作物学报 ›› 2022, Vol. 48 ›› Issue (5): 1081-1090.doi: 10.3724/SP.J.1006.2022.14067
孙思敏(), 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕*()
SUN Si-Min(), HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan*()
摘要:
根系是吸收水分和养分的主要器官, 根系的生长状态会直接影响棉花对营养物质的吸收利用、对非生物胁迫的抵御能力以及产量。本研究选取220份陆地棉栽培种组成的自然群体和以鄂棉22为母本、3-79为父本获得的325份材料的海陆导入系群体为试验材料, 对自然群体和导入系群体的根系4个主要表型性状(主根长、根鲜重、根干重和侧根夹角)进行采集, 并结合基因组重测序对自然群体的4个根系性状进行全基因组关联分析。结果表明, 自然群体材料的4个根系性状均符合正态分布, 导入系群体材料的4个根系性状呈偏正态分布, 导入系群体根系各指标的平均值均高于自然群体; 220份陆地棉重测序数据分析后共获得2,714,140个SNP; 主成分分析表明, 根鲜重和主根长可作为棉花根系分型的2个主要指标, 通过这2个指标可将棉花根系分为9种类型。群体结构分析表明, 自然群体可分为5个亚群。全基因组关联分析(GWAS)表明, 自然群体中通过根鲜重和根干重同时关联到2个位点。本研究结果为进一步研究根系构型及其遗传机理提供理论基础, 也对棉花抵御非生物胁迫的育种工作有重要的意义。
[1] |
Snapp S, Koide R, Lynch J. Exploitation of localized phosphorus- patches by common bean roots. Plant Soil, 1995, 177:211-218.
doi: 10.1007/BF00010127 |
[2] |
Nicotra A, Babicka N, Westoby M. Seedling root anatomy and morphology: an examination of ecological differentiation with rainfall using phylogenetically independent contrasts. Oecologia, 2002, 130:136-145.
doi: 10.1007/s004420100788 pmid: 28547018 |
[3] | 梁泉, 廖红, 严小龙. 植物根构型的定量分析. 植物学通报, 2007, 24:695-702. |
Liang Q, Liao H, Yan X L. Quantitative analysis of plant root architecture. Chin Bull Bot, 2007, 24:695-702 (in Chinese with English abstract). | |
[4] | Zhang B W. Plant root research methods and trends. Agric Sci Technol, 2017, 18:2295-2298. |
[5] | 严小龙, 廖红, 杨茂. 根构型分析在豆科作物磷效率研究中的应用. 中国农业科技导报, 1999, (1):40-43. |
Yan X L, Liao H, Yang M. Application of root architecture analysis in the study of phosphorus efficiency of leguminous crops. Rev China Agric Sci Technol, 1999, (1):40-43 (in Chinese). | |
[6] |
Bonser A M, Lynch J, Snapp S. Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris. New Phytol, 1996, 132:281-288.
pmid: 11541132 |
[7] | 梁慧珍, 余永亮, 杨红旗, 张海洋, 董薇, 崔暐文, 巩鹏涛, 方宣钧. 幼苗期大豆根系性状的遗传分析与QTL检测. 中国农业科学, 2014, 47:1681-1691. |
Liang H Z, Yu Y L, Yang H Q, Zhang H Y, Dong W, Cui W W, Gong P T, Fang X J. Genetic and QTL analysis of root traits at seedling stage in soybean [Glycine max (L.) Merr.]. Sci Agric Sin, 2014, 47:1681-1691 (in Chinese with English abstract). | |
[8] | 蒋奇峰. 不同抗旱型玉米苗期根系性状的遗传分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2015. |
Jiang Q F. Analysis on the Heredity of Root Traits during Drought-resistant Maize Seedling. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2015 (in Chinese with English abstract). | |
[9] |
Pace J, Gardner C, Romay C, Ganapathysubramanian B, Lübberstedt T. Genome-wide association analysis of seedling root development in maize (Zea mays L.). BMC Genomics, 2015, 16:47.
doi: 10.1186/s12864-015-1226-9 |
[10] |
Beyer S, Daba S, Tyagi P, Bockelman H, Brown-Guedira G, Mohammadi M. Loci and candidate genes controlling root traits in wheat seedlings—a wheat root GWAS. Funct Integr Genomics, 2019, 19:91-107.
