欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (5): 894-903.doi: 10.3724/SP.J.1006.2021.02048

• 耕作栽培·生理生化 • 上一篇    下一篇

水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用

姚佳瑜1,2(), 于吉祥1,2, 王志琴1,2, 刘立军1,2, 周娟1,2, 张伟杨1,2,*(), 杨建昌1,2,*()   

  1. 1江苏省作物遗传生理重点实验室 / 江苏省作物栽培生理重点实验室 / 扬州大学农学院, 江苏扬州225009
    2江苏省粮食作物现代产业技术协同创新中心 / 扬州大学, 江苏扬州225009
  • 收稿日期:2020-07-14 接受日期:2020-11-13 出版日期:2021-05-12 网络出版日期:2020-12-23
  • 通讯作者: 张伟杨,杨建昌
  • 作者简介:E-mail: yaojiayuyzu@163.com
  • 基金资助:
    国家自然科学基金项目(31901445);国家自然科学基金项目(31771710);江苏省大学生实践创新训练计划项目(201911117010Z);国家重点研发计划(2016YFD0300206-4);国家重点研发计划(2018YFD0300800);国家重点研发计划(2017YFD0301206);中国博士后科学基金资助项目(2018M640528);江苏高校优势学科建设工程项目(PAPD);扬州大学高端人才支持计划项目(2015-01)

Response of endogenous brassinosteroids to nitrogen rates and its regulatory effect on spikelet degeneration in rice

YAO Jia-Yu1,2(), YU Ji-Xiang1,2, WANG Zhi-Qin1,2, LIU Li-Jun1,2, ZHOU Juan1,2, ZHANG Wei-Yang1,2,*(), YANG Jian-Chang1,2,*()   

  1. 1Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology / Agricultural College of Yangzhou University, Yangzhou 225009, Jiangsu, China
    2Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2020-07-14 Accepted:2020-11-13 Published:2021-05-12 Published online:2020-12-23
  • Contact: ZHANG Wei-Yang,YANG Jian-Chang
  • Supported by:
    Natural Science Foundation of China(31901445);Natural Science Foundation of China(31771710);Training Programs of Innovation and Entrepreneurship for Undergraduates of Jiangsu Province(201911117010Z);Development Program of China(2016YFD0300206-4);Development Program of China(2018YFD0300800);Development Program of China(2017YFD0301206);Project funded by China Postdoctoral Science Foundation(2018M640528);Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD);Top Talent Supporting Program of Yangzhou University(2015-01)

摘要:

为探明油菜素甾醇(brassinosteroids, BRs)是否介导氮肥对水稻颖花退化的影响。水稻品种扬稻6号和甬优2640种植于盆钵, 全生育期设置3种施氮水平, 观察了不同氮肥处理下水稻减数分裂期幼穗中氮含量、BRs、过氧化氢(H2O2)和总抗氧化能力(total antioxidant capacity, T-AOC)水平及其与颖花退化的关系。结果表明, 颖花退化率的降低与稻穗中增加的24-表油菜素甾酮(24-epicastasterone, 24-epiCS)和28-高油菜素内酯(28-homobrassinolide, 28-homBL)含量密切相关。当稻穗的氮含量为1.25%时, 幼穗中BRs (24-epiCS和28-homBL)含量显著增加, 颖花退化率显著降低。稻穗中T-AOC水平与BRs含量变化趋势相同, 且均与水稻颖花退化率显著负相关, 而H2O2含量与BRs含量和T-AOC变化趋势相反。施用外源BRs (24-epiCS或28-homBL)可显著提高稻穗中内源BRs (24-epiCS和28-homBL)含量与T-AOC水平, 并显著降低稻穗中H2O2含量和颖花退化率, 施用BRs合成抑制剂则效果相反。表明BRs可以介导氮肥对水稻颖花退化的调控, 在减数分裂期适宜的稻穗含氮量(1.25%)可有效提高幼穗中的BRs含量, 并通过提高抗氧化能力来抑制颖花退化。

关键词: 油菜素甾醇, 氮素, 水稻, 颖花退化

Abstract:

