作物学报 ›› 2021, Vol. 47 ›› Issue (5): 894-903.doi: 10.3724/SP.J.1006.2021.02048
姚佳瑜1,2(), 于吉祥1,2, 王志琴1,2, 刘立军1,2, 周娟1,2, 张伟杨1,2,*(), 杨建昌1,2,*()
YAO Jia-Yu1,2(), YU Ji-Xiang1,2, WANG Zhi-Qin1,2, LIU Li-Jun1,2, ZHOU Juan1,2, ZHANG Wei-Yang1,2,*(), YANG Jian-Chang1,2,*()
摘要:
为探明油菜素甾醇(brassinosteroids, BRs)是否介导氮肥对水稻颖花退化的影响。水稻品种扬稻6号和甬优2640种植于盆钵, 全生育期设置3种施氮水平, 观察了不同氮肥处理下水稻减数分裂期幼穗中氮含量、BRs、过氧化氢(H2O2)和总抗氧化能力(total antioxidant capacity, T-AOC)水平及其与颖花退化的关系。结果表明, 颖花退化率的降低与稻穗中增加的24-表油菜素甾酮(24-epicastasterone, 24-epiCS)和28-高油菜素内酯(28-homobrassinolide, 28-homBL)含量密切相关。当稻穗的氮含量为1.25%时, 幼穗中BRs (24-epiCS和28-homBL)含量显著增加, 颖花退化率显著降低。稻穗中T-AOC水平与BRs含量变化趋势相同, 且均与水稻颖花退化率显著负相关, 而H2O2含量与BRs含量和T-AOC变化趋势相反。施用外源BRs (24-epiCS或28-homBL)可显著提高稻穗中内源BRs (24-epiCS和28-homBL)含量与T-AOC水平, 并显著降低稻穗中H2O2含量和颖花退化率, 施用BRs合成抑制剂则效果相反。表明BRs可以介导氮肥对水稻颖花退化的调控, 在减数分裂期适宜的稻穗含氮量(1.25%)可有效提高幼穗中的BRs含量, 并通过提高抗氧化能力来抑制颖花退化。
[1] | FAOSTAT. FAO Statistical Databases, Food and Agriculture Organization (FAO) of the United Nations, Rome, 2016. |
[2] | Makino A. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiol, 2011,155:125-129. |
[3] | Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Prod Sci, 2009,12:3-8. |
[4] | 彭少兵. 对转型时期水稻生产的战略思考. 中国科学: 生命科学, 2014,44:845-850. |
Peng S B. Reflection on China’s rice production strategies during the transition period. Sci Sin Vitae, 2014,44:845-850 (in Chinese with English abstract). | |
[5] | Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005,309:741-745. |
[6] | Zhang W Y, Zhu K Y, Wang Z Q, Zhang H, Gu J F, Liu L J, Yang J C, Zhang J H. Brassinosteroids function in spikelet differentiation and degeneration in rice. J Integr Plant Biol, 2019,61:943-963. |
[7] | Wang Z Q, Zhang W Y, Yang J C. Physiological mechanism underlying spikelet degeneration in rice. J Integr Agric, 2018,17:1475-1481. |
[8] | Zhang W Y, Chen Y J, Wang Z Q, Yang J C. Polyamines and ethylene in rice young panicles in response to soil drought during panicle differentiation. Plant Growth Regul, 2017,82:491-503. |
[9] | Heng Y Q, Wu C Y, Long Y, Luo S, Ma J, Chen J, Liu J F, Zhang H, Ren Y L, Wang M, Tan J J, Zhu S S, Wang J L, Lei C, Zhang X, Guo X P, Wang H Y, Cheng Z J, Wan J M. OsALMT7 maintains panicle size and grain yield in rice by mediating malate transport. Plant Cell, 2018,30:889-906. |
[10] | Zhang W Y, Sheng J Y, Fu L D, Xu Y J, Xiong F, Wu Y F, Wang W L, Wang Z Q, Zhang J H, Yang J C. Brassinosteroids mediate the effect of soil-drying during meiosis on spikelet degeneration in rice. Environ Exp Bot, 2020,169:103887. |
[11] | Tang C J, Sun Y J, Xu H S, Yu S B. Identification of quantitative trait locus and epistatic interaction for degenerated spikelets on the top of panicle in rice. Plant Breed, 2011,130:177-184. |
[12] | Zhang D, Yuan Z. Molecular control of grass inflorescence development. Annu Rev Plant Biol, 2014,65:553-578. |
[13] | Lv B S, Tian H Y, Zhang F, Liu J J, Lu S H, Bai M Y, Li C Y, Ding Z J. Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLoS Genet, 2018,14:e1007144. |
[14] | Ye H X, Liu S Z, Tang B Y, Chen J N, Xie Z L, Nolan T M, Jiang H, Guo H Q, Lin H Y, Li L, Wang Y Q, Tong H N, Zhang M C, Chu C C, Li Z H, Aluru M, Aluru S, Schnable P S, Yin Y H. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nat Commun, 2017,8:14573. |
[15] | Zhang C, Bai M Y, Chong K. Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep, 2014,33:683-696. |
[16] | Vriet G, Russinova E, Reuzeau C. From squalene to brassinolide: the steroid metabolic and signaling pathways across the plant kingdom. Mol Plant, 2013,6:1738-1757. |
[17] | Tong H, Liu L, Jin Y, Du L, Yin Y, Qian Q, Zhu L, Chu C. Dwarf and low-tillering acts as a direct downstream target of a GSK3/SHAGGY-Like kinase to mediate brassinosteroid responses in rice. Plant Cell, 2012,24:2562-2577. |
[18] | Sakamoto T, Morinaka Y, Inukai Y, Kitano H, Fujioka S. Auxin signal transcription factor regulates expression of the brassinosteroid receptor gene in rice. Plant J, 2013,73:676-688. |
[19] | Li D, Wang L, Wang M, Xu Y Y, Luo W, Liu Y J, Xu Z H, Li J, Chong K. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnol J, 2009,7:791-806. |
