欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (5): 882-893.doi: 10.3724/SP.J.1006.2021.04128

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析

黄宁2,*(), 惠乾龙1, 方振名2, 李姗姗2, 凌辉2, 阙友雄1, 袁照年1,*()   

  1. 1福建农林大学国家甘蔗工程技术研究中心, 福建福州 350002
    2玉林师范学院农学院, 广西玉林 537000
  • 收稿日期:2020-06-15 接受日期:2020-09-13 出版日期:2021-05-12 网络出版日期:2020-09-30
  • 通讯作者: 黄宁,袁照年
  • 基金资助:
    国家现代农业产业技术体系建设专项(CARS-170208)

Identification, localization and expression analysis of beta-carotene isomerase gene family in sugarcane

HUANG Ning2,*(), HUI Qian-Long1, FANG Zhen-Ming2, LI Shan-Shan2, LING Hui2, QUE You-Xiong1, YUAN Zhao-Nian1,*()   

  1. 1National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2College of Crop Science, Yulin Normal University, Yulin 537000, Guangxi, China
  • Received:2020-06-15 Accepted:2020-09-13 Published:2021-05-12 Published online:2020-09-30
  • Contact: HUANG Ning,YUAN Zhao-Nian
  • Supported by:
    China Agriculture Research System(CARS-170208)

摘要:

独脚金内酯(strigolactones, SLs)是一种广泛存在、能够抑制植物分蘖或分枝的植物激素。β-胡萝卜素异构酶(D27)是SLs合成中的关键酶, 但是目前关于甘蔗D27基因家族的鉴定与分析鲜有报道。本研究通过挖掘甘蔗原始亲本之一的割手密种基因组数据鉴定了5个割手密种D27基因家族成员。系统进化树分析发现, 割手密种D27s分处在3个不同系统发育分支, 与高粱D27s高度同源。保守结构域预测揭示, 割手密种D27s包含β-胡萝卜素异构酶的典型结构域Pfam: DUF4033。顺式元件分析结果显示, 割手密种D27s主要参与调控激素和胁迫响应, 以及植物生长发育等。基于甘蔗栽培种转录组数据分析发现, 甘蔗割手密种D27基因家族成员(Sspon.06G0012830-1A)的同源基因同时参与甘蔗分蘖调控及黑穗病菌胁迫响应。在此基础上, 我们克隆获得了甘蔗栽培种ROC22中的同源基因cDNA序列, 命名为ScD27.1 (GenBank登录号为MT499895)。生物信息学分析结果显示, ScD27.1编码266个氨基酸, 其蛋白等电点为8.91, 分子量为30.00 kD, 是不稳定蛋白且定位于叶绿体。二级结构主要包括α-螺旋和无规则卷曲, 具有叶绿体转运肽, 包含4个泛素化位点和18个磷酸化位点。qRT-PCR表达分析表明, ScD27.1基因受ABA及H2O2显著诱导表达, 但对MeJA、SA胁迫响应不明显。亚细胞定位结果显示, ScD27.1蛋白可能定位于细胞膜和叶绿体, 参与细胞内膜泡运输或由液泡前体、胞内运输小泡分拣运输。以上研究表明, ScD27.1基因可能参与黑穗病菌侵染诱导的甘蔗分蘖及ABA和H2O2相关信号通路。本研究为了解甘蔗ScD27.1蛋白在胞内运输和分蘖中的作用及其参与甘蔗-黑穗病菌互作提供一定的基础理论。

关键词: β-胡萝卜素异构酶, 基因家族, 生物信息学, 分蘖, 甘蔗黑穗病菌

Abstract:

