欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (5): 869-881.doi: 10.3724/SP.J.1006.2021.01051

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

宁麦9号/扬麦158重组自交系群体产量性状的遗传解析

姜朋1,2(), 张旭1,3, 吴磊1, 何漪1, 张平平1, 马鸿翔1,*(), 孔令让2,*()   

  1. 1江苏省农业生物学重点实验室 / 江苏省农业科学院, 江苏南京210014
    2作物生物学国家重点实验室 / 山东农业大学, 山东泰安271018
    3江苏省粮食作物现代产业技术协同创新中心 / 扬州大学, 江苏扬州 225009
  • 收稿日期:2020-06-18 接受日期:2020-10-15 出版日期:2021-05-12 网络出版日期:2020-11-18
  • 通讯作者: 马鸿翔,孔令让
  • 作者简介:E-mail: hmjp2005@163.com
  • 基金资助:
    国家重点研发计划项目(2017YFD0100801);江苏省农业科技自主创新资金(CX181001);江苏省重点研发计划项目(BE2019377);国家现代农业产业技术体系建设专项(CARS-3)

Genetic analysis for yield related traits of wheat (Triticum aestivum L.) based on a recombinant inbred line population from Ningmai 9 and Yangmai 158

JIANG Peng1,2(), ZHANG Xu1,3, WU Lei1, HE Yi1, ZHANG Ping-Ping1, MA Hong-Xiang1,*(), KONG Ling-Rang2,*()   

  1. 1Provincial Key Laboratory for Agrobiology / Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
    2State Key Laboratory of Crop Biology / Shandong Agricultural University, Tai’an 271018, Shandong, China
    3Co-Innovation Center for Modern Production Technology of Grain Crops Wheat Research Center / Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2020-06-18 Accepted:2020-10-15 Published:2021-05-12 Published online:2020-11-18
  • Contact: MA Hong-Xiang,KONG Ling-Rang
  • Supported by:
    National Key Research and Development Program of China(2017YFD0100801);Jiangsu Agricultural Science and Technology Innovation Fund(CX181001);Key Research and Development Program of Jiangsu Province(BE2019377);China Agriculture Research System(CARS-3)

摘要:

宁麦9号与扬麦158是我国长江中下游麦区的主栽品种和骨干亲本, 二者都为高产类型品种, 但产量结构类型不同, 研究二者产量及构成因素的遗传对产量遗传改良具重要意义。本研究以宁麦9号与扬麦158为亲本构建的包含282个家系的重组自交系群体为材料, 利用Illumina 90K芯片分析遗传群体基因型, 建立了高密度遗传图谱。连续3个生长季对产量及构成要素进行表型鉴定, 结果显示, 3年中宁麦9号穗粒数均高于扬麦158, 千粒重低于扬麦158, 穗数与产量在不同环境中表现不一致, 在产量及其构成要素中, 千粒重的遗传力最高。表型结合遗传作图对产量及构成因素进行分子定位, 获得控制穗数、穗粒数、千粒重及产量的QTL分别为9、8、10与12个。为了将检测到的QTL有效地应用于标记辅助选择, 将重复检测到的3个千粒重QTL相关标记转化成适用于高通量基因分型的KASP标记, 并在育种料中进行了验证, 3个QTL位点均具有较好的选择效果, 且具有累加效应。上述研究结果可为长江中下游麦区小麦产量性状的分子育种提供理论依据和技术支撑。

关键词: 小麦, 宁麦9号, 扬麦158, 产量, KASP标记

Abstract:

Ningmai 9 and Yangmai 158 are the main commercial wheat varieties, as well as the backbone parents in wheat breeding programs in the middle and lower reaches of the Yangtze River in China. Both of them have high yield potential, while they showed significant difference in yield components. To understand the genetic mechanism of their high yield potential, 282 recombinant inbred lines (RILs) derived from the cross between Ningmai 9 and Yangmai 158 were genotyped with the Illumina iSelect 90K wheat single nucleotide polymorphism (SNP) assay to construct a high-density genetic map. Yield (YD) and yield-related traits including spike number (SN), kernel number per spike (KN), and 1000-kernel weight (TKW) were evaluated for three consecutive growing seasons. The results indicated that the KN of Ningmai 9 was higher than that of Yangmai 158, while TKW was lower than that of Yangmai 158. In total, 9, 8, 10, and 12 QTLs associated with SN, KN, TKW and YD were identified by QTL mapping, respectively. Among these traits, TKW possessed the highest heritability, and three QTL associated with TKW were identified repetitively. The markers related to such QTLs were then transferred to Kompetitive Allele Specific PCR (KASP) markers for high throughput selection in 139 wheat accessions. It was indicated that pyramiding 2 or 3 QTLs was more effective than single QTL for TKW improvement. The results in this study could provide more information for marker assisted selection in wheat yield breeding program.

