作物学报 ›› 2022, Vol. 48 ›› Issue (5): 1071-1080.doi: 10.3724/SP.J.1006.2022.12002
邓钊1,2(), 江南1,2(), 符辰建1, 严天泽1, 符星学1, 胡小淳1, 秦鹏1,2, 刘珊珊1, 王凯1,3,*(), 杨远柱1,2,3,*()
DENG Zhao1,2(), JIANG Nan1,2(), FU Chen-Jian1, YAN Tian-Zhe1, FU Xing-Xue1, HU Xiao-Chun1, QIN Peng1,2, LIU Shan-Shan1, WANG Kai1,3,*(), YANG Yuan-Zhu1,2,3,*()
摘要:
隆科638S与晶4155S是袁隆平农业高科技股份有限公司于2014年培育出的抗病优质高配合力中籼型两用核不育系。本研究对2015—2019年通过国家审定的隆两优和晶两优系列杂交稻品种区试稻瘟病抗性评价数据进行分析, 并利用基于KASP技术开发的针对16个稻瘟病抗性基因的标记组合, 对隆两优和晶两优系列杂交稻品种进行基因型检测, 以期为隆两优和晶两优系列杂交稻品种的布局和进一步改良提供理论依据。结果表明, 隆两优和晶两优系列杂交稻品种, 中抗至高抗稻瘟病的比例达43.92%, 综合抗性指数和穗瘟最高损失率均值分别为3.3和4.7; 品种携带3~7个抗性基因, 平均携带5.1个抗性基因; Pia、Pita、Pi2、Pi5和Piz基因在品种中的检出频率较高, 达到50%以上, 其中Pia的检出频率达到100%, 而Pi9、Pi35、Pi36和Pb1基因未被检出; 随着抗性基因数量的增加, 品种的综合抗性指数与穗瘟最高损失率均值都呈现整体下降趋势。据此提出, 将Pi9基因导入至隆科638S与晶4155S中, 可进一步提升其组合的稻瘟病抗性。
[1] | Ou S H. Rice Disease, 2nd edn. Kew, Eng.: Commonwealth Mycological Institute, 1985. pp 109-201. |
[2] |
Kato H. Rice blast disease. Pesticide Outlook, 2001, 12:23-25.
doi: 10.1039/b100803j |
[3] |
Miah G, Rafii M Y, Ismail M R, Puteh A B, Rahim H A, Asfaliza R, Latif M. Blast resistance in rice: a review of conventional breeding to molecular approaches. Mol Biol Rep, 2013, 40:2369-2388.
doi: 10.1007/s11033-012-2318-0 pmid: 23184051 |
[4] |
Meng X, Xiao G, Telebanco-Yanoria M J, Siazon P M, Padilla J, Opulencia R, Bigirimana J, Habarugira G, Wu J, Li M, Wang B, Lu G D, Zhou B. The broad-spectrum rice blast resistance (R) gene Pita2 encodes a novel R protein unique from Pita. Rice, 2020, 13:1-15.
doi: 10.1186/s12284-019-0361-3 |
[5] | 胡培松. 杂交水稻产业发展与技术创新. 中国农业科技导报, 2010, 12(2):17-23. |
Hu P S. Development and technological innovation of hybrid rice industry. J Agric Sci Technol, 2010, 12(2):17-23 (in Chinese with English abstract). | |
[6] | 武小金, 张克明. 杂交水稻发展的现状与前景. 农业现代化研究, 1996, 17(4):234-236. |
Wu X J, Zhang K M. Current status and prospects of hybrid rice development. Res Agric Mod, 1996, 17(4):234-236 (in Chinese with English abstract). | |
[7] | 牟同敏. 中国两系法杂交水稻研究进展和展望. 科学通报, 2016, 35:3761-3769. |
Mou T M. The research progress and prospects of two-line hybrid rice in China. Chin Sci Bull, 2016, 35:3761-3769 (in Chinese with English abstract). | |
[8] | 龙彭年. 中国两系法杂交水稻研发成就和发展策略. 世界农业, 2002, (8):36-38. |
Long P N. The research achievements and development strategies of two-line hybrid rice in China. World Agric, 2002, (8):36-38 (in Chinese with English abstract). | |
[9] | 鄂志国, 程本义, 孙红伟, 汪玉军, 朱练峰, 林海, 王磊, 童汉华, 陈红旗. 近40年我国水稻育成品种分析. 中国水稻科学, 2019, 33:523-531. |
E Z G, Cheng B Y, Sun H W, Wang Y J, Zhu L F, Lin H, Wang L, Tong H N, Chen H Q. Analysis on Chinese improved rice varieties in recent four decades. Chin J Rice Sci, 2019, 33:523-531 (in Chinese with English abstract). | |
[10] | 符辰建, 秦鹏, 胡小淳, 宋永帮, 孙振彪, 杨远柱. 水稻温敏核不育系湘陵628S的选育. 中国农业科技导报, 2010, 12(6):90-97. |