In order to investigate whether and how brassinosteroids (BRs) mediate the effect of nitrogen (N) rates on spikelet degeneration of rice, rice cultivars Yangdao 6 and Yongyong 2640 were grown in pots subjected to three N rates in the whole growth periods. The contents of N, BRs, hydrogen peroxide (H2O2) and total antioxidant capacity (T-AOC) in young rice panicles at meiosis stage and their relationship with spikelet degeneration rate were observed. The results showed that the decreased spikelet degeneration rate was closely associated with enhanced 24-epicastasterone (24-epiCS) and 28-homobrassinolide (28-homBL) contents in young panicles. When N content of rice panicle was 1.25%, the BRs (24-epiCS and 28-homBL) content in young panicle increased significantly, and the spikelet degeneration rate decreased. The variation trend of T-AOC level was very consistent with BRs, and T-AOC was significantly negatively correlated with spikelet degeneration rate, whereas the variation trend of H2O2 content was opposite to that of T-AOC and BRs contents in the young panicles. Application of exogenous BRs (24-epiCS or 28-homBL) to young panicles could significantly increase the T-AOC level and contents of endogenous 24-epiCS and 28-homBL, but significantly reduce the H2O2 content and spikelet degeneration rate, while application of BRs synthesis inhibitor had the opposite effect. In summary, BRs mediated the effects of N application rates on spikelet degeneration, and elevated BRs contents in young panicles could inhibit spikelet degeneration by elevating antioxidant capacity under a proper panicle N content (1.25%) at meiosis stage in rice.

Key words: brassinosteroids, nitrogen, rice (Oryza sativa L.), spikelet degeneration

表1

不同施氮量处理对水稻颖花发育、产量和产量构成因素的影响"

年份/品种/处理
Year/cultivar/treatment
每盆穗数
Number of panicle
每穗分化颖花数
Differentiated spikelets per panicle
颖花退化率
Spikelet degeneration rate (%)
每穗粒数
Spikelets per panicle
结实率
Fully-filled grains rate (%)
千粒重
1000-grain weight (g)
产量
Grain yield
(g pot-1)
2015
扬稻6号YD-6
低氮LN 15.0 ± 0.56 c 188 ± 2.69 c 8.32 ± 0.29 b 170 ± 2.95 b 89.1 ± 0.98 a 28.3 ± 0.48 a 62.9 ± 2.20 c
中氮MN 19.9 ± 0.72 b 201 ± 2.87 a 7.49 ± 0.04 c 181 ± 4.22 a 86.5 ± 1.03 b 27.0 ± 0.53 ab 83.7 ± 2.55 a
高氮HN 22.3 ± 0.91 a 195 ± 2.78 b 9.68 ± 0.12 a 172 ± 2.21 b 80.0 ± 0.71 c 25.9 ± 0.83 b 78.2 ± 2.91 b
甬优2640 YY-2640
低氮LN 14.2 ± 0.57 b 293 ± 5.79 c 14.9 ± 0.16 a 245 ± 5.06 b 84.4 ± 1.80 a 25.4 ± 0.37 a 73.6 ± 3.47 b
中氮MN 17.8 ± 0.23 a 336 ±4.80 b 13.4 ± 0.34 b 276 ± 3.73 a 78.7 ± 2.66 b 24.8 ± 0.38 a 95.3 ± 1.61 a
高氮HN 18.5 ± 0.40 a 347 ± 4.96 a 11.8 ± 0.27 c 282 ± 5.76 a 72.7 ± 2.07 c 24.5 ± 0.27 a 91.6 ± 3.41 a
2016
扬稻6号YD-6
低氮LN 14.4 ± 0.36 c 185 ± 2.45 b 8.52 ± 0.56 ab 172 ± 2.25 b 90.3 ± 1.59 a 28.6 ± 0.70 a 65.5 ± 2.38 c
中氮MN 19.5 ± 0.83 b 198 ± 3.19 a 7.55 ± 0.31 b 179 ± 3.43 a 87.1 ± 0.99 b 27.3 ± 0.75 ab 85.0 ± 2.70 a
高氮HN 22.1 ± 0.76 a 191 ± 3.01 ab 9.36 ± 0.47 a 174 ± 2.06 ab 79.0 ± 1.72 c 26.1 ± 1.14 b 80.2 ± 4.42 b
甬优2640 YY-2640
低氮LN 13.8 ± 0.75 c 292 ± 5.76 b 15.8 ± 0.33 a 241 ± 7.12 b 84.1 ± 2.33 a 25.6 ± 0.52 a 73.1 ± 4.05 b
中氮MN 17.4 ± 0.41 b 330 ± 6.23 a 13.8 ± 0.32 b 272 ± 5.69 a 80.7 ± 1.22 b 25.0 ± 0.60 ab 97.3 ± 3.01 a
高氮HN 18.9 ± 0.61 a 341 ± 4.59 a 12.5 ± 0.29 c 278 ± 8.58 a 74.3 ± 1.53 c 24.1 ± 0.49 b 93.6 ± 4.58 a

