欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (2): 529-537.doi: 10.3724/SP.J.1006.2022.14024

• 研究简报 • 上一篇    

减库对大豆叶片碳代谢的影响

张国伟1(), 李凯2, 李思嘉1, 王晓婧1, 杨长琴1, 刘瑞显1,*()   

  1. 1江苏省农业科学院经济作物研究所, 江苏南京 210014
    2南京农业大学大豆研究所/国家大豆改良中心 / 农业农村部大豆生物学与遗传育种重点实验室 / 作物遗传与种质创新国家重点实验室, 江苏南京 210095
  • 收稿日期:2021-02-07 接受日期:2021-07-12 出版日期:2022-02-12 网络出版日期:2021-08-09
  • 通讯作者: 刘瑞显
  • 作者简介:E-mail: zgw_0721@163.com
  • 基金资助:
    本研究由国家重点研发计划项目(2018YFD0201000);国家现代农业产业技术体系建设专项(CARS-04);江苏特粮特经产业技术体系集成创新中心项目资助(JATS[2020]152)

Effects of sink-limiting treatments on leaf carbon metabolism in soybean

ZHANG Guo-Wei1(), LI Kai2, LI Si-Jia1, WANG Xiao-Jing1, YANG Chang-Qin1, LIU Rui-Xian1,*()   

  1. 1Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    2Institute of Soybean, Nanjing Agricultural University / Key Laboratory of Soybean Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs / National Center for Soybean Improvement/State Key Laboratory of Crop Genetics & Germplasm Innovation, Nanjing 210095, Jiangsu, China;
  • Received:2021-02-07 Accepted:2021-07-12 Published:2022-02-12 Published online:2021-08-09
  • Contact: LIU Rui-Xian
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2018YFD0201000);the China Agriculture Research System(CARS-04);the Jiangsu Agricultural Industry Technology System(JATS[2020]152)

摘要:

植物的碳代谢过程与植株生长和产量形成密切相关, 是受源库关系影响最明显的生理过程之一。研究减库对大豆叶片碳代谢的影响, 可为明确源库关系失衡导致的减产机理研究提供理论依据。以早熟大豆品种苏豆13为材料, 于2019年和2020年在江苏省农业科学院大豆试验站进行池栽试验, 在大豆R4期设置减库处理(去除全部豆荚、去掉1/2豆荚和全部种子损伤处理), 以正常植株为对照, 研究减库对大豆碳代谢的影响。结果表明, 减库处理延缓了叶片衰老和脱落, 导致叶片持绿。减库处理显著抑制了短期内的净光合速率(Pn), 但是未影响初始羧化速率(a)。Pn降低主要受气孔限制, 随时间延长, 光合抑制作用逐渐减弱并转为促进作用, 在生育后期, 减库处理的叶片仍能保持相对较高的a、蔗糖磷酸合成酶(SPS)、蔗糖合成酶(SuSy)和酸性转化酶(SAI)活性及光合色素、可溶性糖、淀粉、蔗糖和果糖含量, 利于维持相对较高的光合性能。减库处理导致更多的光合产物向营养器官分配, 茎、叶片和叶柄在一定程度上成为新的库器官, 利于生育后期的叶片光合产物输出并保持相对较高的碳代谢水平。去除全部豆荚和种子损伤处理延缓叶片衰老和脱落、光合性能和碳代谢水平降低的作用显著高于去除1/2豆荚。总之, 在同等的源条件下, 减小库容量可以诱导大豆出现持绿现象, 减库程度越大, 持绿现象越重, 减库处理显著影响大豆叶片碳代谢, 虽然短期内抑制了“源”叶片的光合性能, 但是生育后期叶片仍能保持相对较高的光合活性和碳代谢关键酶活性利于合成较多的碳水化合物, 且刺激茎、叶和叶柄转化为新的库器官。

关键词: 大豆, 碳代谢, 源库关系, 减库处理, 光合性能

Abstract:

Carbon metabolism is one of the most obvious physiological processes affected by source-sink relationship, which is closely related to plant growth and yield formation. The study of the effect of sink-limiting treatment on carbon metabolism of soybean leaf can provide a theoretical basis for understanding yield reduction mechanism caused by the imbalance of source-sink relationship. Taking early maturing soybean Sudou 13 as materials, pool experiments were carried out at the soybean experimental station of Jiangsu Academy of Agricultural Sciences in 2019 and 2020. The sink-limiting treatments (all pods removal, 1/2 pods removal, and all seed injury) were conducted at R4 stage, and intact (fully podded) plants were used as control. The results showed that sink-limiting treatments delayed leaf senescence and abscission and caused stay-green. Sink-limiting treatments inhibited the net photosynthetic rate (Pn) in a short time after treatment, but did not affect the initial carboxylation rate (ɑ), and the decrease of Pn was mainly restricted by stomata limitation. With the prolongation of the time after treatment, the inhibition effect on photosynthesis gradually weakened and turned into a promoting effect. At late growth stages, the stay-green syndrome leaves still maintain relatively higher initial carboxylation rate (a), sugar phosphate synthase (SPS), sucrose synthase (SuSy), acid invertase (SAI) activity, photosynthetic pigment, soluble sugar, starch, sucrose, and fructose content, which was beneficial to maintaining a relatively high photosynthetic performance. Sink-limiting treatments induced more photosynthetic products to be distributed to vegetative organs, and stimulated stems and leaves to be new sink organs in certain extent, which was beneficial to the output of photosynthetic products and maintained relatively high levels of carbon metabolism of leaves at late growth stages. The effects of removing all pods and seed injury treatments on delaying leaf senescence and abscission, reducing photosynthetic performance and carbon metabolism was significantly higher than those of removing 1/2 pod. In conclusion, sink-limiting under the same source condition could induce stay-green syndrome. The greater the degree of sink-limiting, the more severe the green retention. Sink-limiting treatment significantly affected the carbon metabolism of soybean plant, although it inhibited photosynthetic performance in a short period after treatment. It maintained higher photosynthetic and key enzyme activities of carbon metabolism at late growth stages, which was conducive to the synthesis of more carbohydrates and stimulated the stems, leaves, and petioles to transform into new sink organs to a certain extent.

Key words: soybean, carbon metabolism, source-sink relationship, sink-limiting treatment, photosynthetic performance

图1

减库对大豆叶片数的影响 T1: 去除全部豆荚; T2: 去除1/2豆荚; T3: 种子损伤; T4: 对照。标以不同小写字母的柱值在P < 0.05水平上差异显著。"

表1

减库对大豆叶片叶绿素含量的影响"

处理后天数
Days after treatment
年份
Year
处理
Treatment
Chl a Chl b Car Chl a+b Chl a/b
7 d 2019 T1 1.82 a 0.45 a 0.46 a 2.27 a 4.02 b
T2 1.75 ab 0.42 ab 0.45 a 2.17 ab 4.16 a
T3 1.78 a 0.44 ab 0.45 a 2.22 a 4.06 b
T4 1.70 b 0.41 b 0.41 b 2.11 b 4.13 a
2020 T1 1.68 ab 0.43 ab 0.45 a 2.11 a 3.91 b
T2 1.71 a 0.41 bc 0.46 a 2.12 a 4.17 a
T3 1.69 ab 0.46 a 0.46 a 2.15 a 3.67 c
T4 1.61 b 0.38 c 0.42 b 1.99 b 4.24 a
14 d 2019 T1 1.80 a 0.44 a 0.46 a 2.24 a 4.12 b
T2 1.75 b 0.42 ab 0.45 a 2.17 b 4.14 ab
T3 1.77 b 0.43 a 0.45 a 2.19 b 4.16 a
T4 1.61 c 0.39 b 0.42 b 2.00 c 4.12 b
2020 T1 1.76 a 0.43 a 0.45 a 2.19 a 4.09 a
T2 1.77 a 0.44 a 0.46 a 2.21 a 4.02 ab
T3 1.79 a 0.45 a 0.44 a 2.24 a 3.98 ab
T4 1.56 b 0.40 b 0.41 b 1.96 b 3.90 b
35 d 2019 T1 1.58 a 0.41 a 0.41 a 1.99 a 3.90 a
T2 1.48 b 0.39 a 0.36 b 1.87 b 3.79 b
T3 1.58 a 0.40 a 0.41 a 1.98 a 3.93 a
T4 1.12 c 0.32 b 0.32 c 1.44 c 3.51 c
2020 T1 1.62 a 0.42 a 0.43 a 2.04 a 3.86 b
T2 1.36 b 0.36 b 0.32 c 1.72 b 3.78 c
T3 1.63 a 0.41 a 0.39 b 2.04 a 3.98 a
T4 1.06 c 0.31 c 0.29 d 1.37 c 3.42 d