Fu C J, Qin P, Hu X C, Song Y B, Sun Z B, Yang Y Z. Breeding of thermo-sensitive genic male sterile line Xiangling 628S. J Agric Sci Technol, 2010, 12(6):90-97 (in Chinese with English abstract). | |
[11] | 唐文邦, 陈立云, 肖应辉, 刘国华, 邓化冰. 水稻两用核不育系C815S的选育与利用. 湖南农业大学学报(自然科学版), 2007, 22(2):49-53. |
Tang W B, Chen L Y, Xiao Y H, Liu G H, Deng H B. Breeding and utilization of dual-purpose genic male sterile rice C815S. J Hunan Agric Univ(Nat Sci Edn), 2007, 22(2):49-53 (in Chinese with English abstract). | |
[12] | 邓启云. 广适性水稻光温敏不育系Y58S的选育. 杂交水稻, 2005, 20(2):15-18. |
Deng Q Y. Breeding of widely adaptable photo-thermo-sensitive sterile line Y58S. Hybrid Rice, 2005, 20(2):15-18 (in Chinese). | |
[13] | 符辰建, 胡小淳, 符星学, 秦鹏, 王凯, 黎琛子, 吴挺飞, 刘珊珊, 杨远柱. 优质抗病高配合力中籼两用核不育系隆科638S的选育及应用. 中国稻米, 2021, 27(3):61-66. |
Fu C J, Hu X C, Fu X X, Qin P, Wang K, Li C Z, Wu T F, Liu S S, Yang Y Z. Breeding and application of mid-season thermo- sensitive sterile line Longke 638S with good grain quality, blast resistance and high combining ability. China Rice, 2021, 27(3):61-66 (in Chinese with English abstract). | |
[14] | 符辰建, 胡小淳, 秦鹏, 符星学, 孙振彪, 杨广, 王凯, 杨远柱. 抗病优质高配合力中籼型两用核不育系隆科晶4155S的选育及应用. 杂交水稻, 2021, 36(4):18-24. |
Fu C J, Hu X C, Qin P, Fu X X, Sun Z B, Yang G, Wang K, Yang Y Z. Breeding and application of mid-season thermo-sensitive sterile line Jing 4155S with blast resistance, good grain quality and high combining ability. Hybrid Rice, 2021, 36(4):18-24 (in Chinese with English abstract). | |
[15] |
Semagn K, Babu R, Hearne S, Olsen M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed, 2014, 33:1-14.
doi: 10.1007/s11032-013-9917-x |
[16] |
Ertiro B T, Ogugo V, Worku M, Das B, Olsen M, Labuschagne M, Semagn K. Comparison of Kompetitive Allele Specific PCR (KASP) and genotyping by sequencing (GBS) for quality control analysis in maize. BMC Genom, 2015, 16:908.
doi: 10.1186/s12864-015-2180-2 |
[17] | Pham A T, Harris D K, Buck J, Hoskins A, Serrano J, Abdel-Haleem H, Cregan P, Song Q, Roger Boerma H, Li Z. Fine mapping and characterization of candidate genes that control resistance to Cercospora sojina K. Hara in two soybean germplasm accessions. PLoS One, 2015, 10:e0126753. |
[18] | Mackay I J, Bansept-Basler P, Barber T, Bentley A R, Cockram J, Gosman N, Greenland AJ, Horsnell R, Howells R, O’Sullivan D M, Rose GA. An eight-parent multiparent advanced generation inter-cross population for winter-sown wheat: creation, properties, and validation. G3: Genes Genom Genet, 2014, 4:1603-1610. |
[19] |
Leal-Bertioli S C M, Cavalcante U, Gouvea E G, Ballén-Taborda C, Shirasawa K, Guimarães P M, Jackson S A, Moretzsohn M C. Identification of QTLs for rust resistance in the peanut wild species Arachis magna and the development of KASP markers for marker-assisted selection. G3: Genes Genom Genet, 2015, 5:1403-1413.