Strigolactones (SLs), a class of plant hormones, exists widely in plants and involves in the regulation of plant tillering and environmental adaptation. β-carotene isomerase (D27) is a key enzyme for SLs synthesis, but there are few reports about the identification and analysis of D27 gene family in sugarcane. In this study, five members of D27 gene family from one of the original parent of modern sugarcane cultivars, Saccharum spontaneum, were analyzed. Phylogenetic tree analysis showed that these D27s from S. spontaneum was clustered into 3 different branches and were highly homologous to sorghum D27s. Conserved domain prediction revealed that D27s contained a typical domain of β-carotene isomerase, Pfam: DUF4033. The results of cis-element analysis showed that D27s mainly involved in the regulation of hormone response, plant growth and development, and stress response. Based on the transcriptomic data of the modern cultivated varieties, the expression analysis of the homologous transcripts of Saccharum spontaneum D27s showed that Sspon.06G0012830-1A was regulated at tillering stage and under Sporisorium scitamineum infection. Besides, the cDNA sequence of Sspon.06G0012830-1A was cloned from sugarcane cultivar ROC22 and named as ScD27.1 (GenBank accession number: MT499895). Bioinformatics analysis indicated that ScD27.1 encoded an unstable protein of 266 amino acids with an isoelectric point of 8.91 and a molecular weight of 30.00 kD, and might be located in the chloroplast, containing chloroplast transit peptides, 4 ubiquitination sites and 18 phosphorylation sites. Its secondary structure mainly included alpha helix and random coils. qRT-PCR analysis demonstrated that ScD27.1 was significantly induced by ABA and H2O2 and did not respond to MeJA and SA. Subcellular localization revealed that ScD27.1 might be located in cell membrane and chloroplast and involved in the vesicle sorting or transported by sorting vesicle in plant cells. The results suggested that ScD27.1 may involve in the tillering induced by S. scitamineum and signaling pathway of ABA and H2O2. The present study provides a basic understanding of intracellular transport and tillering in sugarcane and the involvement of ScD27.1 during sugarcane-S. scitamineum interaction.

Key words: β-carotene isomerase, gene family, bioinformatics, tillering, Sporisorium scitamineum

表1

引物列表"

引物名称 Primer name 引物序列 Primer sequence (5°-3°)
ScD27.1-F CTCGCAGCCTCACAAACGCGGGCGG
ScD27.1-R TCTCAAGCCAACGGTCTCCTA
G-ScD27.1-F GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGGCCGTGCTTCCGCGACC
G-ScD27.1-R GGGGACCACTTTGTACAAGAAAGCTGGGTCCGCCTGAAGTTTGGGACAGA
q-ScD27.1-F GGGTGCTCAAGAAAT
q-ScD27.1-R CTCGTTGGTGAAGAAGTC
CAC-F ACAACGTCAGGCAAAGCAAA
CAC-R AGATCAACTCCACCTCTGCG
CUL-F TGCTGAATGTGTTGAGCAGC
CUL-R TTGTCGCGCTCCAAGTAGTC

图1

甘蔗割手密种D27基因家族鉴定 A: 甘蔗割手密种D27s染色体分布; B: 甘蔗割手密种D27s氨基酸序列间相似性。"

图2

基于甘蔗割手密种和其他5个物种D27s氨基酸序列的系统进化树及结构域分析 横坐标表示蛋白氨基酸序列的长度; 线条颜色表示所用到的物种(Species); 条码颜色表示蛋白的结构域(Domains)。"

图3

甘蔗割手密种D27s顺式元件预测 横坐标表示的基因启动子区核苷酸长度; 条码颜色表示启动子区不同的顺式元件。"

表2

甘蔗割手密种与栽培种D27s间序列相似性"

基因名称
Gene ID
6-BA和DA-6共同诱导甘蔗栽培种ROC22
分蘖转录组
Transcriptome of sugarcane cultivar ROC22
treated with 6-BA and DA-6
甘蔗栽培种ROC22和YC05-179应答黑穗病菌
侵染转录组
Transcriptome of sugarcane cultivar ROC22 and YC05-179 responding to Sporisorium scitamineum infection
c116894.
graph_c0
c112688.
graph_c0
c161113.
graph_c0
Sugarcane_
Unigene.66941
Sugarcane_
Unigene.58014
Sugarcane_ Unigene.87626
Sspon.06G0012830-3C 94.57 94.96
Sspon.06G0012830-1A 97.93 98.34
Sspon.07G0014180-2B 82.33 98.31
Sspon.07G0014180-3C 80 82.42
Sspon.06G0016140-2C 97.06 95.83