[20] | Jiang W B, Huang H Y, Hu Y W, Zhu S W, Wang Z Y, Lin W H. Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiol, 2013,162:1965-1977. |
[21] | Xin P, Yan J, Fan J, Chu J, Yan C. An improved simplified high-sensitivity quantification method for determining brassinosteroids in different tissues of rice and Arabidopsis. Plant Physiol, 2013,162:2056-2066. |
[22] | Zhang Z J, Chu G, Liu L J, Wang Z Q, Wang X M, Zhang H, Yang J C, Zhang J H. Mid-season nitrogen application strategies for rice varieties differing in panicle size. Field Crops Res, 2013,150:9-18. |
[23] | Ali A, Xu P Z, Riaz A, Wu X J. Current advances in molecular mechanisms and physiological basis of panicle degeneration in rice. Int J Mol Sci, 2019,20:1613. |
[24] | 凌启鸿, 张洪程, 苏祖芳, 凌励. 稻作新理论. 北京: 科学出版社, 1994. pp 98-120. |
Ling Q H, Zhang H C, Su Z F, Ling L. New Theories in Rice Production. Beijing: Science Press, 1994. pp 98-120(in Chinese). | |
[25] | Namuco O S, O’Toole J C. Reproductive stage water-stress and sterility. Effect of stress during meiosis. Crop Sci, 1986,26:317-321. |
[26] | Ding J, Mao L J, Yuan B F, Feng Y Q. A selective pretreatment method for determination of endogenous active brassinosteroids in plant tissues: Double layered solid phase extraction combined with boronate affinity polymer monolith microextraction. Plant Methods, 2013,9:13. |
[27] | Chen M, Lu Y, Ma Q, Guo L, Feng Y Q. Boronate affinity monolith for highly selective enrichment of glycopeptides and glycoproteins. Analyst, 2009,134:2158-2164. |
[28] | Bajguz A, Tretyn A. The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry, 2003,62:1027-1046. |
[29] | Rao M, Lee H, Creelman R A, Mullet J E, Davis K R. Jasmonic acid signaling modulates ozone-induced hyper sensitive cell death. Plant Cell, 2000,12:1633-1646. |
[30] | Ling S, Chen C S, Wang Y, Sun X C, Lu Z H, Ouyang Y D, Yao J L. The mature anther-preferentially expressed genes are associated with pollen fertility, pollen germination and anther dehiscence in rice. BMC Genomics, 2015,16:101. |
[31] | Ding C Q, You J, Chen L, Wang S H, Ding Y F. Nitrogen fertilizer increases spikelet number per panicle by enhancing cytokinin synthesis in rice. Plant Cell Rep, 2014,33:363-371. |
[32] | Ding C Q, Wang Y, Chang Z Y, You S L, Liu Z H, Wang S H, Ding Y F. Comparative proteomic analysis reveals nitrogen fertilizer increases spikelet number per panicle in rice by repressing protein degradation and 14-3-3 Proteins. J Plant Growth Regul, 2016,35:744-754. |
[33] | Ghaley B B. Uptake and utilization of 5-split nitrogen topdressing in an improved and a traditional rice cultivar in the Bhutan Highlands. Exp Agric, 2012,48:536-550. |
[34] | Kamiji Y, Yoshida H, Palta J A, Sakuratani T, Shiraiwa T. N applications that increase plant N during panicle development are highly effective in increasing spikelet number in rice. Field Crops Res, 2011,122:242-247. |
[35] | Zhu X L, Liang W Q, Cui X, Chen M J, Yin C S, Luo Z J, Zhu J Y, Lucas W J, Wang Z Y, Zhang D B. Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of carbon starved anther, a MYB domain protein. Plant J, 2015,82:570-581. |
[36] | Zhang W Y, Sheng J Y, Xu Y J, Xiong F, Wu Y F, Wang W L, Wang Z Q, Yang J C, Zhang J H. Role of brassinosteroids in rice spikelet differentiation and degeneration under soil-drying during panicle development. BMC Plant Biol, 2019,19:409. |
[37] | Zhang W Y, Fu L D, Men C B, Men J X, Yao J Y, Sheng J Y, Xu Y J, Wang Z Q, Liu L J, Yang J C, Zhang J H. Response of brassinosteroids to nitrogen rates and their regulation on rice spikelet degeneration during meiosis. Food Energy Secur, 2020,9:e201. |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[7] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[8] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[9] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[10] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[11] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[12] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[13] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[14] | 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974. |
[15] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
|