doi: 10.1534/g3.115.018796 |
[20] |
Steele K A, Quinton-Tulloch M J, Amgai R B, Dhakal R, Khatiwada S, Vyas D, Heine M, Witcombe J R. Accelerating public sector rice breeding with high-density KASP markers derived from whole genome sequencing of indica rice. Mol Breed, 2018, 38:38.
doi: 10.1007/s11032-018-0777-2 |
[21] |
Yang G, Chen S, Chen L, Sun K, Huang C, Zhou D, Huang Y, Wang J, Liu Y, Wang H, Chen Z, Guo T. Development of a core SNP arrays based on the KASP method for molecular breeding of rice. Rice, 2019, 12:1-18.
doi: 10.1186/s12284-018-0262-x |
[22] |
Yang G, Chen S, Chen L, Gao W, Huang Y, Huang Y, Huang C, Zhou D, Wang J, Liu Y, Huang M, Xiao W, Wang H, Guo T, Chen Z. Development and utilization of functional KASP markers to improve rice eating and cooking quality through MAS breeding. Euphytica, 2019, 215:66.
doi: 10.1007/s10681-019-2392-7 |
[23] | Qi Y, Wang L, Song J, Ma G, Wang J. Development and utilization of the functional co-dominant KASP marker for thermo- sensitive genic male sterility in rice. Genet Resour Crop Evol, 2021, https://doi.org/10.21203/rs.3.rs-260801/v1. |
[24] | Sang S, Wang J, Zhou J, Cao M, Wang Y, Zhang J, Ji S, Zhang W. Development and application of Pi-kh co-dominant marker for rice blast resistance gene. Mol Plant Breed, 2021, 12:1-9. |
[25] |
Kitazawa N, Shomura A, Mizubayashi T, Ando T, Nagata K, Hayashi N, Takahashi A, Yamanouchi U, Fukuoka S. Rapid DNA-genotyping system targeting ten loci for resistance to blast disease in rice. Breed Sci, 2019, 69:68-83.
doi: 10.1270/jsbbs.18143 |
[26] |
Ashkani S, Rafii M Y, Shabanimofrad M, Ghasemzadeh A, Ravanfar S A, Latif M A. Molecular progress on the mapping and cloning of functional genes for blast disease in rice (Oryza sativa L.): current status and future considerations. Crit Rev Biotechnol, 2016, 36:353-367.
doi: 10.3109/07388551.2014.961403 pmid: 25394538 |
[27] |
Zhao H, Yao W, Ouyang Y D, Yang W N, Wang G W, Lian X M, Xing Y Z, Chen L L, Xie W B. RiceVarMap: a comprehensive database of rice genomic variations. Nucleic Acids Res, 2015, 43(D1):D1018-1022.
doi: 10.1093/nar/gku894 |
[28] | 陈羽. 扬稻6号背景下不同稻瘟病广谱抗性基因聚合效应研究. 扬州大学硕士学位论文, 江苏扬州, 2016. |
Chen Y. Polymer Effect of Different Broad-spectrum Blast Resistance Genes under the Background of YD6. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2016. pp 22-54 (in Chinese with English abstract). | |
[29] | 张长伟, 郑家奎, 蒋开锋, 朱永川, 万先齐. 杂交水稻叶瘟抗性杂种优势的遗传分析. 植物病理学报, 2000, 30:7-12. |
Zhang C W, Zheng J K, Jiang K F, Zhu Y C, Wan X Q. Genetic analysis for heterosis of resistance to leaf blast in hybrid rice. Acta Phytopath Sin, 2000, 30:7-12 (in Chinese with English abstract). | |
[30] |
Xiao G, Yang J, Zhu X, Wu J, Zhou B. Prevalence of ineffective haplotypes at the rice blast resistance (R) gene loci in Chinese elite hybrid rice varieties revealed by sequence-based molecular diagnosis. Rice, 2020, 13:6.
doi: 10.1186/s12284-020-0367-x pmid: 32002696 |
[31] |
Tabien R E, Li Z, Paterson A H, Marchetti M A, Stansel J W, Pinson S R M, Park W D. Mapping of four major rice blast resistance genes from ‘Lemont’ and ‘Teqing’ and evaluation of their combinatorial effect for field resistance. Theor Appl Genet, 2000, 101:1215-1225.