Key words: wheat (Triticum aestivum L.), Ningmai 9, Yangmai 158, yield, KASP marker

表1

产量及其三要素的表型统计"

性状
Trait
年份
Year
宁麦9号
Ningmai 9
扬麦158
Yangmai 158
重组自交系群体 RIL population 遗传力
Heritability
最大值
Max.
最小值
Min.
平均值
Mean
标准差
SD
变异系数
CV (%)
穗数
Spike number (×104 hm-2)
2016 197.30 292.21 729.27 137.36 343.77 84.10 24.46 0.13
2017 549.45 412.09 779.22 252.25 497.33 96.53 19.41
2018 479.52 534.47 816.68 249.75 495.31 94.39 19.06
穗粒数
Kernel number per spike
2016 69.00 53.33 75.14 32.00 52.53 7.18 13.68 0.37
2017 65.00 58.40 82.80 37.60 63.31 7.98 12.60
2018 52.20 46.60 74.00 31.00 44.17 6.36 14.40
千粒重
1000-kernel weight (g)
2016 32.55 35.48 47.63 21.75 34.98 3.90 11.16 0.60
2017 30.98 32.94 51.96 25.37 35.55 4.50 12.67
2018 40.40 47.01 50.62 31.51 41.79 3.27 7.82
产量
Yield (kg hm-2)
2016 3238.43 3887.78 7251.08 1506.83 3903.92 940.63 24.09 0.18
2017 6018.98 4920.08 11,163.83 2006.33 6492.86 1752.69 26.99
2018 6993.00 8658.00 12,321.00 3330.00 7128.55 1420.14 19.92

表2

产量及其三要素的方差分析(F值)"

项目
Item
穗数
Spike number (×104 hm-2)
穗粒数
Kernel number per spike
千粒重
1000-kernel weight (g)
产量
Yield (kg hm-2)
基因型 Genotype 0.78 1.92** 2.64** 0.86
年份 Year 214.54** 754.62** 415.05** 320.18**
基因型×年份 Genotype×Year 0.64 1.21 1.06 0.64

表3

产量及其三要素的相关分析"

性状
Trait
环境
Environment
穗数
Spike number
(×104 hm-2)
穗粒数
Kernel number per spike
千粒重
1000-kernel weight
(g)
产量
Yield
(kg hm-2)
穗数
Spike number (×104 hm-2)
2016 (0.136*)
2017 (0.128*)
2018 (-0.042)
穗粒数
Kernel number per spike
2016 -0.154** (0.081)
2017 -0.157** (0.344**)
2018 -0.054 (-0.014)
千粒重
1000-kernel weight (g)
2016 -0.004 -0.131* (0.316**)
2017 -0.025 -0.284** (0.364**)
2018 -0.171** -0.146** (0.288**)
产量
Yield (kg hm-2)
2016 0.169** -0.077 0.289** (0.242**)
2017 0.418** -0.201** 0.439** (0.052)
2018 0.312** 0.306** 0.085 (0.120*)

表4

产量及其三要素的QTL定位"

