欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (4): 975-987.doi: 10.3724/SP.J.1006.2022.11033

• 耕作栽培·生理生化 • 上一篇    下一篇

播期播量及施氮量对冬小麦生长及光谱指标的影响

李鑫格(), 高杨, 刘小军, 田永超, 朱艳, 曹卫星, 曹强*()   

  1. 南京农业大学国家信息农业工程技术中心 / 智慧农业教育部工程研究中心 / 农业农村部农作物系统分析与决策重点试验室 / 江苏省信息农业重点试验室 / 现代作物生产省部共建协同创新中心, 江苏南京 210095
  • 收稿日期:2021-03-25 接受日期:2021-07-12 出版日期:2022-04-12 网络出版日期:2021-08-04
  • 通讯作者: 曹强
  • 作者简介:E-mail: 2018101002@njau.edu.cn, Tel: 025-84396265
  • 基金资助:
    国家自然科学基金青年科学基金项目(31601222);江苏现代农业产业技术体系建设专项(JATS[2020]135);江苏现代农业产业技术体系建设专项(JATS[2020]415);江苏省信息农业重点实验室自主课题基金项目资助(KLIAKF1602)

Effects of sowing dates, sowing rates, and nitrogen rates on growth and spectral indices in winter wheat

LI Xin-Ge(), GAO Yang, LIU Xiao-Jun, TIAN Yong-Chao, ZHU Yan, CAO Wei-Xing, CAO Qiang*()   

  1. National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University / Engineering and Research Center for Smart Agriculture, Ministry of Education / Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture and Rural Affairs / Jiangsu Key Laboratory for Information Agriculture / Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Nanjing 210095, Jiangsu, China
  • Received:2021-03-25 Accepted:2021-07-12 Published:2022-04-12 Published online:2021-08-04
  • Contact: CAO Qiang
  • Supported by:
    National Natural Science Foundation of China(31601222);Earmarked Fund for Jiangsu Agricultural Industry Technology System(JATS[2020]135);Earmarked Fund for Jiangsu Agricultural Industry Technology System(JATS[2020]415);Independent Project of Jiangsu Key Laboratory of Information Agriculture(KLIAKF1602)

摘要:

为阐明播期、播量及施氮量对冬小麦生长与光谱指标的影响规律, 本研究通过开展连续两年不同播期、播量及施氮量的冬小麦田间试验, 系统地研究了三因素及其互作对冬小麦产量、关键生育时期叶面积指数(leaf area index, LAI)和归一化红边指数(normalized difference red edge, NDRE)的影响, 并进一步分析了三因素对冬小麦冠层NDRE时序曲线的影响。另一方面建立了不同产量水平下冬小麦冠层NDRE适宜时序曲线, 以便于实时监测不同产量水平下冬小麦长势动态。结果表明, 冬小麦冠层NDRE与LAI随关键生育期的变化相似, 且三因素对关键生育时期2个指标的影响规律基本一致。2018—2019年冬小麦产量、不同生育时期LAI和冠层NDRE均随播期推迟而下降; 2019—2020年除灌浆期外, 晚播冬小麦产量、LAI及冠层NDRE峰值最大。2年冬小麦不同生育时期LAI、冠层NDRE随施氮量增加而增加; 而不同播量间无明显差异。三因素中播期、施氮量对冬小麦冠层NDRE时序曲线有显著影响。冬小麦冠层NDRE时序曲线随施氮量增加被纵向拉长; 曲线下降部分随播期推迟向左平移, 同时2018—2019年随播期推迟曲线峰值下降, 2019—2020年晚播、过晚播冬小麦曲线峰值高于适播期冬小麦。将2个年份数据融合在一起建立了3个产量水平下冬小麦冠层NDRE适宜时序曲线(产量水平分别为: 小于6.75、6.75~8.25、大于8.25 t hm-2); 发现随产量水平升高, NDRE时序曲线峰值及幅宽均增大。综上所述, 冬小麦应适期早播, 但若冬前积温较高, 应适当推迟播期; 且可通过增加一定播量和施氮量来改善晚播冬小麦群体长势。研究结果可为不同播期及不同产量水平下冬小麦长势监测提供技术支撑。