图2

减库对大豆气体交换参数的影响(2020年) 标以不同小写字母的柱值在P < 0.05水平上差异显著。处理同图1。"

表2

减库对大豆叶片光合性能的影响(2020)"

处理
Treatment
7 d 35 d
a Pmax Cisat Γ Rp a Pmax Cisat Γ Rp
T1 0.1866 a 46.33 c 1522.16 b 64.33 a 10.78 a 0.1314 a 41.83 a 1522.65 a 71.95 c 8.4828 a
T2 0.1902 a 50.33 b 1640.36 a 64.42 a 11.10 a 0.0942 b 33.51 b 1018.47 b 78.12 b 6.3825 b
T3 0.1844 a 47.67 c 1661.21 a 65.12 a 11.13 a 0.1288 a 38.38 a 1499.22 a 69.33 c 8.0170 a
T4 0.1855 a 53.12 a 1600.62 a 62.14 b 8.85 b 0.0436 c 26.09 c 998.73 b 118.36 a 4.9093 c

图3

减库对大豆叶片碳代谢关键酶活性的影响(2020) 标以不同小写字母的柱值在P < 0.05水平上差异显著。处理同图1。"

图4

减库对大豆叶片可溶性糖、淀粉、果糖和蔗糖含量的影响(2020) 标以不同小写字母的柱值在P < 0.05水平上差异显著。处理同图1。"

表3

减库对大豆干物质累积与分配的影响"