性状
Traits
序号No. QTL 环境
Environment
遗传位置
Genetic position (cM)
物理区间
Physical interval (Mb)
区间
Interval
LOD 表型贡献率
PVEa (%)
加性效应
AEb
前人研究中的产量相关性状
Yield-related traits in previous studies
穗数
Spike number
1 Qsn-1A 2018 101.45-101.95 543-574 Tdurum_contig96086_74-RFL_Contig3683_1784 4.85 7.54 -27.00 产量、穗粒数、单穗产量、收获指数[19]
Yield, kernel number per spike, kernel weight per spike, harvest index[19]
2 Qsn-1B.1 2016 6.35-11.15 614-616 wsnp_BE590634B_Ta_2_5-Tdurum_contig10362_555 4.03 5.11 19.22 产量[20] Yield[20]
3 Qsn-1B.2 2016 15.95-20.55 630-641 BS00069044_51-wsnp_Ex_rep_c78209_74462664 7.40 10.39 -29.21 穗长、千粒重、穗粒数[21,22]
Spike length, 1000-kernel weight, kernel number per spike[21,22]
4 Qsn-1B.3 2017 97.75-98.25 678-680 BobWhite_c4482_73-Tdurum_contig52086_342 2.97 3.45 -19.25 千粒重[23] 1000-kernel weight[23]
5 Qsn-2B 2017 78.05-79.35 781-783 Ku_c2936_1987-RAC875_c18928_455 3.21 3.68 19.78
6 Qsn-4B 2016 14.95-15.95 603-620 BS00039402_51-Excalibur_rep_c109675_738 3.44 3.62 14.41
7 Qsn-5A 2017 49.45-50.35 505-520 tplb0056b09_1000-BS00085826_51 6.27 7.56 28.32 千粒重、穗粒数[23]
1000-kernel weight, kernel number per spike[23]
8 Qsn-7A.1 2017 38.25-39.45 688-697 Tdurum_contig31699_276-wsnp_Ku_c4035_7363089 3.18 4.48 24.15 千粒重[23] 1000-kernel weight[23]
9 Qsn-7A.2 2017 108.35-111.1 730-735 BS00069019_51-BS00022284_51 3.74 4.66 -22.28
穗粒数
Kernel number per spike
10 Qkn-2B 2016 68.25-69.35 768-776 Kukri_c24939_378-RAC875_rep_c83950_222 3.69 5.84 -1.75
12 Qkn-3B.1 2018 105.45-105.85 146-151 RAC875_c45525_131-IAAV1079 6.10 8.66 -3.41
11 Qkn-3B.2 2017 62.95-65.35 724-742 BobWhite_c2937_1426-BS00040739_51 3.08 4.42 -1.88 穗数、产量[5] Spike number, yield[5]
13 Qkn-4A 2017 4.05-14.95 664-683 BS00066066_51-IAAV5722 2.76 5.03 1.76 穗粒数、穗数、千粒重[23,24]
Kernel number per spike, spike number, 1000-kernel weight[23,24]
14 Qkn-5B.1 2018 91.25-93.35 615-618 Tdurum_contig85060_121-Kukri_rep_c101622_604 3.78 5.30 1.60 产量[25] Yield[25]
15 Qkn-5B.2 2017 129.35-130.05 682-698 Excalibur_c6346_266-IAAV8023 3.06 4.40 -1.77 千粒重、穗粒数[23]
1000-kernel weight, kernel number per spike[23]
16 Qkn-6B 2016 49.35-50.95 96-141 RAC875_c23812_187-wsnp_Ku_c12559_20252463 3.02 5.18 1.64
17 Qkn-7A 2018 0-7.05 670-680 Ku_c62742_888-wsnp_Ku_c42539_50247333 2.68 3.76 -1.40 千粒重、穗粒数、穗数[23]
1000-kernel weight, kernel number per spike, spike number[23]
千粒重
1000-kernel weight
18 Qtkw-1A 2016 47.05-48.95 31-33 BS00084022_51-wsnp_Ex_c31983_40709866 3.08 3.60 0.76 千粒重、单穗产量、穗粒数[23,26] 1000-kernel weight, kernel weight per spike, kernel number per spike[23,26]
19 Qtkw-1B 2017/2018 35.25-39.55 640-653 IAAV1683-IAAV565 3.68 5.80 -1.15 穗长、千粒重、穗粒数[21]
Spike length, 1000-kernel weight, kernel number per spike[21]
20 Qtkw-2B 2018 51.45-52.05 748-750 CAP8_c8516_542-BS00094578_51 8.09 9.43 1.06 千粒重[24] 1000-kernel weight[24]
21 Qtkw-3A 2016 0-6.15 9-10 Excalibur_c10014_307-RAC875_c36922_829 3.29 3.71 0.88
22 Qtkw-4A 2016/2017 3.75-19.75 661-683 BS00066066_51-BS00066891_51 5.55 6.42 -1.02 穗粒数、穗数、千粒重[23,24]
Kernel number per spike, spike number, 1000-kernel weight[23,24]
23 Qtkw-4B 2018 4.85-5.05 427-428 GENE-2847_1060-wsnp_Ex_rep_c70265_69211592 7.90 8.82 -1.02 千粒重[27] 1000-kernel weight[27]
24 Qtkw-5A 2016 55.85-56.55 537-539 BS00096758_51-RAC875_c103967_76 7.51 8.85 1.20 千粒重、穗粒数[23]
1000-kernel weight, kernel number per spike[23]
25 Qtkw-5B 2018 67.15-70.95 586-587 Kukri_c45964_273-RAC875_c43383_483 2.88 3.10 -0.65 穗粒数[28] Kernel number per spike[28]
26 Qtkw-7A 2017/2018 48.55-49.55 261-285 RFL_Contig428_290-RAC875_c16624_970 4.21 4.57 -0.79
27 Qtkw-7B 2016 0-4.95 15-25 wsnp_CAP7_c44_26549-Ex_c101666_634 4.74 5.99 -0.99 产量、小穗数[20,28]
Yield, the spikelet number per spike[20,28]
产量
Yield
28 Qyd-1B.1 2017 37.55-38.65 236-433 BobWhite_c4147_1429-BS00033681_51 5.40 5.33 441.75 千粒重、单穗产量、产量[29,30]
1000-kernel weight, kernel weight per spike, yield[29,30]
29 Qyd-1B.2 2017 65.55-73.25 480-498 Ra_c68984_1882-Tdurum_contig81102_102 4.27 4.17 -611.83
30 Qyd-2A 2018 47.85-55.05 653-706 BS00090569_51-BS00029332_51 3.87 6.19 332.86 单株产量、小穗数、千粒重、穗粒数[31]
Kernel weight per plant, the spikelet number per spike, 1000-kernel weight, kernel number per spike[31]
31 Qyd-4B 2017 68.85-70.45 101-168 BS00071792_51-Tdurum_contig28490_463 3.26 3.23 337.82 穗粒数、单穗产量、千粒重[5,23,32]
Kernel number per spike, kernel weight per spike, 1000-kernel weight[5,23,32]
32 Qyd-5A.1 2016 13.35-14.55 389-420 BS00086963_51-BS00001322_51 4.11 7.91 242.37 千粒重、穗粒数[23]
1000-kernel weight, kernel number per spike[23]
33 Qyd-5A.2 2017 53.35-54.45 511-540 wsnp_Ex_c49211_53875575-CAP7_c1404_72 10.88 11.79 642.73 千粒重、穗粒数[23]
1000-kernel weight, kernel number per spike[23]
34 Qyd-5B.1 2018 45.15-46.15 545-547 Tdurum_contig25513_195-wsnp_Ex_c8659_14515623 3.59 4.45 -418.08 产量[27]
Yield[27]
35 Qyd-5B.2 2017 113.05-113.85 663-665 BobWhite_c36154_81-Kukri_c41_858 4.87 4.80 -285.41
36 Qyd-6A 2017 35.35-38.2 609-617 Excalibur_c96749_512-Excalibur_c98257_136 3.82 3.88 -408.26 产量、千粒重[20,23] Yield, 1000-kernel weight[20,23]
37 Qyd-6B 2018 53.35-53.75 144-148 BobWhite_c1905_98-wsnp_Ku_c5891_10414090 3.08 3.88 -281.40
38 Qyd-7A 2018 33.25-34.25 83-109 Excalibur_rep_c101407_222-BS00011072_51 2.92 3.60 -256.01 穗重、千粒重、穗粒数、穗数[23,33-34]
Ear weight per tiller, 1000-kernel weight, kernel number per spike, spike number[23,33-34]
39 Qyd-7B 2018 133.15-133.95 743-745 Tdurum_contig51105_1538-tplb0040b02_681 4.36 5.48 313.01 产量、千粒重[20,23] Yield, 1000-kernel weight[20,23]