doi: 10.1007/s10142-018-0630-z |
[11] | 王杰. 甘蓝型油菜根系性状遗传基础解析. 中国农业科学院博士学位论文, 北京 2017. |
Wang J. Genetic Basis of Root Traits in Rapeseed (Brassica napus L.). PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2017 (in Chinese with English abstract). | |
[12] | 陈贵菊, 靳义荣, 刘彩云, 贾德新, 樊庆琦, 刘金栋, 刘鹏. 普通小麦根系建成相关性状的全基因组关联分析. 植物遗传资源学报, 2020, 21:975-983. |
Chen G J, Jin Y R, Liu C Y, Jia D X, Fan Q Q, Liu J D, Liu P. Genome-wide association study of root system architecture related traits in common wheat (Triticum aestivum L.). J Plant Genet Resour, 2020, 21:975-983 (in Chinese with English abstract). | |
[13] | 张忠波, 刘贞贞, 平文超, 李洪民, 王安录, 李洪芹, 柴卫东. 棉花产量、纤维品质育种主要方法的简要剖析. 农业科技通讯, 2020, (7):279-281. |
Zhang Z B, Liu Z Z, Ping W C, Li H M, Wang A L, Li H Q, Chai W D. Brief analysis of the main breeding methods of cotton yield and fiber quality. Bull Agric Sci Technol, 2020, (7):279-281 (in Chinese). | |
[14] |
Fry E L, Evans A L, Sturrock C J, Bullock J M, Bardgett R D. Root architecture governs plasticity in response to drought. Plant Soil, 2018, 433:189-200.
doi: 10.1007/s11104-018-3824-1 |
[15] |
Maurel C, Nacry P. Root architecture and hydraulics converge for acclimation to changing water availability. Nat Plants, 2020, 6:744-749.
doi: 10.1038/s41477-020-0684-5 |
[16] | 张吴平, 李保国. 棉花根系生长发育的虚拟研究. 系统仿真学报, 2006, 18:283-286. |
Zhang W P, Li B G. Three-dimensional model simulating development and growth of cotton root system. J Syst Simul, 2006, 18:283-286 (in Chinese with English abstract). | |
[17] |
Zhu D, Li X M, Wang Z W, You C Y, Nie X H, Sun J, Zhang X L, Zhang D W, Lin Z X. Genetic dissection of an allotetraploid interspecific CSSLs guides interspecific genetics and breeding in cotton. BMC Genomics, 2020, 21:431.
doi: 10.1186/s12864-020-06800-x pmid: 32586283 |
[18] |
Li B Q, Chen L, Sun W N, Wu D, Wang M J, Yu Y, Chen G X, Yang W N, Lin Z X, Zhang X L, Duan L F, Yang X Y. Phenomics-based GWAS analysis reveals the genetic architecture for drought resistance in cotton. Plant Biotechnol J, 2020, 18:2533-2544.
doi: 10.1111/pbi.v18.12 |
[19] |
Wang M J, Tu L L, Yuan D J, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, Ye Z X, Huang H, Yan F L, Ma Y Z, Zhang L, Liu M, You J Q, Yang Y, C Liu Z P, Huang F, Li B Q, Qiu P, Zhang Q H, Zhu L F, Jin S X, Yang X Y, Min L, Li G L, Chen L L, Zheng H K, Lindsey K, Lin Z X, Udall J A, Zhang X. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2019, 51:224-229.
doi: 10.1038/s41588-018-0282-x |
[20] |
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25:14.
doi: 10.1093/bioinformatics/btn569 |
[21] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo M A. The genome analysis toolkit: a map reduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20:1297-1303.
doi: 10.1101/gr.107524.110 pmid: 20644199 |
[22] |
Joost S, Kalbermatten M, Bonin A. Spatial analysis method (SAM): a software tool combining molecular and environmental data to identify candidate loci for selection. Mol Ecol Resour, 2008, 8:957-960.
doi: 10.1111/men.2008.8.issue-5 |
[23] | Chang C C, Chow C C, Tellier L C, Vattikuti S, Purcell S M, Lee J J. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigasciense, 2015, 4:7. |
[24] |
Hubisz M J, Falush D, Stephens M, Pritchard J K. Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour, 2009, 9:1322-1332.
doi: 10.1111/men.2009.9.issue-5 |
[25] |
Earl D A, Von Holdt B M. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour, 2012, 4:359-361.
doi: 10.1007/s12686-011-9548-7 |
[26] |
Barrett J C, Fry B, Maller J, Daly M J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005, 21:263-265.
pmid: 15297300 |
[27] | Olivier J, Vekemans X. SPAGeDI: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Resour, 2002, 2:618-620. |
[28] |
Abdurakhmonov I Y, Saha S, Jenkins J N, Buriev Z T, Shermatov S E, Scheffler B E, Pepper A E, Yu J Z, Kohel R J, Abdukarimov A. Linkage disequilibrium based association mapping of fiber quality traits in G. hirsutum L. variety germplasm. Genomics, 2008, 92:478-487.