关键词: 播期, 播量, 施氮量, LAI, NDRE

Abstract:

To clarify the effects of sowing dates, sowing rates, and nitrogen rates on growth and spectral indices in winter wheat, a two-year winter wheat field experiment under different sowing dates, sowing rates, and nitrogen rates was conducted. We studied systematically the effects of three factors and their interactions on yield, leaf area index (LAI), and normalized difference red edge (NDRE) of winter wheat at critical growth stages. Furthermore, to facilitate real-time monitoring of winter wheat growth dynamics, we also established the appropriate time-series curves of winter wheat canopy NDRE under different yield levels. The results indicated that the change patterns of NDRE and LAI at critical growth stages were very consistent, and the response of three factors to the two indices at critical growth stages was basically the same in winter wheat. In 2018 and 2019, the yield, LAI, and NDRE of winter wheat at each growth stages decreased with the delay of sowing date. In 2019 and 2020, the yield, peaks of LAI and NDRE under late sowing date were the largest except for the filling stage. The LAI and NDRE of winter wheat at different growth stages in the two years increased with the increase of nitrogen rates. However, there was basically no significant difference among sowing rates. Among the three factors, the sowing dates and nitrogen rates had a significant influence on the time-series curves of winter wheat canopy NDRE. The NDRE time series curves of winter wheat were stretched with the increase of nitrogen rates, the descending part of NDRE time series curve shifted to the left with the delay of the sowing date. In 2018 and 2019, the peak values of NDRE time series curves of winter wheat were declined with the delay of the sowing date. In 2019 and 2020, the peak values of the NDRE time series curves of late sowing and over-late sowing winter wheat were higher than that of suitable sowing wheat. The data of two years were merged to establish suitable time-series curves of winter wheat canopy NDRE under three yield levels, and the yield levels were less than 6.75 t hm-2, 6.75-8.25 t hm-2, and higher than 8.25 t hm-2, respectively. The peak values and width of the NDRE time-series curves increased with the increase of yield level. In summary, winter wheat should be sown early at an appropriate date, but if the accumulated temperature before winter was higher, the sowing date should be postponed appropriately. And the growth of late sowing winter wheat could be improved by increasing a certain amount of sowing rates and nitrogen rates. At the same time, these results could provide a technical support for monitoring the growth of winter wheat under different sowing dates and different yield levels.

Key words: sowing date, sowing rate, nitrogen rate, LAI, NDRE

表1

冬小麦产量的方差分析"

变异来源
Source of variance
处理
Treatment
2018-2019 2019-2020
播期 S1 6.87 a 7.63 b
Sowing date S2 6.31 b 8.15 a
S3 5.71 c 7.73 b
播量 D1 6.09 b 7.83 a
Sowing rate D2 6.30 ab 7.76 a
D3 6.50 a 7.93 a
施氮量 N0 4.21 c 4.51 c
Nitrogen rate N1 6.15 b 8.02 b
N2 6.69 a 8.22 a
N3 6.75 a 8.39 a
因素互作 S×D ns *
Factor interactions S×N ** **
D×N *** ns
S×D×N ** ns

表2

冬小麦LAI及冠层NDRE的方差分析"