图1

产量及其三要素的QTL定位 图中数字与表4中QTL的序号一致。"

表5

千粒重QTL不同等位变异的t检测"

QTL 环境
Environment
优势等位变异
Favorable alleles (g)
非优势等位变异
Unfavorable alleles (g)
差值
Difference (g)
t
t-value
P
P-value
Qtkw-1B 2016 35.21 (121) 34.56 (133) 0.65 1.36 0.18
2017 36.47 (121) 34.62 (133) 1.85 3.31 <0.01
2018 42.37 (121) 40.95 (133) 1.42 3.56 <0.01
Qtkw-4A 2016 35.68 (110) 33.71 (98) 1.97 3.86 <0.01
2017 36.48 (110) 34.41 (98) 2.07 3.41 <0.01
2018 42.38 (110) 40.68 (98) 1.7 3.94 <0.01
Qtkw-7A 2016 34.78 (168) 35.03 (78) -0.25 -0.47 0.64
2017 36.31 (168) 34.46 (78) 1.85 2.97 <0.01
2018 42.02 (168) 41.30 (78) 0.72 1.38 0.17
Qtkw-1B+Qtkw-4A 2016 36.62 (46) 33.48 (51) 3.14 4.22 <0.01
2017 37.03 (46) 33.59 (51) 3.44 4.11 <0.01
2018 43.32 (46) 40.56 (51) 2.76 4.24 <0.01
Qtkw-1B+Qtkw-7A 2016 35.42 (74) 35.48 (34) -0.06 -0.09 0.93
2017 37.51 (74) 33.58 (34) 3.93 4.26 <0.01
2018 42.82 (74) 40.79 (34) 2.03 2.98 <0.01
Qtkw-4A+Qtkw-7A 2016 35.46 (68) 33.73 (34) 1.73 2.11 0.04*
2017 37.42 (68) 34.56 (34) 2.86 3.04 <0.01
2018 42.27 (68) 40.51 (34) 1.76 2.85 <0.01
Qtkw-1B+Qtkw-4A+Qtkw-7A 2016 36.55 (26) 33.73 (12) 2.82 2.14 0.04*
2017 38.42 (26) 33.08 (12) 5.34 5.22 <0.01
2018 43.10 (26) 41.16 (12) 1.94 1.55 0.14