doi: 10.1016/j.ygeno.2008.07.013 pmid: 18801424 |
[29] | 张爱良, 苗果园, 王建平. 作物根系与水分的关系. 作物研究, 1997, (2):6-8. |
Zhang A L, Miao G Y, Wang J P. The relationship between crop roots and water. Crop Res, 1997, (2):6-8 (in Chinese). | |
[30] | 邓旭阳, 周淑秋, 郭新宇, 赵春江, 王纪华. 玉米根系几何造型研究. 工程图学学报, 2004, 25(4):62-66. |
Deng X Y, Zhou S Q, Guo X Y, Zhao C J, Wang J H. Study on the geometry modeling for corn root system. J Eng Graph, 2004, 25(4):62-66 (in Chinese with English abstract). | |
[31] | Brunel-Saldias N, Ferrio J P, Elazab A, Orellana M, Del Pozo A. Root architecture and functional traits of Spring Wheat under contrasting water regimes. Fronit Plant Sci, 2020, 11:581140. |
[32] | 林涛, 汤秋香, 郝卫平, 吴凤全, 雷蕾, 严昌荣, 何文清, 梅旭荣. 地膜残留量对棉田土壤水分分布及棉花根系构型的影响. 农业工程学报, 2019, 35(19):117-125. |
Lin T, Tang Q X, Hao W P, Wu F Q, Lei L, Yan C R, He W Q, Mei X R. Effects of plastic film residue rate on root zone water environment and root distribution of cotton under drip irrigation condition. Trans CSAE, 2019, 35(19):117-125 (in Chinese with English abstract). | |
[33] | 潘晓迪, 张颖, 邵萌, 马黎明, 郭新宇. 作物根系结构对干旱胁迫的适应性研究进展. 中国农业科技导报, 2017, 19(2):51-58. |
Pan X D, Zhang Y, Shao M, Ma L M, Guo X Y. Research progress on adaptive responses of crop root structure to drought stress. J Agric Sci Technol, 2017, 19(2):51-58 (in Chinese with English abstract). | |
[34] |
Shahzad A N, Rizwan M, Asghar M G, Qureshi M K, Bukhari S A H, Kiran A, Wakeel A. Early maturing Bt cotton requires more potassium fertilizer under water deficiency to augment seed-cotton yield but not lint quality. Sci Rep, 2019, 9:7378.
doi: 10.1038/s41598-019-43563-2 pmid: 31089147 |
[35] |
Ayele A G, Dever J K, Kelly C M, Sheehan M, Morgan V, Payton P. Responses of upland cotton (Gossypium hirsutum L.) lines to irrigated and rainfed conditions of texas high plains. Plants, 2020, 9:1598.
doi: 10.3390/plants9111598 |
[36] | 刘婷婷, 滕元旭, 杨涛, 李斌, 万素梅, 陈国栋, 张伟. 玉米‖棉花的作物生理特性及根系特征研究. 干旱地区农业研究, 2019, 37(6):160-165. |
Liu T T, Teng Y X, Yang T, Li B, Wan S M, Chen G D, Zhang W. Study on physiological and root morphological characteristics of maize and cotton intercropping. Agric Res Arid Areas, 2019, 37(6):160-165 (in Chinese with English abstract). | |
[37] | 张小琼, 郭剑, 代书桃, 任元, 李凤艳, 刘京宝, 李永祥, 张登峰, 石云素, 宋燕春, 黎裕, 王天宇, 邹华文, 李春辉. 玉米花期根系结构的表型变异与全基因组关联分析. 中国农业科学, 2019, 52:2391-2405. |
Zhang X Q, Guo J, Dai S T, Ren Y, Li F Y, Liu J B, Li Y X, Zhang D F, Shi Y S, Song Y C, Li Y, Wang T Y, Zou H W, Li C H. Phenotypic variation and genome-wide association analysis of root architecture at maize flowering stage. Sci Agric Sin, 2019, 52:2391-2405 (in Chinese with English abstract). | |
[38] | Li X, Guo Z, Lyu Y, Cen X, Ding X, Wu H, Li X, Huang J, Xiong L. Genetic control of the root system in rice under normal and drought stress conditions by genome-wide association study. PLoS Genet, 2017, 13:e1006889. |
[39] |
Deolu-Ajayi A O, Meyer A J, Haring M A, Julkowska M M, Testerink C. Genetic loci associated with early salt stress responses of roots. iScience, 2019, 21:458-473.
doi: S2589-0042(19)30423-7 pmid: 31707259 |
[40] |
Deja-Muylle A, Parizot B, Motte H, Beeckman T. Exploiting natural variation in root system architecture via genome-wide association studies. J Exp Bot, 2020, 71:2379-2389.
doi: 10.1093/jxb/eraa029 pmid: 31957786 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058. |
[3] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[4] | 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552. |
[5] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[6] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[7] | 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409. |
[8] | 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137. |
[9] | 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689. |
[10] | 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815. |
[11] | 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623. |
[12] | 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214. |
[13] | 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238. |
[14] | 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123. |
[15] | 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826. |
|