变异来源
Source of variances
自由度
DF
LAI NDRE
拔节期
Jointing
孕穗期
Booting
抽穗期
Heading
开花期
Flowering
灌浆期
Filling
拔节期
Jointing
孕穗期
Booting
抽穗期
Heading
开花期
Flowering
灌浆期
Filling
年份
Year
1 *** *** *** *** *** *** *** *** *** ***
播期
Sowing date
2 *** *** *** *** *** *** *** *** *** ***
播量
Sowing rate
2 *** *** *** * ns *** *** ** * **
施氮量
Nitrogen rate
3 *** *** *** *** *** *** *** *** *** ***
年份×播期
Year×Sowing date
2 *** *** *** *** *** *** *** *** *** ***
年份×播量
Year×Sowing rate
2 ns * ** * ns * *** ** ns ns
年份×施氮量
Year×Nitrogen rate
3 *** *** *** *** *** *** *** *** *** ***
播期×施氮量
Sowing date×Sowing rate
4 *** ** ns ns ** *** ** *** ns ***
播期×施氮量
Sowing date×Nitrogen rate
6 *** *** *** *** *** *** *** *** *** ***
播量×施氮量
Sowing rate×Nitrogen rate
6 *** *** *** *** ns ** *** ** *** *
年份×播期×播量
Year×Sowing date×Sowing rate
4 ns ns ** ns ns *** * *** *** ***
年份×播期×施氮量
Year×Sowing date×Nitrogen rate
6 *** *** *** *** *** *** *** *** *** *
年份×播量×施氮量
Year×Sowing rate×Nitrogen rate
6 *** *** ns ** * * * ns ** *
播期×播量×施氮量
Sowing date×Sowing rate×Nitrogen rate
12 ** *** *** ** ns * *** *** *** ***
年份×播期×播量×施氮量
Year×Sowing date×Sowing rate×Nitrogen rate
12 ** ** *** *** ** *** *** *** ** ***

图1

三因素对不同生育时期冬小麦LAI和冠层NDRE的影响 图中不同小写字母(a、b、c、d)代表处理间有差异(P < 0.05)。"

图2

因素互作对冬小麦不同生育时期LAI的影响"

图3

因素互作对冬小麦不同生育时期NDRE的影响"

图4

不同处理下冬小麦冠层NDRE时序动态"

表3

三因素对冬小麦冠层NDRE时序曲线特征参数的影响"

来源
Source
处理
Treatment
2018-2019 2019-2020
Ymax kg (×10-3) tg ks (×10-3) ts Ymax kg (×10-3) tg ks (×10-3) ts
播期 S1 0.362 a 5.5 b 527.21 a 6.6 a 1817.94 a 0.377 a 7.6 a 797.85 a 7.0 a 1983.83 a
Sowing date S2 0.356 a 6.0 a 444.86 b 7.9 a 1700.68 b 0.399 a 6.1 a 498.71 b 7.8 a 1841.77 b
S3 0.355 a 4.2 c 514.14 a 7.8 a 1647.17 c 0.420 a 7.1 a 533.96 b 8.5 a 1730.53 c
Sig. ns <0.001 <0.001 ns <0.001 ns ns <0.001 ns <0.001
播量 D1 0.355 a 5.3 a 509.89 a 7.7 a 1729.11 a 0.397 a 6.8 a 616.12 a 7.8 a 1858.54 a
Sowing rate D2 0.356 a 5.3 a 498.26 a 7.3 a 1719.54 a 0.398 a 7.2 a 615.78 a 7.8 a 1849.84 a
D3 0.363 a 5.3 a 478.06 a 7.3 a 1717.15 a 0.401 a 6.8 a 598.63 a 7.8 a 1847.74 a
Sig. ns ns ns ns ns ns ns ns ns ns
施氮量 N0 0.256 c 5.1 a 445.11 b 5.1 b 1716.39 a 0.286 b 4.8 b 606.96 a 4.7 b 1790.57 a
Nitrogen rate N1 0.376 b 5.2 a 522.76 a 8.3 a 1711.95 a 0.426 a 7.6 a 627.80 a 8.7 a 1861.22 a
N2 0.394 a 5.3 a 514.32 a 8.2 a 1724.18 a 0.440 a 7.3 a 602.09 a 8.9 a 1873.56 a
N3 0.405 a 5.3 a 499.42 a 8.1 a 1735.19 a 0.444 a 8.0 a 603.84 a 8.8 a 1882.82 a
Sig. <0.001 ns 0.004 <0.001 ns <0.001 <0.001 ns <0.001 ns

图5

不同处理下冬小麦冠层NDRE适宜时序动态"