附表1

千粒重的KASP标记序列"

SNP QTL F1 (5°-3°) F2 (5°-3°) R (5°-3°)
Kukri_c18109_682 Qtkw-1B AACGACGCCTGGTTTTCCTCA CGACGCCTGGTTTTCCTCG TCCGAGATGGACGAGGAACTG
IAAV1683 Qtkw-1B TGTTCTTACCTGAACTTGTGTGACA GTTCTTACCTGAACTTGTGTGACG CTGAAGCTCTGATATCATCATCATCC
Kukri_c42354_263 Qtkw-1B TCGACGATACTGGCGGTGTA TCGACGATACTGGCGGTGTG TGATCGCAAAGTGCATTATGTT
BS00066891_51 Qtkw-4A TGGACGGATGGTTGATGGCTCG ATGGACGGATGGTTGATGGCTCA TATAAGCTACTACCGCTCCGGC
IAAV5722 Qtkw-4A AGCTGCAACCCATCCTCT AGCTGCAACCCATCCTCC TGTGACCTACTCGATGTTCATAAC
Excalibur_rep_c70004_275 Qtkw-7A GGTGTTCTCCCTGGTAGCTCA GGTGTTCTCCCTGGTAGCTCG CTTCTGGCACCTGCTTTCATCG
RFL_Contig428_290 Qtkw-7A GGATGTCCCGGTTGGAGAAGAC GGATGTCCCGGTTGGAGAAGAT GACAAGTACGGCCCCATCTTCT
IACX1477 Qtkw-7A CCAAAATGGCTTGTCAAATGAGATA CCAAAATGGCTTGTCAAATGAGA
TG
GCTTGACCCTTAGCTCATGA

附图1

千粒重QTL的KASP标记开发 A表示宁麦9号等位变异类型, B表示扬麦158等位变异类型。"

表6

千粒重KASP标记的效用检测"