图1

不同施氮量处理对稻穗含氮量(A, B)的影响 缩略词同表1。数据为平均值±标准误, 品种柱上方不同字母表示0.05水平上差异显著(同一品种内比较, n = 5)"

图2

不同施氮量处理对稻穗中24-表油菜素甾酮(24-epiCS) (A, B)和28-高油菜素内酯(28-homoBL) (C, D)含量的影响 缩写同表1。数据为平均值±标准误, 品种柱上方不同字母表示0.05水平上差异显著(同一品种内比较, n = 3)。"

图3

不同施氮量处理对稻穗中总抗氧化能力(T-AOC) (A, B)和过氧化氢(H2O2) (C, D)含量的影响 缩写同表1。数据为平均值±标准误, 品种柱上方不同字母表示在0.05水平上差异显著(同一品种内比较, n=3)。"

图4

稻穗含氮量与油菜素甾醇(BRs) (A, B)、总抗氧化能力(T-AOC) (C)、过氧化氢(H2O2) (D)含量和颖花退化率(E)的关系 *, **分别代表在0.05和0.01水平上差异显著(n = 12)。"

图5

稻穗中油菜素甾醇(BRs)含量与总抗氧化能力(T-AOC) (A, B)、过氧化氢(H2O2)含量(C, D)和颖花退化率(E, F)的关系 **表示在0.05和0.01水平上差异显著(n = 12)。"

表2

外源化学调控物质对稻穗中油菜素甾醇(BRs)、总抗氧化能力(T-AOC)和过氧化氢(H2O2)水平的影响"

品种
Cultivar
生理指标
Physiological parameter
化学物质处理 Chemical treatment
CK T1 T2 T3 T4
扬稻6号 24-epiCS (pmol g-1 DW) 37.9 ± 2.28 c 58.6 ± 2.61 a 50.4 ± 1.72 b 14.8 ± 1.01 d 37.2 ± 2.26 c
YD-6 28-homoBL (pmol g-1 DW) 73.7 ± 3.54 c 106 ± 4.99 b 126 ± 3.62 a 35.4 ± 2.07 d 79.3 ± 4.12 c
T-AOC (U g-1 DW) 80.3 ± 2.58 b 114 ± 4.09 a 119 ± 5.08 a 34.6 ± 2.46 c 79.8 ± 2.26 b
H2O2 (μmol g-1 DW) 7.68 ± 0.78 b 4.24 ± 0.26 c 4.17 ± 0.25 c 17.76 ± 0.56 a 7.76 ± 0.68 b
甬优2640 24-epiCS (pmol g-1 DW) 21.5 ± 1.18 c 38.5 ± 1.45 a 31.3 ± 1.21 b 10.8 ± 0.48 d 21.9 ± 0.83 c
YY-2640 28-homoBL (pmol g-1 DW) 32.2 ± 1.35 c 52.6 ± 2.87 b 62.7 ± 2.07 a 15.3 ± 0.71 d 32.1 ± 1.58 c
T-AOC (U g-1 DW) 36.4 ± 1.38 b 50.9 ± 1.74 a 51.7 ± 1.91 a 16.0 ± 0.55 c 35.4 ± 2.23 b
H2O2 (μmol g-1 DW) 14.9 ± 1.22 b 7.81 ± 0.46 c 7.50 ± 0.49 c 33.8 ± 1.63 a 13.7 ± 0.96 b

表3

外源化学调控物质对水稻颖花分化与退化、每穗粒数、饱粒率和粒重的影响"