表4

产量水平划分"

产量水平
Yield level
产量
Yield (t hm-2)
样本数
Sample number
最大值
Max.
最小值
Min.
均值
Mean value
低产 Low yield <6.75 19 6.73 5.20 6.22
中产 Medium yield 6.75-8.25 21 8.24 6.95 7.69
高产 High yield ≥8.25 14 8.63 8.26 8.43

图6

不同产量水平冬小麦冠层NDRE适宜时序动态"

图7

不同产量水平冬小麦冠层NDRE时序曲线模拟值与实际值间的关系"

[1] 刘万代, 陈现勇, 尹钧, 杜沛鑫. 播期和密度对冬小麦豫麦49-198群体性状和产量的影响. 麦类作物学报, 2009, 29:464-469.
Liu W D, Chen X Y, Yin J, Du P X. Effect of sowing date and planting density on population trait and grain yield of winter wheat cultivar yumai 49-198. J Triticeae Crops, 2009, 29:464-469 (in Chinese with English abstract).
[2] 赵雪飞, 王丽金, 李瑞奇, 李雁鸣. 不同灌水次数和施氮量对冬小麦群体动态和产量的影响. 麦类作物学报, 2009, 29:1004-1009.
Zhao X F, Wang L J, Li R Q, Li Y M. Effect of irrigation times and nitrogen application rate on population dynamics and grain yield of winter wheat. J Triticeae Crops, 2009, 29:1004-1009 (in Chinese with English abstract).
[3] 胡焕焕, 刘丽平, 李瑞奇, 李慧玲, 李雁鸣. 播种期和密度对冬小麦品种河农822产量形成的影响. 麦类作物学报, 2008, 28:490-495.
Hu H H, Liu L P, Li R Q, Li H L, Li Y M. Effect of sowing date and planting density on the yield formation of a winter wheat cultivar Henong 822. J Triticeae Crops, 2008, 28:490-495 (in Chinese with English abstract).
[4] 刘萍, 郭文善, 徐月明, 封超年, 朱新开, 彭永欣. 种植密度对中、弱筋小麦籽粒产量和品质的影响. 麦类作物学报, 2006, 26:117-121.
Liu P, Guo W S, Xu Y M, Feng C N, Zhu X K, Peng Y X. Effect of planting density on grain yield and quality of weak-gluten and medium-gluten wheat. J Triticeae Crops, 2006, 26:117-121 (in Chinese with English abstract).
[5] Shah F, Coulter J A, Ye C, Wu W. Yield penalty due to delayed sowing of winter wheat and the mitigatory role of increased seeding rate. Eur J Agron, 2020, 119:126120.
[6] 李东升, 温明星, 蔡金华, 曲朝喜, 陈爱大. 播期和密氮组合对镇麦10号干物质积累及产量的调控效应. 麦类作物学报, 2015, 35:1426-1432.
Li D S, Wen M X, Cai J H, Qu C X, Chen A D. Effect of sowing date and the combination of planting density and nitrogen application on yield and dry matter accumulation of Zhenmai 10. J Triticeae Crops, 2015, 35:1426-1432 (in Chinese with English abstract).
[7] 胡文静, 程顺和, 高致富, 吴荣林, 陆成彬. 晚播条件下小麦籽粒产量、硬度与蛋白质含量对品种、施氮量和密度的响应. 江苏农业学报, 2018, 34:245-250.
Hu W J, Cheng H S, Gao Z F, Wu R L, Lu R L. Response of grain yield, hardness and protein content to cultivar, nitrogen fertilizer rate and plant density under late sowing condition. Jiangsu J Agric Sci, 2018, 34:245-250 (in Chinese with English abstract).
[8] 简大为, 祁军, 张燕, 苏甫热木, 张喜琴. 播种期和密度对冬小麦新冬29号产量形成的影响. 西北农业学报, 2011, 20(11):47-51.
Jian D W, Qi J, Zhang Y, Su Fu R M, Zhang X Q. Effect of sowing date and planting density on the yield formation of a winter wheat culticar Xindong 29. Southeast China J Agric Sci, 2011, 20(11):47-51 (in Chinese with English abstract).
[9] 王夏, 胡新, 孙忠富, 杜克明, 宋广树, 任德超. 不同播期和播量对小麦群体性状和产量的影响. 中国农学通报, 2011, 27(21):170-176.