QTL 优势等位变异
Favorable alleles (g)
非优势等位变异
Unfavorable alleles (g)
差值
Difference (g)
t
t-value
P
P-value
Qtkw-1B 48.32 (62) 45.92 (77) 2.40 -3.79 <0.01
Qtkw-4A 47.67 (100) 45.26 (39) 2.41 3.40 <0.01
Qtkw-7A 47.47 (122) 43.53 (17) 3.95 -4.15 <0.01
Qtkw-1B+Qtkw-4A 48.73 (49) 44.49 (26) 4.23 4.61 <0.01
Qtkw-1B+Qtkw-7A 48.43 (60) 43.32 (15) 5.11 -4.73 <0.01
Qtkw-4A+Qtkw-7A 47.67 (98) 43.01 (15) 4.66 -4.59 <0.01
Qtkw-1B+Qtkw-4A+Qtkw-7A 48.73 (49) 42.69 (13) 6.03 -5.27 <0.01
[1] 周延辉, 朱新开, 郭文善, 封超年. 稻茬小麦中高产水平下产量及其构成因素分析. 麦类作物学报, 2018,38:293-297.
Zhou Y H, Zhu X K, Guo W S, Feng C N. Analysis of yield and yield components of wheat after rice on medium-high-yielding level. J Triticeae Crop, 2018,38:293-297 (in Chinese with English abstract).
[2] 田纪春, 邓志英, 胡瑞波, 王延训. 不同类型超级小麦产量构成因素及籽粒产量的通径分析. 作物学报, 2006,32:1699-1705.
Tian J C, Deng Z Y, Hu R B, Wang Y X. Yield components of super wheat cultivars with different types and the path coefficient analysis on grain yield. Acta Agron Sin, 2006,32:1699-1705 (in Chinese with English abstract).
[3] 肖世和, 何中虎. 小麦产量潜力和品质的改良. 见: 庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003. pp 497-542.
Xiao S H, He Z H. Improvement of Wheat Yield Potential and Quality. In: Zhuang Q S eds. Chinese Wheat Improvement and Pedigree. Beijing: China Agriculture Press, 2003. pp 497-542(in Chinese).
[4] Zhang L Y, Liu D C, Guo X L, Yang W L, Sun J Z, Wang D W, Zhang A. Genomic distribution of quantitative trait loci for yield and yield-related traits in common wheat. J Integr Plant Biol, 2010,52:996-1007.
[5] Mason R E, Hays D B, Mondal S, Ibrahim A M H, Basnet B R. QTL for yield, yield components and canopy temperature depression in wheat under late sown field conditions. Euphytica, 2013,194:243-259.
[6] Hu J, Wang X, Zhang G, Jiang P, Chen W, Hao Y, Ma X, Xu S, Jia J, Kong L, Wang H. QTL mapping for yield-related traits in wheat based on four RIL populations. Theor Appl Genet, 2020,133:917-933.
[7] Tura H, Edwards J, Gahlaut V, Garcia M, Sznajder B, Baumann U, Shahinnia F, Reynolds M, Langridge P, Balyan H S, Gupta P K, Schnurbusch T, Fleury D. QTL analysis and fine mapping of a QTL for yield-related traits in wheat grown in dry and hot environments. Theor Appl Genet, 2020,133:239-257.
[8] Cavanagh C R, Shiaoman C, Shichen W, Bevan Emma H, Stuart S, Seifollah K, Kerrie F, Cyrille S, Brown-Guedira G L, Alina A. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA, 2013,110:8057-8062.
[9] Wang S, Wong D, Forrest K, Allen A, Chao S, Huang B E, MacCaferri M, Salvi S, Milner S G, Cattivelli L. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J, 2014,12:787-796.
[10] Cui F, Zhang N, Fan X, Zhang W, Zhao C, Yang L, Pan R, Chen M, Han J, Zhao X. Utilization of a wheat 660k SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep, 2017,7:3788.
[11] Semagn K, Babu R, Hearne S, Olsen M. Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed, 2014,33:1-14.
[12] 姚金保, 马鸿翔, 张平平, 姚国才, 杨学明, 任丽娟, 张鹏, 周淼平. 小麦优良亲本宁麦9号的研究与利用. 核农学报, 2012,26:17-21.
Yao J B, Ma H X, Zhang P P, Yao G C, Yang X M, Ren L J, Zhang P, Zhou M P. Research of wheat elite parent Ningmai 9 and its utilization. Acta Agric Nucl Sin, 2012,26:17-21 (in Chinese with English abstract).
[13] 施汉萍, 冯永明, 余敦智, 易峰, 孙丽. “扬麦158”高产栽培技术. 上海农业科技, 2009, (4):84.
Shi H P, Feng Y M, Yu D Z, Yi F, Sun L. High-yield culture technique of Yangmai 158. Shanghai Agric Sci Technol, 2009, (4):84 (in Chinese).
[14] Lan C, Zhang Y, Herrera-Foessel S A, Basnet B R, Huerta-Espino J, Lagudah E S, Singh R P. Identification and characterization of pleiotropic and co-located resistance loci to leaf rust and stripe rust in bread wheat cultivar Sujata. Theor Appl Genet, 2015,128:549-561.
[15] He X, Lillemo M, Shi J, Wu J, Bjørnstad Å, Belova T, Dreisigacker S, Duveiller E, Singh P. QTL characterization of Fusarium head blight resistance in CIMMYT bread wheat line Soru#1. PLoS One, 2016,11:e0158052.
[16] Jiang P, Zhang X, Wu L, He Y, Zhuang W, Cheng X, Ge W, Ma H, Kong L. A novel QTL on chromosome 5AL of Yangmai 158 increases resistance to Fusarium head blight in wheat. Plant Pathol, 2020,69:249-258.