图4

不同转录组中甘蔗栽培种D27s基因的表达 A: 表达数据来源于6-BA和DA-6共同诱导甘蔗栽培种ROC22分蘖相关转录组; B: 表达数据来源于甘蔗栽培种ROC22和YC05-179应答黑穗病菌侵染转录组。X轴表示出现在甘蔗转录组数据中的转录本序号; Y轴表示相对于对照组而言, 转录本在处理组中的相对表达量, 其中*代表相对表达量显著差异(P < 0.05)。"

图5

甘蔗栽培种ScD27.1基因的克隆与测序 A: ScD27.1基因的RT-PCR产物的琼脂糖电泳分析; M代表marker 100 bp-III DNA marker (Generay, 中国上海)。B: ScD27.1基因的开放读码框(*, 终止密码子)及其编码氨基酸序列, 粗体部分为特异性引物在基因序列中的位置。"

表3

生物信息学分析结果"

生物信息学分析 Bioinformatics analysis 结果Result
一级结构特性
Primary structure characteristics
氨基酸长度 Length of amino acids 266
等电点 Theoretical pI 8.91
分子量 Molecular weight (kD) 30.00
不稳定系数 Instability index (II) 56.40
二级结构类型
Secondary structure types
α-螺旋 Alpha helix 30.08%
延伸链 Extended strand 12.41%
无规则卷曲 Random coil 57.52%
蛋白亚细胞定位
Protein subcellular location
Plant-Ploc工具 Plant-Ploc tool 叶绿体Chloroplast
ProtComp 9.0工具 ProtComp 9.0 tool 膜结合叶绿体Membrane bound Chloroplast
WoLFPSORT工具 WoLFPSORT tool 叶绿体Chloroplast
功能位点
Function sites
靶向肽类型 Type of targeting peptide 叶绿体转运肽Chloroplast transit peptide
泛素化位点 Ubiquitination sites 4
磷酸化位点 Phosphorylation sites 18

图6

ScD27.1基因在不同胁迫下的表达 A: ScD27.1基因定量引物扩增效率曲线; B: ScD27.1基因在ABA、MeJA、SA及H2O2胁迫下的表达。*表示在0.05水平差异显著; 误差线代表各组的标准误差(n = 3)。"

图7

ScD27.1蛋白的亚细胞定位鉴定 A~F为自然状态下蛋白亚细胞定位, 标尺为10 μm; G~L为渥曼青霉素(wortmannin, 16.5 μmol L-1)处理后的蛋白亚细胞定位, 标尺为15 μm。"