品种
Cultivar
处理
Treatment
每穗颖花分化数
Differentiated spikelets per panicle
颖花退化率
Spikelet
degeneration rate (%)
每穗粒数
Spikelets per
panicle
饱粒率
Fully-filled grains rate (%)
千粒重
1000-grain weight
(g)
扬稻6号 CK 204 ± 2.25 a 7.35 ± 0.19 c 185 ± 3.77 bc 88.2 ± 1.69 b 27.2 ± 0.38 a
YD-6 T1 202 ± 3.18 a 4.12 ± 0.17 e 194 ± 3.50 ab 92.3 ± 1.81 a 26.8 ± 0.40 a
T2 205 ± 2.68 a 4.75 ± 0.09 d 196 ± 3.83 a 92.2 ± 1.80 a 26.6 ± 0.52 a
T3 201 ± 3.11 a 15.3 ± 0.29 a 172 ± 1.84 c 76.5 ± 1.65 c 27.4 ± 0.84 a
T4 207 ± 3.49 a 8.03 ± 0.15 b 187 ± 2.61 d 88.3 ± 1.35 b 27.1 ± 0.41 a
甬优2640 CK 346 ± 5.61 a 14.2 ± 0.37 b 292 ± 3.94 b 81.3 ± 1.02 b 24.9 ± 0.40 ab
YY-2640 T1 348 ± 6.63 a 8.92 ± 0.25 c 313 ± 5.40 a 84.2 ± 1.37 a 24.4 ± 0.29 ab
T2 343 ± 4.95 a 9.07 ± 0.17 c 310 ± 4.56 a 84.4 ± 1.45 a 24.4 ± 0.30 ab
T3 349 ± 4.42 a 28.4 ± 0.87 a 241 ± 2.97 c 65.3 ± 1.04 c 25.3 ± 0.60 a
T4 346 ± 5.03 a 14.6 ± 0.51 b 288 ± 4.41 b 80.6 ± 1.53 b 25.0 ± 0.37 ab
[1] FAOSTAT. FAO Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations, Rome, 2016.
[2] Makino A. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol, 2011,155:125-129.
[3] Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Prod Sci, 2009,12:3-8.
[4] 彭少兵. 对转型时期水稻生产的战略思考. 中国科学: 生命科学, 2014,44:845-850.
Peng S B. Reflection on China’s rice production strategies during the transition period. Sci Sin Vitae, 2014,44:845-850 (in Chinese with English abstract).
[5] Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005,309:741-745.
[6] Zhang W Y, Zhu K Y, Wang Z Q, Zhang H, Gu J F, Liu L J, Yang J C, Zhang J H. Brassinosteroids function in spikelet differentiation and degeneration in rice. J Integr Plant Biol, 2019,61:943-963.
[7] Wang Z Q, Zhang W Y, Yang J C. Physiological mechanism underlying spikelet degeneration in rice. J Integr Agric, 2018,17:1475-1481.
[8] Zhang W Y, Chen Y J, Wang Z Q, Yang J C. Polyamines and ethylene in rice young panicles in response to soil drought during panicle differentiation. Plant Growth Regul, 2017,82:491-503.
[9] Heng Y Q, Wu C Y, Long Y, Luo S, Ma J, Chen J, Liu J F, Zhang H, Ren Y L, Wang M, Tan J J, Zhu S S, Wang J L, Lei C, Zhang X, Guo X P, Wang H Y, Cheng Z J, Wan J M. OsALMT7 maintains panicle size and grain yield in rice by mediating malate transport. Plant Cell, 2018,30:889-906.
[10] Zhang W Y, Sheng J Y, Fu L D, Xu Y J, Xiong F, Wu Y F, Wang W L, Wang Z Q, Zhang J H, Yang J C. Brassinosteroids mediate the effect of soil-drying during meiosis on spikelet degeneration in rice. Environ Exp Bot, 2020,169:103887.
[11] Tang C J, Sun Y J, Xu H S, Yu S B. Identification of quantitative trait locus and epistatic interaction for degenerated spikelets on the top of panicle in rice. Plant Breed, 2011,130:177-184.
[12] Zhang D, Yuan Z. Molecular control of grass inflorescence development. Annu Rev Plant Biol, 2014,65:553-578.
[13] Lv B S, Tian H Y, Zhang F, Liu J J, Lu S H, Bai M Y, Li C Y, Ding Z J. Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLoS Genet, 2018,14:e1007144.
[14] Ye H X, Liu S Z, Tang B Y, Chen J N, Xie Z L, Nolan T M, Jiang H, Guo H Q, Lin H Y, Li L, Wang Y Q, Tong H N, Zhang M C, Chu C C, Li Z H, Aluru M, Aluru S, Schnable P S, Yin Y H. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nat Commun, 2017,8:14573.
[15] Zhang C, Bai M Y, Chong K. Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep, 2014,33:683-696.
[16] Vriet G, Russinova E, Reuzeau C. From squalene to brassinolide: the steroid metabolic and signaling pathways across the plant kingdom. Mol Plant, 2013,6:1738-1757.
[17] Tong H, Liu L, Jin Y, Du L, Yin Y, Qian Q, Zhu L, Chu C. Dwarf and low-tillering acts as a direct downstream target of a GSK3/SHAGGY-Like kinase to mediate brassinosteroid responses in rice. Plant Cell, 2012,24:2562-2577.