Wang X, Hu X, Sun Z F, Du K M, Song G S, Ren D C. Effect of different sowing dates and planting density on group characters and yield of wheat. Chin Agric Sci Bull, 2011, 27(21):170-176 (in Chinese with English abstract).
[10] 刘芳亮, 任益锋, 王卫东, 党忠, 张保军. 播期和密度对冬小麦普冰151籽粒灌浆特性及产量的影响. 山东农业科学, 2017, 49(6):41-47.
Liu F L, Ren Y F, Wang W D, Dang Z, Zhang B J. Effect of sowing date and planting density on grain-filling characteristics and yield of winter wheat cultivar pubing 151. Shandong Agric Sci, 2017, 49(6):41-47 (in Chinese with English abstract).
[11] 王惠芳, 张青珍, 张明捷, 朱腾冉. 豫东北气温变化趋势及对冬小麦生长发育的影响. 中国农学通报, 2010, 26(11):341-345.
Wang H F, Zhang Q Z, Zhang M J, Zhu T R. Yu-northeast trend temperature changing on winter wheat growth and development. Chin Agric Sci Bull, 2010, 26:341-345 (in Chinese with English abstract).
[12] 陈英慧. 气候变化对河南南部冬小麦播种期的影响. 气象, 2005, 31(10):83-85.
Chen Y H. Impact of climate change on the seedtime of winter wheat in the southern area of Henan province. Meteorol Monthly, 2005, 31(10):83-85 (in Chinese with English abstract).
[13] Aranguren M, Castellón A, Aizpurua A. Crop sensor based non-destructive estimation of nitrogen nutritional status, yield, and grain protein content in wheat. Agriculture, 2020, 10:148.
doi: 10.3390/agriculture10050148
[14] Mistele B, Schmidhalter U. Estimating the nitrogen nutrition index using spectral canopy reflectance measurements. Eur J Agron, 2008, 29:184-190.
doi: 10.1016/j.eja.2008.05.007
[15] Cao Q, Miao Y, Wang H, Huang S, Cheng S, Khosla R, Jiang R. Non-destructive estimation of rice plant nitrogen status with crop circle multispectral active canopy sensor. Field Crops Res, 2013, 154:133-144.
doi: 10.1016/j.fcr.2013.08.005
[16] Prost L, Jeuffroy M. Replacing the nitrogen nutrition index by the chlorophyll meter to assess wheat N status. Agron Sustain Dev, 2007, 27:321-330.
doi: 10.1051/agro:2007032
[17] 项方林, 李鑫格, 马吉锋, 刘小军, 田永超, 朱艳, 曹卫星, 曹强. 基于冠层时序植被指数的冬小麦单产预测. 中国农业科学, 2020, 53:3679-3692.
Xiang F L, Li X G, Ma J F, Liu X J, Tian Y C, Zhu Y, Cao W X, Cao Q. Using canopy time-series vegetation index to predict yield of winter wheat. Sci Agric Sin, 2020, 53:3679-3692 (in Chinese with English abstract).
[18] Kanke Y, Tubaña B, Dalen M, Harrell D. Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy fields. Precis Agric, 2016, 17:507-530.
doi: 10.1007/s11119-016-9433-1
[19] Zhang K, Ge X, Shen P, Li W, Liu X, Cao Q, Zhu Y, Cao W, Tian Y. Predicting rice grain yield based on dynamic changes in vegetation indexes during early to mid-growth stages. Remote Sens(Basel, Switzerland), 2019, 11:387.
[20] Sakamoto T, Yokozawa M, Toritani H, Shibayama M, Ishitsuka N, Ohno H. A crop phenology detection method using time-series MODIS data. Remote Sens Environ, 2005, 96:366-374.
doi: 10.1016/j.rse.2005.03.008