年份
Year
处理
Treatment

Stem
叶柄
Petiole

Leaf
籽粒
Seed
荚皮
Pod shells
总干重
Total dry weight
2019 T1 16.90 a 8.98 a 15.87 a 0 c 0 d 41.8 d
T2 15.63 b 8.26 b 14.93 b 12.15 b 4.78 c 55.8 b
T3 16.71 a 8.72 ab 15.72 a 0 c 5.58 b 46.7 c
T4 14.18 c 6.06 c 13.03 c 23.45 a 8.61 a 65.3 a
2020 T1 16.27 a 7.93 a 14.93 a 0 c 0 d 39.1 d
T2 14.54 b 7.26 b 14.01 b 11.47 b 4.57 c 51.9 b
T3 16.23 a 8.01 a 15.08 a 0 c 5.71 b 45.0 c
T4 13.38 c 6.34 c 11.98 c 22.18 a 8.48 a 62.4 a
[1] 邹京南, 于奇, 金喜军, 王明瑶, 秦彬, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下大豆鼓粒期生理和产量的影响. 作物学报, 2020,46:745-758.
Zou J N, Yu Q, Jin X J, Wang M X, Qin B, Ren C Y, Wang M X, Zhang Y X. Effects of exogenous melatonin on physiology and yield of soybean during seed filling stage under drought stress. Acta Agron Sin, 2020,46:745-758 (in Chinese with English abstract).
[2] Gutiérrez-Boem F H, Scheiner J D, Rimski-Korsakov H, Lavado R S. Late season nitrogen fertilization of soybeans: effects on leaf senescence, yield and environment. Nutr Cycl Agroexosyst, 2004,68:109-115.
[3] Foyer C H. Feedback inhibition of photosynthesis through source-sink regulation in leaves. Plant Physiol Biochem, 1988,26:483-492.
[4] Fabre D, Yin X, Dingkuhn M, Clément-Vidal A, Roques S, Rouan L, Soutiras A, Luquet D. Is triose phosphate utilization involved in the feedback inhibition of photosynthesis in rice under conditions of sink limitation? J Exp Bot, 2019,20:5773-5785.
[5] Sugiura D, Betsuyaku E, Terashima I. Interspecific differences in how sink-source imbalance causes photosynthetic downregulation among three legume species. Ann Bot, 2019,123:715-726.
[6] Li Z, Zhao Q, Cheng F. Sugar starvation enhances leaf senescence and genes involved in sugar signaling pathways regulate early leaf senescence in mutant rice. Rice Sci, 2020,27:201-214.
[7] Urban L, Alphonsout L. Girdling decreases photosynthetic electron fluxes and induces sustained photo protection in mango leaves. Tree Physiol, 2007,27:345-352.
[8] 王丽丽, 李向东, 周录英, 汤笑, 吴复学, 孔维侦. 改变源库比对花生叶片和根系衰老的影响, 花生学报, 2005,34(3):1-5.
Wang L L, Li X D, Zhou L Y, Tang X, Wu F X, Kong W Z. Effects of changing the ratio of source and sink on leaf and root senescence in peanut. J Peanut Sci, 2005,34(3):1-5 (in Chinese with English abstract).
[9] Guiamet J J, Giannibelli M C. Inhibition of the degradation of chloroplast membranes during senescence in nuclear ‘stay green’ mutants of soybean. Physiol Plant, 1994,91:395-402.
[10] Zhang X, Wang M, Wu T, Wu C, Jiang B, Guo C, Han T. Physiological and molecular studies of staygreen caused by pod removal and seed injury in soybean. Crop J, 2016,4:435-443.
[11] Wittenbach V A. Purification and characterization of a soybean leaf storage glycoprotein. Plant Physiol, 1983,73:125-129.
[12] Padhi S, Grimes M M, Muro-Villanueva F, Ortega J L, Sengupta-Gopalan C. Distinct nodule and leaf functions of two different sucrose phosphate synthases in alfalfa. Planta, 2019,250:1743-1755.
[13] Haigler C H, Ivanova-Datcheva M, Hogan P S, Salnikov V V, Hwang S, Martin K, Delmer D P. Carbon partitioning to cellulose synthesis. Plant Mol Biol, 2001,47:29-51.
[14] Kasai M. Regulation of leaf photosynthetic rate correlating with leaf carbohydrate status and activation state of Rubisco under a variety of photosynthetic source/sink balances. Physiol Plant, 2008,134:216-226.
[15] Ye Z P. A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica, 2007,45:637-640.
[16] 张志良. 植物生理学实验指导. 北京: 高等教育出版社, 2001. pp 108-129.
Zhang Z L. Experimental Guide for Plant Physiology. Beijing: Higher Education Press, 2001. pp 108-129(in Chinese).
[17] Chopra J, Kaur N, Gupta A K. Ontogenic changes in enzymes of carbon metabolism in relation to carbohydrate status in developing mungbean reproductive structures. Phytochemistry, 2000,53:539-548.
[18] Tsai C Y, Salamini F, Nelson O E. Enzymes of carbohydrate metabolism in the developing endosperm of maize. Plant Physiol, 1970,46:299-306.
[19] Long S P, Bernacchi C J. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot, 2003,54:2393-2401.
[20] Setter T L, Brun W A, Brenner M L. Stomatal closure and photosynthetic inhibition in soybean leaves induced by petiole girdling and pod removal. Plant Physiol, 1980,65:884-887.
[21] 孙红春, 李存东, 张月辰, 路文静. 棉花源库比对中、下部果枝叶生理活性及铃重的影响. 作物学报, 2008,34:1459-1463.
Sun H C, Li C D, Zhang Y C, Lu W J. Effects of source/sink ratio on boll weight and physiological activities of leaves at middle and lower fruiting branches in cotton. Acta Agron Sin, 2008,34:1459-1463 (in Chinese with English abstract).
[22] 万勇善, 周志勇, 刘风珍, 李向东. 花生生理特性与库源比关系的研究. 花生学报, 2003,32(增刊1):338-345.