[18] Sakamoto T, Morinaka Y, Inukai Y, Kitano H, Fujioka S. Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice. Plant J, 2013,73:676-688.
[19] Li D, Wang L, Wang M, Xu Y Y, Luo W, Liu Y J, Xu Z H, Li J, Chong K. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnol J, 2009,7:791-806.
[20] Jiang W B, Huang H Y, Hu Y W, Zhu S W, Wang Z Y, Lin W H. Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiol, 2013,162:1965-1977.
[21] Xin P, Yan J, Fan J, Chu J, Yan C. An improved simplified high-sensitivity quantification method for determining brassinosteroids in different tissues of rice and Arabidopsis. Plant Physiol, 2013,162:2056-2066.
[22] Zhang Z J, Chu G, Liu L J, Wang Z Q, Wang X M, Zhang H, Yang J C, Zhang J H. Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crops Res, 2013,150:9-18.
[23] Ali A, Xu P Z, Riaz A, Wu X J. Current advances in molecular mechanisms and physiological basis of panicle degeneration in rice. Int J Mol Sci, 2019,20:1613.
[24] 凌启鸿, 张洪程, 苏祖芳, 凌励. 稻作新理论. 北京: 科学出版社, 1994. pp 98-120.
Ling Q H, Zhang H C, Su Z F, Ling L. New Theories in Rice Production. Beijing: Science Press, 1994. pp 98-120(in Chinese).
[25] Namuco O S, O’Toole J C. Reproductive stage water-stress and sterility. Effect of stress during meiosis. Crop Sci, 1986,26:317-321.
[26] Ding J, Mao L J, Yuan B F, Feng Y Q. A selective pretreatment method for determination of endogenous active brassinosteroids in plant tissues: Double layered solid phase extraction combined with boronate affinity polymer monolith microextraction. Plant Methods, 2013,9:13.
[27] Chen M, Lu Y, Ma Q, Guo L, Feng Y Q. Boronate affinity monolith for highly selective enrichment of glycopeptides and glycoproteins. Analyst, 2009,134:2158-2164.
[28] Bajguz A, Tretyn A. The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry, 2003,62:1027-1046.
[29] Rao M, Lee H, Creelman R A, Mullet J E, Davis K R. Jasmonic acid signaling modulates ozone-induced hyper sensitive cell death. Plant Cell, 2000,12:1633-1646.
[30] Ling S, Chen C S, Wang Y, Sun X C, Lu Z H, Ouyang Y D, Yao J L. The mature anther-preferentially expressed genes are associated with pollen fertility, pollen germination and anther dehiscence in rice. BMC Genomics, 2015,16:101.
[31] Ding C Q, You J, Chen L, Wang S H, Ding Y F. Nitrogen fertilizer increases spikelet number per panicle by enhancing cytokinin synthesis in rice. Plant Cell Rep, 2014,33:363-371.
[32] Ding C Q, Wang Y, Chang Z Y, You S L, Liu Z H, Wang S H, Ding Y F. Comparative proteomic analysis reveals nitrogen fertilizer increases spikelet number per panicle in rice by repressing protein degradation and 14-3-3 Proteins. J Plant Growth Regul, 2016,35:744-754.
[33] Ghaley B B. Uptake and utilization of 5-split nitrogen topdressing in an improved and a traditional rice cultivar in the Bhutan Highlands. Exp Agric, 2012,48:536-550.
[34] Kamiji Y, Yoshida H, Palta J A, Sakuratani T, Shiraiwa T. N applications that increase plant N during panicle development are highly effective in increasing spikelet number in rice. Field Crops Res, 2011,122:242-247.
[35] Zhu X L, Liang W Q, Cui X, Chen M J, Yin C S, Luo Z J, Zhu J Y, Lucas W J, Wang Z Y, Zhang D B. Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of carbon starved anther, a MYB domain protein. Plant J, 2015,82:570-581.
[36] Zhang W Y, Sheng J Y, Xu Y J, Xiong F, Wu Y F, Wang W L, Wang Z Q, Yang J C, Zhang J H. Role of brassinosteroids in rice spikelet differentiation and degeneration under soil-drying during panicle development. BMC Plant Biol, 2019,19:409.
[37] Zhang W Y, Fu L D, Men C B, Men J X, Yao J Y, Sheng J Y, Xu Y J, Wang Z Q, Liu L J, Yang J C, Zhang J H. Response of brassinosteroids to nitrogen rates and their regulation on rice spikelet degeneration during meiosis. Food Energy Secur, 2020,9:e201.
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!