[21] Zhou M, Ma X, Wang K, Cheng T, Tian Y, Wang J, Zhu Y, Hu Y, Niu Q, Gui L, Yue C, Yao X. Detection of phenology using an improved shape model on time-series vegetation index in wheat. Comput Electron Agric, 2020, 173:105398.
[22] Liu X, Ferguson R, Zheng H, Cao Q, Tian Y, Cao W, Zhu Y. Using an active-optical sensor to develop an optimal NDVI dynamic model for high-yield rice production (Yangtze, China). Sensors-Basel, 2017, 17:672.
doi: 10.3390/s17040672
[23] Franch B, Vermote E F, Becker-Reshef I, Claverie M, Huang J, Zhang J, Justice C, Sobrino J A. Improving the timeliness of winter wheat production forecast in the United States of America, Ukraine and China using MODIS data and NCAR Growing Degree Day information. Remote Sens Environ, 2015, 161:131-148.
doi: 10.1016/j.rse.2015.02.014
[24] Mcmaster G S, Smika D E. Estimation and evaluation of winter wheat phenology in the central Great Plains. Agric For Meteorol, 1988, 43:1-18.
doi: 10.1016/0168-1923(88)90002-0
[25] Fischer A. A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters. Remote Sens Environ, 1994, 48:220-230.
doi: 10.1016/0034-4257(94)90143-0
[26] 高聚林, 刘克礼, 刘瑞香, 张永平, 张铁山, 白立华, 杜瑞霞. 不同栽培条件对春小麦叶面积指数的影响. 麦类作物学报, 2003, 23:85-89.
Gao J L, Liu K L, Liu R X, Zhang Y P, Zhang T S, Bai L H, Du R X. Effects of different cultivation conditions on leaf area index of spring wheat. J Triticeae Crops, 2003, 23:85-89 (in Chinese with English abstract).
[27] 胡霞. 氮素供应对弱筋小麦产量及品质性状影响的研究. 安徽农业大学硕士学位论文,安徽合肥, 2005.
Hu X. Studies on Yield and Quality of Weak Gluten Wheat under the Nitrogen Application. MS Thesis of Anhui Agricultural University, Hefei, Anhui,China, 2005 (in Chinese with English abstract).
[28] 任书杰, 李世清, 王全九, 李生秀. 栽培模式、施氮和品种对冬小麦冠层结构和产量的影响. 生态学杂志, 2006, 25:1449-1454.
Ren S J, Li S Q, Wang Q J, Li S X. Effects of cultivation mode, nitrogen fertilization, and cultivar on winter wheat canopy parameters and grain yields in sub-humid area. Chin J Ecol, 2006, 25:1449-1454 (in Chinese with English abstract).
[29] 王之杰, 郭天财, 朱云集, 王纪华, 赵明. 超高产小麦冠层光辐射特征的研究. 西北植物学报, 2003, 23:1657-1662.
Wang Z J, Guo T C, Zhu Y J, Wang J H, Zhao M. Study on character of light radiation in canopy of super-high-yielding winter wheat. Acta Bot Boreali-Occident Sin, 2003, 23:1657-1662 (in Chinese with English abstract).
[30] 刘萍, 魏建军, 张东升, 王宝驹, 刘军, 刘建国. 播期和播量对滴灌冬小麦群体性状及产量的影响. 麦类作物学报, 2013, 23:1202-1207.
Liu P, Wei J J, Zhang D S, Wang B J, Liu J, Liu J G. Effect of seeding rate and sowing date on population traits and grain yield of drip irrigated winter wheat. J Triticeae Crops, 2013, 23:1202-1207 (in Chinese with English abstract).
[31] 张娜, 仵妮平, 徐文修, 吴培杰, 程雪峰. 不同施氮水平对滴灌冬小麦干物质生产及产量的影响. 中国农学通报, 2015, 31(33):21-26.