[1] McSteen P, Leyser O. Shoot branching. Annu Rev Plant Biol, 2005,56:353-374.
[2] 丘立杭, 范业庚, 罗含敏, 黄杏, 陈荣发, 杨荣仲, 吴建明, 李杨瑞. 甘蔗分蘖发生及成茎的调控研究进展. 植物生理学报, 2018,54:192-202.
Qiu L H, Fan Y G, Luo H M, Huang X, Chen R F, Yang R Z, Wu J M, Li Y R. Advances of regulation study on tillering formation and stem forming from available tillers in sugarcane ( Saccharum officinarum). J Plant Physiol, 2018,54:192-202 (in Chinese with English abstract).
[3] 罗宝杰, 许俊旭, 丁艳锋, 李刚华, 刘正辉, 王绍华. 内源CTK和IAA平衡对水稻分蘖芽休眠与萌发的影响. 作物学报, 2014,40:1619-1628.
Luo B J, Xu J X, Ding Y F, Li G H, Liu Z H, Wang S H. Effects of endogenous hormone balance on dormancy and germination of tiller bud. Acta Agron Sin, 2014,40:1619-1628 (in Chinese with English abstract).
[4] Wu C Y, Trieu A, Radhakrishnan P, Kwok S F, Pennell R I. Brassinosteroids regulate grain filling in rice. Plant Cell, 2008,20:2130-2145.
doi: 10.1105/tpc.107.055087 pmid: 18708477
[5] 王宝祥, 江玲, 陈亮明, 卢百关, 王琦, 黎光泉, 樊继伟, 程遐年, 翟虎渠, 徐大勇. 水稻黑条矮缩病抗性资源的筛选和抗性QTL的定位. 作物学报, 2010,36:1258-1264.
Wang B X, Jiang L, Chen L M, Lu B G, Wang Q, Li G Q, Fan J W, Cheng X N, Zhai H Q, Xu D Y. Screening of rice resources against rice black-streaked dwarf virus and mapping of resistant QTL. Acta Agron Sin, 2010,36:1258-1264 (in Chinese with English abstract).
[6] 莫祎, 段美娟, 孙志忠, 丁佳, 余东, 孙学武, 盛夏冰, 谭炎宁, 袁贵龙, 袁定阳. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位. 作物学报, 2019,45:1050-1058.
Mo Y, Duan M J, Sun Z Z, Ding J, Yu D, Sun X W, Sheng X B, Tan Y N, Yuan G L, Yuan D Y. Genetic analysis and fine mapping of white stripe leaf mutant wsl1 in rice. Acta Agron Sin, 2019,45:1050-1058 (in Chinese with English abstract).
[7] 蔡铁, 徐海成, 尹燕枰, 杨卫兵, 彭佃亮, 倪英丽, 徐彩龙, 杨东清, 王振林. 外源IAA、GA3和ABA影响不同穗型小麦分蘖发生的机制. 作物学报, 2013,39:1835-1842.
Cai T, Xu H C, Yin Y P, Yang W B, Peng D L, Ni Y L, Xu C L, Yang D Q, Wang Z L. Mechanisms of tiller occurrence affected by exogenous IAA, GA3, and ABA in wheat with different spike-types. Acta Agron Sin, 2013,39:1835-1842 (in Chinese with English abstract).
[8] Lorenzo M, Assuero S G, Tognetti J A. Low temperature differentially affects tillering in spring and winter wheat in association with changes in plant carbon status. Ann Appl Biol, 2015,166:236-248.
[9] Tena E, Mekbib F, Ayana A. Correlation and path coefficient analyses in sugarcane genotypes of ethiopia. Am J Plant Sci, 2016,7:1498-1520.
[10] Mehnaz S. Microbes—friends and foes of sugarcane. J Basic Microbe, 2013,53:954-971.
[11] Cook C E, Whichard L P, Turner B, Wall M E, Egley G H. Germination of witchweed ( Striga lutea Lour.): isolation and properties of a potent stimulant. Science, 1966,154:1189-1190.
pmid: 17780042
[12] Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008,455:195-200.
[13] Gomez-Roldan V, Fermas S, Brewer P B, Puech-Pages V, Dun E A, Pillot J P, Letisse F, Matusova R, Danoun S, Portais J C, Bouwmeester H, Becard G, Beveridge C A, Rameau C, Rochange S F. Strigolactone inhibition of shoot branching. Nature, 2008,455:189-194.
[14] Aliche E B, Screpanti C, Mesmaeker A D, Munnik T, Bouwmeester H J. Science and application of strigolactones. New Phytol, 2020,227:1001-1011.
[15] Waters M T, Brewer P B, Bussell J D, Smith S M, Beveridge C A. The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol, 2012,159:1073-1085.
[16] Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y. DWARF27, an Iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell, 2009,21:1512-1525.