doi: 10.1007/s001220051600 |
[32] |
Hittalmani S, Parco A, Mew T V, Zeigler R S, Huang N. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet, 2000, 100:1121-1128.
doi: 10.1007/s001220051395 |
[33] | Xiao N, Wu Y, Pan C, Yu L, Chen Y, Liu G, Li Y, Zhang X, Wang Z, Dai Z, Liang C, Li A. Improving of rice blast resistances in japonica by pyramiding major R genes. Front Plant Sci, 2017, 7:1918. |
[34] |
Xiao N, Wu Y, Wang Z, Li Y, Pan C, Zhang X, Yu L, Liu G, Zhou C, Ji H, Huang N, Jiang M, Dai Z, Li A. Improvement of seedling and panicle blast resistance in Xian rice varieties following Pish introgression. Mol Breed, 2018, 38:142.
doi: 10.1007/s11032-018-0899-6 |
[35] |
Wu Y, Xiao N, Chen Y, Yu L, Pan C, Li Y, Zhang X, Huang N, Ji H, Dai Z, Chen X, Li A. Comprehensive evaluation of resistance effects of pyramiding lines with different broad-spectrum resistance genes against Magnaporthe oryzae in rice(Oryza sativa L.). Rice, 2019, 12:11.
doi: 10.1186/s12284-019-0264-3 |
[36] |
Ning X, Yunyu W, Aihong L. Strategy for use of rice blast resistance genes in rice molecular breeding. Rice Sci, 2020, 27:263-277.
doi: 10.1016/j.rsci.2020.05.003 |
[37] |
Xing J, Jia Y, Peng Z, Shi Y, He Q, Shu F, Zhang W, Zhang Z, Deng H. Characterization of molecular identity and pathogenicity of rice blast fungus in Hunan province of China. Plant Dis, 2017, 101:557-561.
doi: 10.1094/PDIS-03-16-0288-RE |
[38] |
Yang J, Chen S, Zeng L, Chen Y, Li Y, Chen Z, Li C, Zhu X. Race specificity of major rice blast resistance genes to Magnaporthe grisea isolates collected from indica rice in Guangdong, China. Rice Sci, 2008, 15:311-318.
doi: 10.1016/S1672-6308(09)60009-3 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[3] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[4] | 秦琴, 陶有凤, 黄帮超, 李卉, 高云天, 钟晓媛, 周中林, 朱莉, 雷小龙, 冯生强, 王旭, 任万军. 杂交水稻机插制种的亲本穗茎生长与花期特性[J]. 作物学报, 2022, 48(4): 988-1004. |
[5] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[6] | 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279. |
[7] | 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137. |
[8] | 王亚梁, 朱德峰, 张玉屏, 陈若霞, 向镜, 陈惠哲, 谌江华, 汪峰. 连作杂交晚稻精准条播长秧龄机插的生长及产量特性分析[J]. 作物学报, 2022, 48(1): 215-225. |
[9] | 杨志远, 舒川海, 张荣萍, 杨国涛, 王明田, 秦俭, 孙永健, 马均, 李娜. 不同株型杂交籼稻对氮肥的耐受性差异比较[J]. 作物学报, 2021, 47(8): 1593-1602. |
[10] | 柯健, 陈婷婷, 徐浩聪, 朱铁忠, 吴汉, 何海兵, 尤翠翠, 朱德泉, 武立权. 控释氮肥运筹对钵苗摆栽籼粳杂交稻甬优1540产量及氮肥利用的影响[J]. 作物学报, 2021, 47(7): 1372-1382. |
[11] | 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123. |
[12] | 姜朋, 张旭, 吴磊, 何漪, 张平平, 马鸿翔, 孔令让. 宁麦9号/扬麦158重组自交系群体产量性状的遗传解析[J]. 作物学报, 2021, 47(5): 869-881. |
[13] | 王蕊, 施龙建, 田红丽, 易红梅, 杨扬, 葛建镕, 范亚明, 任洁, 王璐, 陆大雷, 赵久然, 王凤格. 玉米杂交种纯度鉴定SNP核心引物的确定及高通量检测方案的建立[J]. 作物学报, 2021, 47(4): 770-779. |
[14] | 韦还和, 张徐彬, 葛佳琳, 孟天瑶, 陆钰, 李心月, 陶源, 丁恩浩, 陈英龙, 戴其根. 甬优籼粳杂交稻栽后地上部干物质积累动态与特征分析[J]. 作物学报, 2021, 47(3): 546-555. |
[15] | 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261. |
|