[17] Meng L, Li H, Zhang L, Wang J. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015,3:269-283.
[18] Saghai-Maroof M A, Soliman K M, Jorgensen R A, Allard R W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA, 1984,81:8014-8018.
[19] Cuthbert J, Somers D, Brule-Babel A, Brown P, Crow G. Molecular mapping of quantitative trait loci for yield and yield components in spring wheat ( Triticum Aestivum L.). Theor Appl Genet, 2008,117:595-608.
[20] Fu Y B, Somers D J. Allelic changes in bread wheat cultivars were associated with long-term wheat trait improvements. Euphytica, 2011,179:209-225.
[21] Zheng B S, Le Gouis J, Leflon M, Rong W Y, Laperche A, Brancourt-Hulmel M. Using probe genotypes to dissect QTL × environment interactions for grain yield components in winter wheat. Theor Appl Genet, 2010,121:1501-1517.
[22] Zhang H, Zhang F, Li G, Zhang S, Zhang Z, Ma L. Genetic diversity and association mapping of agronomic yield traits in eighty six synthetic hexaploid wheat. Euphytica, 2017,213:111.
[23] Cao S, Xu D, Hanif M, Xia X, He Z. Genetic architecture underpinning yield component traits in wheat. Theor Appl Genet, 2020,133:1811-1823.
[24] Sherman J D, Martin J M, Blake N K, Lanning S P, Talbert L E. Genetic basis of agronomic differences between a modern and a historical spring wheat cultivar. Crop Sci, 2014,54:1-13.
[25] Reif J, Maurer H P, Korzun V, Ebmeyer E, Miedaner T, Würschum T. Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor Appl Genet, 2011,123:283-292.
[26] Roncallo P F, Cervigni G L, Jensen C, Miranda R, Carrera A D, Helguera M, Echenique V. QTL analysis of main and epistatic effects for flour color traits in durum wheat. Euphytica, 2012,185:77-92.
[27] Genc Y, Oldach K, Gogel B, Wallwork H, McDonald G K, Smith A B. Quantitative trait loci for agronomic and physiological traits for a bread wheat population grown in environments with a range of salinity levels. Mol Breed, 2013,32:39-59.
[28] Zhang J, Dell B, Biddulph B, Khan N, Xu Y, Luo H, Appels R. Vernalization gene combination to maximize grain yield in bread wheat ( Triticum aestivum L.) in diverse environments. Euphytica, 2014,198:439-454.
[29] Zorić M, Dodig D, Kobiljski B, Quarrie S, Barnes J. Population structure in a wheat core collection and genomic loci associated with yield under contrasting environments. Genetica, 2012,140:259-275.
[30] Sallam A, Amro A, Elakhdar A, Dawood M F A, Moursi Y S, Baenziger P S. Marker-trait association for grain weight of spring barley in well-watered and drought environments. Mol Biol Rep, 2019,46:2907-2918.
[31] Yao J, Wang L, Liu L, Zhao C, Zheng Y. Association mapping of agronomic traits on chromosome 2A of wheat. Genetica, 2009,137:67-75.
[32] Wang R X, Hai L, Zhang X Y, You G X, Yan C S, Xiao S H. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu 8679. Theor Appl Genet, 2009,118:313-325.
[33] Lin H, Guo H, Wagner C, Xiao S, Friedt W. Genomic regions for yield and yield parameters in Chinese winter wheat ( Triticum aestivum L.) genotypes tested under varying environments correspond to QTL in widely different wheat materials. Plant Sci, 2008,175:226-232.
[34] Su J Y, Zheng Q, Li H W, Li B, Jing R L, Tong Y P, Li Z S. Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Sci, 2009,176:824-836.
[35] 何中虎, 夏先春, 陈新民, 庄巧生. 中国小麦育种进展与展望. 作物学报, 2011,37:202-215.
He Z H, Xia X C, Chen X M, Zhuang Q S. Progress of wheat breeding in China and the future perspective. Acta Agron Sin, 2011,37:202-215 (in Chinese with English abstract).
[36] 贾继增, 高丽锋, 赵光耀, 周文斌, 张卫建. 作物基因组学与作物科学革命. 中国农业科学, 2015,48:1-32.
Jia J Z, Gao L F, Zhao G Y, Zhou W B, Zhang W J. Crop genomics and crop science revolutions. Sci Agric Sin, 2015,48:1-32 (in Chinese with English abstract).
[37] 何中虎, 庄巧生, 程顺和, 于振文, 赵振东, 刘旭. 中国小麦产业发展与科技进步. 农学学报, 2018,8:107-114.
He Z H, Zhuang Q S, Cheng S H, Yu Z W, Zhao Z D, Liu X. Wheat production and technology improvement in China. J Agric, 2018,8:107-114 (in Chinese with English abstract).
[38] 程顺和, 郭文善, 王龙俊. 中国南方小麦. 南京: 江苏科学技术出版社, 2012. pp 255-259.