Wan Y S, Zhou Z Y, Liu F Z, Li X D. Studies on physiological characteristics and leaf-peg ratio for peanut. J Peanut Sci, 2003,32(S1):338-345 (in Chinese with English abstract).
[23] 朱振家, 姜成英, 史艳虎, 吴文俊, 陈年来. 库源比改变对油橄榄产量及源叶光合作用的调节, 中国农业科学, 2015,48:546-555.
Zhu Z J, Jiang C Y, Shi Y H, Wu W J, Chen N L. Response of yield and leaf photosynthesis to sink-source ratio altering demand in Olive. Sci Agric Sin, 2015,48:546-555 (in Chinese with English abstract).
[24] Kozaki A, Takeba G. Photorespiration protects C3 plants from photooxidation. Nature, 1996,384:557-560.
[25] 苗以农, 杨文杰, 许守民, 朱长甫, 姜艳秋, 刘学军. 大豆光合生理生态的研究. 大豆科学, 1993,12:70-74.
Miao Y N, Yang W J, Xu S M, Zhu C F, Jiang Y Q, Liu X J. Effect of depodding on specific leaf weight and photosynthetic rate of soybean. Soybean Sci, 1993,12:70-74 (in Chinese with English abstract).
[26] Pelah D, Wang W, Altman A, Shoseyov O, Bartels D. Differential accumulation of water stress-related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiol Plant, 2010,99:153-159.
[27] Verma A K, Upadhyay S K, Verma P C, Solomon S, Singh S B. Functional analysis of sucrose phosphate synthase (SPS) and sucrose synthase (SS) in sugarcane ( Saccharum) cultivars. Plant Biol, 2011,13:325-332.
[28] Franck N, Vaast P, Genard M, Dauzat J. Soluble sugars mediate sink feedback down-regulation of leaf photosynthesis in field-grown Coffea arabica. Tree Physiol, 2006,26:517-525.
[29] Paul M, Driscoll S P. Sugar repression of photosynthesis: the role of carbohydrates in signalling nitrogen deficiency through source: sink imbalance. Plant Cell Environ, 2010,20:110-116.
[30] 苗以农, 许守民, 姜艳秋, 刘学军, 朱长甫, 苗绿. 去荚对不同结荚习性大豆品种叶面积, 比叶重和光合速率的影响. 作物学报, 1996,22:368-371.
Miao Y N, Xu S M, Jiang Y Q, Liu X J, Zhu C F, Miao L. Effect of pod removal on leaf area, specific leaf weight and photosynthetic rate in soybean varieties with different podding habit. Acta Agron Sin, 1996,22:368-371 (in Chinese with English abstract).
[31] Grub A, Machler F. Photosynthesis and light activation of ribulose 1,5-bisphosphate carboxylase in the presence of starch. J Exp Bot, 1990,41:1293-1301.
[32] Nakano H, Muramatsu S, Makino A, Mae T. Relationship between the suppression of photosynthesis and starch accumulation in the pod-removed bean. Aus J Plant Physiol, 2000,27:167-173.
[33] Nautiyal P C, Ravindra V, Joshi Y C. Net photosynthetic rate in peanut (Arachis hypogaea L.): influence of leaf position, time of day, and reproductive-sink. Photosynthetica, 1999,36:129-138.
[34] Miller A, Schlagnhaufer C, Spalding M, Rodermel S. Carbohydrate regulation of leaf development: prolongation of leaf senescence in rubisco antisense mutants of tobacco. Photosynth Res, 2000,63:1-8.
[35] 李卫东, 李绍华, 吴本宏, 杨建民, 王红清. 果实不同发育阶段去果对桃源叶光合作用的影响. 中国农业科学, 2005,38:565-570.
Li W D, Li S H, Wu B H, Yang J M, Wang H Q. Leaf photosynthesis in response to fruit thinning at different phenological stages of fruit development in peach trees. Sci Agric Sin, 2005,38:565-570 (in Chinese with English abstract).
[36] 潘冬, 张玉磊, 同拉嘎, 李明月, 李丹, 韩云飞, 王海微, 张忠臣, 金正勋. “库”对可溶性糖及碳氮代谢相关酶基因表达影响. 西南农业学报, 2018,31:51-56.
Pan D, Zhang Y L, Tong L G, Li M Y, Li D, Han Y F, Wang H W, Zhang Z C, Jin Z X. Effects of ‘sink’ capacity on soluble sugar content and expression of carbon and nitrogen metabolism related genes, Southwest China J Agric Sci, 2018,31:51-56 (in Chinese with English abstract).
[37] Jain R, Chandra A, Solomon S. Impact of exogenously applied enzymes effectors on sucrose metabolizing enzymes (SPS, SS and SAI) and sucrose content in sugarcane. Sugar Technol, 2013,15:370-378.
[38] Jorquerafontena E, Pastenes C, Merinogergichevich C, Franck N. Effect of source/sink ratio on leaf and fruit traits of blueberry fruiting canes in the field. Sci Hortic, 2018,241:51-56.
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
[4] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[5] 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118.
[6] 彭西红, 陈平, 杜青, 杨雪丽, 任俊波, 郑本川, 罗凯, 谢琛, 雷鹿, 雍太文, 杨文钰. 减量施氮对带状套作大豆土壤通气环境及结瘤固氮的影响[J]. 作物学报, 2022, 48(5): 1199-1209.
[7] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[8] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[9] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[10] 周悦, 赵志华, 张宏宁, 孔佑宾. 大豆紫色酸性磷酸酶基因GmPAP14启动子克隆与功能分析[J]. 作物学报, 2022, 48(3): 590-596.
[11] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[12] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[13] 禹桃兵, 石琪晗, 年海, 连腾祥. 涝害对不同大豆品种根际微生物群落结构特征的影响[J]. 作物学报, 2021, 47(9): 1690-1702.
[14] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[15] 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!