[17] Zhao B, Wu T T, Ma S S, Jiang D J, Bie X M, Sui N, Zhang X S, Wang F. TaD27-B gene controls the tiller number in hexaploid wheat. Plant Biotechnol J, 2020,18:513-525.
[18] 吴转娣, 刘新龙, 刘家勇, 昝逢刚, 李旭娟, 刘洪博, 林秀琴, 陈学宽, 苏火生, 赵培方, 吴才文. 甘蔗独脚金内酯生物合成关键基因ScD27的克隆与表达分析. 作物学报, 2017,43:31-41.
Wu Z D, Liu X L, Liu J Y, Zan F G, Li X J, Liu H B, Lin X Q, Chen X K, Su H S, Zhao P F, Wu C W. Cloning and expression analysis of key gene ScD27 in strigolactones biosynthesis pathway. Acta Agron Sin, 2017,43:31-41 (in Chinese with English abstract).
[19] Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai C M, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson D R, Huang L, Li Z, Xu H, Zhou D, Wang Y, Hu W, Lin J, Deng Y, Pandey N, Mancini M, Zerpa D, Nguyen J K, Wang L, Yu L, Xin Y, Ge L, Arro J, Han J O, Chakrabarty S, Pushko M, Zhang W, Ma Y, Ma P, Lv M, Chen F, Zheng G, Xu J, Yang Z, Deng F, Chen X, Liao Z, Zhang X, Lin Z, Lin H, Yan H, Kuang Z, Zhong W, Liang P, Wang G, Yuan Y, Shi J, Hou J, Lin J, Jin J, Cao P, Shen Q, Jiang Q, Zhou P, Ma Y, Zhang X, Xu R, Liu J, Zhou Y, Jia H, Ma Q, Qi R, Zhang Z, Fang J, Fang H, Song J, Wang M, Dong G, Wang G, Chen Z, Ma T, Liu H, Dhungana S R, Huss S E, Yang X, Sharma A, Trujillo J H, Martinez M C, Hudson M, Riascos J J, Schuler M, Chen L Q, Braun D M, Li L, Yu Q, Wang J, Wang K, Schatz M C, Heckerman D, Van Sluys M-A, Souza G M, Moore P H, Sankoff D, VanBuren R, Paterson A H, Nagai C, Ming R. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet, 2018,50:1565-1573.
[20] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. Tbtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020,13:1194-1202.
pmid: 32585190
[21] Ling H, Wu Q, Guo J, Xu L, Que Y. Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative RT-PCR. PLoS One, 2014,9:e97469.
[22] Que Y, Su Y, Guo J, Wu Q, Xu L. A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-Seq. PLoS One, 2014,9:e106476.
[23] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) method. Methods, 2001,25:402-408.
[24] Su L, Shan J X, Gao J P, Lin H X. OsHAL3, a blue light-responsive protein, interacts with the floral regulator Hd1 to activate flowering in rice. Mol Plant, 2016,9:233-244.
pmid: 26537047
[25] Wang J, Cai Y, Miao Y, Lam S K, Jiang L. Wortmannin induces homotypic fusion of plant prevacuolar compartments. J Exp Bot, 2009,60:3075-3083.
[26] Wei T, Zhang C, Hong J, Xiong R, Kasschau K D, Zhou X, Carrington J C, Wang A. Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO. PLoS Pathog, 2010,6:e1000962.
pmid: 20585568
[27] Emans N, Zimmermann S, Fischer R. Uptake of a fluorescent marker in plant cells is sensitive to brefeldin A and wortmannin. Plant Cell, 2002,14:71-86.
[28] Marek M. Strigolactones as part of the plant defence system. Trends Plant Sci, 2016,21:900-903.
[29] Torres-Vera R, García J M, Pozo M J, López-Ráez J A. Do strigolactones contribute to plant defence? Mol Plant Pathol, 2014,15:211-216.
pmid: 24112811
[30] Piisilä M, Keceli M A, Brader G, Jakobson L, Jõesaar I, Sipari N, Kollist H, Palva E T, Kariola T. The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana. BMC Plant Biol, 2015,15:53.
[31] Stes E, Depuydt S, De Keyser A, Matthys C, Audenaert K, Yoneyama K, Werbrouck S, Goormachtig S, Vereecke D. Strigolactones as an auxiliary hormonal defence mechanism against leafy gall syndrome in Arabidopsis thaliana. J Exp Bot, 2015,66:5123-5134.