Cheng S H, Guo W S, Wang L J. Wheat in Southern China. Nanjing: Jiangsu Science and Technology Publishing House, 2012. pp 255-259(in Chinese).
[39] 宋健民, 戴双, 李豪圣, 程敦公, 刘爱峰, 曹新有, 刘建军, 赵振东. 山东省近年来审定小麦品种农艺和品质性状演变分析. 中国农业科学, 2013,46:1114-1126.
Song J M, Dai S, Li H S, Cheng D G, Liu A F, Cao X Y, Liu J J, Zhao Z D. Evolution of agronomic and quality traits of wheat cultivars released in Shandong province recently. Sci Agric Sin, 2013,46:1114-1126 (in Chinese with English abstract).
[40] 沈磊, 赵凯铭. 近年来河南省小麦审定品种主要性状的演变规律. 农业科技通讯, 2016, (1):54-56.
Shen L, Zhao K M. The evolvement rule for the main characters of wheat cultivars in Henan province in recent years. Bull Agric Sci Technol, 2016, (1):54-56 (in Chinese).
[41] 蒋进, 蒋云, 王淑荣. 四川省近年育成小麦品种农艺性状和品质性状分析. 麦类作物学报, 2019,39:682-691.
Jiang J, Jiang Y, Wang S R. Agronomic and quality traits of wheat varieties in Sichuan in recent years. J Triticeae Crop, 2019,39:682-691 (in Chinese with English abstract).
[42] 姚国才, 马鸿翔, 姚金保, 张鹏, 杨学明. 长江中下游地区小麦产量育种方向及策略探讨. 中国农学通报, 2010,26(17):168-171.
Yao G C, Ma H X, Yao J B, Zhang P, Yang X M. The breeding strategies and direction on wheat yield in region of middle and lower reaches of the Yangtze River. Chin Agric Sci Bull, 2010,26(17):168-171 (in Chinese with English abstract).
[43] 王翠玲, 王书子, 张学品, 吴少辉, 段国辉, 吕树作. 冬小麦主要性状的杂种优势测定和遗传分析. 安徽农业科学, 2003,31(2):173-174.
Wang C L, Wang S Z, Zhang X P, Wu S H, Duan G H, Lyu S Z. Analysis of heterosis and heredity of main characters in winter wheat. J Anhui Agric Sci, 2003,31(2):173-174 (in Chinese with English abstract).
[44] 张晗, 孙加梅, 韩瑞玺, 陈建省, 刘宾, 邓志英, 李汝玉, 田纪春. 基于小麦产量三要素的产量条件QTL分析. 麦类作物学报, 2019,39:46-53.
Zhang H, Sun J M, Han R X, Chen J S, Liu B, Deng Z Y, Li R Y, Tian J C. Conditional QTL analysis of three yield components in wheat ( Triticum aestivum L.). J Triticeae Crop, 2019,39:46-53 (in Chinese with English abstract).
[45] 卢娟, 姚永定, 史华伟, 史雨刚, 王曙光, 孙黛珍. 小麦产量构成因素相关性状与群体产量的遗传相关分析. 山西农业科学, 2018,46:501-503.
Lu J, Yao Y D, Shi H W, Shi Y G, Wang S G, Sun D Z. Genetic correlation analysis between yield components related traits and population yield in wheat. J Shanxi Agric Sci, 2018,46:501-503 (in Chinese with English abstract).
[46] 丁安明, 李君, 崔法, 赵春华, 马航运, 王洪刚. 利用小麦关联RIL群体定位产量相关性状QTL. 作物学报, 2011,37:1511-1524.
Ding A M, Li J, Cui F, Zhao C H, Ma H Y, Wang H G. QTL mapping for yield related traits using two associated RIL populations of wheat. Acta Agron Sin, 2011,37:1511-1524 (in Chinese with English abstract).
[47] Heidari B, Sayed-Tabatabaei B E, Saeidi G, Kearsey M, Suenaga K, Gulick P. Mapping QTL for grain yield, yield components, and spike features in a doubled haploid population of bread wheat. Genome, 2011,54:517-527.
[48] Bhusal N, Sarial A K, Sharma P, Sareen S. Mapping QTLs for grain yield components in wheat under heat stress. PLoS One, 2017,12:e0189594.
[49] 阎素红, 杨兆生, 柴升. 小麦上三叶性状与产量及其构成因素的关系. 麦类作物学报, 2004,24:39-42.
Yan S H, Yang Z S, Chai S. Relation between characters of the top-three leaves and yield and its compositions of wheat. J Triticeae Crop, 2004,24:39-42 (in Chinese with English abstract).
[50] Narasimhamoorthy B, Gill B S, Fritz A K, Nelson J C, Brown-Guedira G L. Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theor Appl Genet, 2006,112:787-796.
[51] Campbell B T, Baenziger P S, Gill K S, Eskridge K M, Budak H, Erayman M, Dweikat I, Yen Y. Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3A of wheat. Crop Sci, 2003,43:1493-1505.
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[3] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[4] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[5] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[6] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[7] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[8] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[9] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[10] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[11] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[12] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[15] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!