, Yan Y M. Risk in explanation of GISH signals enlightenment from verification of alien chromatin in a wheat translocation line (A3) by GISH. Acta Agr Sin, 2002,28:6-10 (in Chinese with English abstract).
[47] Linc G, Gaál E, Molnár I, Icsó D, Molnár-Láng M. Molecular cytogenetic (FISH) and genome analysis of diploid wheatgrasses and their phylogenetic relationship. PLoS One, 2017,12:e0173623.
[48] Martín P, Gómez M, Carrillo J M. Interaction between allelic variation at the Glu-D1 locus and a 1BL.1RS translocation on flour quality in bread wheat. Crop Sci, 2001,41:1080-1084.
[49] Clarke B C, Mukai Y, Appels R. The Sec-1 locus on the short arm of chromosome 1R of rye(Secale cereale). Chromosoma, 1996,105:269-275.
[50] Burnett C J, Lorenz K J, Carver B F. Effects of the 1B/1R translocation in wheat on composition and properties of grain and flour. Euphytica, 1995,86:159-166.
[51] Graybosch R A, Peterson C J, Shelton D R, Baenziger P S. Genotypic and environmental modification of wheat flour protein composition in relation to end-use quality. Crop Sci, 1996,36:296-300.
[52] Li Z, Ren T H, Yan B J, Tan F Q, Yang M Y, Ren Z L. A mutant with expression deletion of gene sec-1 in a 1RS.1BL line and its effect on production quality of wheat. PLoS One, 2016,11:e0146943.
[1] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[2] 段亚梅, 罗贤磊, 陈士强, 高勇, 陈建民, 戴毅. 硬粒小麦-长穗偃麦草附加系、代换系和易位系的创制[J]. 作物学报, 2021, 47(7): 1402-1414.
[3] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[4] 王大川,汪会,马福盈,杜婕,张佳宇,徐光益,何光华,李云峰,凌英华,赵芳明. 增加穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位[J]. 作物学报, 2020, 46(01): 140-146.
[5] 崔国庆,王世明,马福盈,汪会,向朝中,李云峰,何光华,张长伟,杨正林,凌英华,赵芳明. 水稻高秆染色体片段代换系Z1377的鉴定及重要农艺性状QTL定位[J]. 作物学报, 2018, 44(10): 1477-1484.
[6] 王林生,张雅莉,南广慧. 普通小麦-大赖草易位系T5AS-7LrL·7LrS分子细胞遗传学鉴定[J]. 作物学报, 2018, 44(10): 1442-1447.
[7] 郭海平, 孙高阳, 张晓祥, 闫鹏帅, 刘坤, 谢惠玲, 汤继华, 丁冬, 李卫华. 基于SSSL群体的玉米穗下节间长QTL分析[J]. 作物学报, 2018, 44(04): 522-532.
[8] 周勇,陶亚军,姚 锐,李 畅,谭文琛,裔传灯,龚志云,梁国华*. 利用染色体片段代换系定位水稻叶片形态性状QTL[J]. 作物学报, 2017, 43(11): 1650-1657.
[9] 亓晓蕾,鲍印广,李兴锋,钱兆国,王瑞霞,吴科,王洪刚. 十个八倍体小偃麦的细胞学鉴定和染色体构成分析[J]. 作物学报, 2017, 43(07): 967-973.
[10] 周可,李燕,王世明,崔国庆,杨正林,何光华,凌英华,赵芳明. 水稻紫鞘染色体片段代换系Z519的鉴定及PSH1候选基因分析[J]. 作物学报, 2017, 43(07): 974-982.
[11] 杨慧丽,林亚楠,张怀胜,卫晓轶,丁冬,薛亚东. 玉米开花期性状的QTL及杂种优势位点定位[J]. 作物学报, 2017, 43(05): 678-690.
[12] 童治军,焦芳婵,方敦煌,陈学军,吴兴富,曾建敏,谢贺,张谊寒,肖炳光*. 烟草染色体片段代换系的构建与遗传评价[J]. 作物学报, 2016, 42(11): 1609-1619.
[13] 彭倩,薛亚东,张向歌,李慧敏,孙高阳,李卫华,谢慧玲,汤继华. 利用单片段代换系测交群体定位玉米产量相关性状的杂种优势位点[J]. 作物学报, 2016, 42(04): 482-491.
[14] 向佳,李燕,樊亚伟,许军红,郑丽媛,何光华,杨正林,王楠,赵芳明*. 一个具有主效晚抽穗基因的水稻染色体片段代换系的鉴定、形态分析及Ehd4-2定位[J]. 作物学报, 2015, 41(05): 683-691.
[15] 王秀娟,陈新宏,庞玉辉,敬樊,张军,胡思远,昝凯,武军,杨群慧,赵继新*. 小麦–华山新麦草异代换系DH2322的分子细胞遗传学鉴定[J]. 作物学报, 2015, 41(02): 207-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!