[32] Kunkel B N, Brooks D M. Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol, 2002,5:325-331.
[33] Asselbergh B, De Vleesschauwer D, Hofte M. Global switches and fine-tuning—ABA modulates plant pathogen defense. Mol Plant Microbe Interact, 2008,21:709-719.
[34] Xia X J, Zhou Y H, Shi K, Zhou J, Foyer C H, Yu J Q. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J Exp Bot, 2015,66:2839-2856.
[35] Abuauf H, Haider I, Jia K P, Ablazov A, Mi J, Blilou I, Al-Babili S. The Arabidopsis DWARF27 gene encodes an all-trans-/9- cis-β-carotene isomerase and is induced by auxin, abscisic acid and phosphate deficiency. Plant Sci, 2018,277:33-42.
[36] Bonneau L, Huguet S, Wipf D, Pauly N, Truong H N. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytol, 2013,199:188-202.
[37] Haider I, Andreo-Jimenez B, Bruno M, Bimbo A, Floková K, Abuauf H, Ntui V O, Guo X, Charnikhova T, Al-Babili S, Bouwmeester H J, Ruyter-Spira C. The interaction of strigolactones with abscisic acid during the drought response in rice. J Exp Bot, 2018,69:2403-2414.
pmid: 29538660
[38] Davidi L, Pick U. Novel 9-cis/all-trans β-carotene isomerases from plastidic oil bodies in Dunaliella bardawil catalyze the conversion of all-trans to 9-cis β-carotene. Plant Cell Rep, 2017,36:807-814.
pmid: 28285407
[39] van Zeijl A, Liu W, Xiao T T, Kohlen W, Yang W C, Bisseling T, Geurts R. The strigolactone biosynthesis gene DWARF27 is co-opted in rhizobium symbiosis. BMC Plant Biol, 2015,15:260.
[40] Cooper J W, Hu Y, Beyyoudh L, Dasgan H Y, Kunert K, Beveridge C A, Foyer C H. Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis. Plant Cell Environ, 2018,41:1298-1310.
pmid: 29341173
[41] Toh S, McCourt P, Tsuchiya Y. HY5 is involved in strigolactone-dependent seed germination in Arabidopsis. Plant Signal Behav, 2012,7:556-558.
pmid: 22516816
[42] Wu H, Li H, Chen H, Qi Q, Ding Q, Xue J, Ding J, Jiang X, Hou X, Li Y. Identification and expression analysis of strigolactone biosynthetic and signaling genes reveal strigolactones are involved in fruit development of the woodland strawberry ( Fragaria vesca). BMC Plant Biol, 2019,19:73.
doi: 10.1186/s12870-019-1673-6
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[3] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[4] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
[5] 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366.
[6] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[7] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[8] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[9] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[10] 赵杰, 李绍平, 程爽, 田晋钰, 邢志鹏, 陶钰, 周磊, 刘秋员, 胡雅杰, 郭保卫, 高辉, 魏海燕, 张洪程. “独秆”栽培模式下全程氮肥在分蘖中后期施用对旱直播水稻产量和品质的影响[J]. 作物学报, 2021, 47(6): 1162-1174.
[11] 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786.
[12] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[13] 黄小芳,毕楚韵,石媛媛,胡韵卓,周丽香,梁才晓,黄碧芳,许明,林世强,陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报, 2020, 46(8): 1195-1207.
[14] 韦还和,葛佳琳,张徐彬,孟天瑶,陆钰,李心月,陶源,丁恩浩,陈英龙,戴其根. 盐胁迫下粳稻品种南粳9108分蘖特性及其与群体生产力的关系[J]. 作物学报, 2020, 46(8): 1238-1247.
[15] 郑清雷,余陈静,姚坤存,黄宁,阙友雄,凌辉,许莉萍. 甘蔗Rieske Fe/S蛋白前体基因ScPetC的克隆及表达分析[J]. 作物学报, 2020, 46(6): 844-857.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!