Zhang N, Wu N P, Xu W X, Wu P J, Cheng X F. Effect of nitrogen levels on dry matter and yield of winter wheat under drip irrigation. Chin Agric Sci Bull, 2015, 31(33):21-26 (in Chinese with English abstract).
[32] Thenkabail P S, Smith R B, De Pauw E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens Environ, 2000, 71:158-182.
doi: 10.1016/S0034-4257(99)00067-X
[33] 姚鑫锋. 小麦植株氮素营养无损监测与精确调控研究. 南京农业大学博士学位论文,江苏南京, 2012.
Yao X F. Non-destructive Monitoring and Precise Regulation of Plant Nitrogen Nutrition in Wheat. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu,China, 2012 (in Chinese with English abstract).
[34] 贾可, 刘建玲, 沈兵. 近14年北方冬小麦肥料产量效应变化及优化施肥方案. 植物营养与肥料学报, 2020, 26:2032-2042.
Jia K, Liu J L, Shen B. Yield effect change of fertilizers in the past 14 years and optimized fertilization of winter wheat in north of China. J Plant Nutr Fert, 2020, 26:2032-2042 (in Chinese with English abstract).
[35] Zhang K, Liu X, Tahir Ata-Ul-Karim S, Lu J, Krienke B, Li S, Cao Q, Zhu Y, Cao W, Tian Y. Development of chlorophyll- meter-index-based dynamic models for evaluation of high-yield japonica rice production in Yangtze River Reaches. Agronomy, 2019, 9:106.
doi: 10.3390/agronomy9020106
[36] 卫炜, 吴文斌, 李正国, 杨鹏, 胡琼, 周清波. 时间序列植被指数重构方法比对研究. 中国农业资源与区划, 2014, 35(1):34-43.
Wei W, Wu W B, Li Z G, Yang P, Hu Q, Zhou Q B. Comparison of three methods for reconstructing time series vegetation index. Chin J Agric Resour Regional Plan, 2014, 35(1):34-43 (in Chinese with English abstract).
[37] 曹云锋, 王正兴, 邓芳萍. 3种滤波算法对NDVI高质量数据保真性研究. 遥感技术与应用, 2010, 25:118-125.
Cao Y F, Wang Z X, Deng F P. Fidelity performance of three filters for high quality NDVI time-series analysis. Remote Sens Technol Appl, 2010, 25:118-125 (in Chinese with English abstract).
[38] Lim C H, Jung S H, Kim N S, Lee C S. Deduction of a meteorological phenology indicator from reconstructed MODIS LST imagery. J For Res, 2020, 31:2205-2216.
doi: 10.1007/s11676-019-01015-7
[39] Calvache I, Balocchi O, Alonso M, Keim J P, López I F. Thermal time as a parameter to determine optimal defoliation frequency of perennial ryegrass (Lolium perenne L.) and pasture brome(Bromus valdivianus Phil.). Agronomy, 2020, 10:620.
doi: 10.3390/agronomy10050620
[40] Böhler J E, Schaepman M E, Kneubühler M. Optimal timing assessment for crop separation using multispectral unmanned aerial vehicle (UAV) data and textural features. Remote Sens-Basel, 2019, 11:1780.
[41] 谭文, 杨再强, 李军. 基于温光效应的小白菜营养品质模拟模型研究. 中国农业气象, 2016, 37:59-67.
Tan W, Yang Z Q, Li J. Simulation of nutrient quality of pakchoi based on temperature-light function. Chin J Agrometeorol, 2016, 37:59-67 (in Chinese with English abstract).
[1] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[2] 谢呈辉, 马海曌, 许宏伟, 徐郗阳, 阮国兵, 郭峥岩, 宁永培, 冯永忠, 杨改河, 任广鑫. 施氮量对宁夏引黄灌区麦后复种糜子生长、产量及氮素利用的影响[J]. 作物学报, 2022, 48(2): 463-477.
[3] 杨志远, 舒川海, 张荣萍, 杨国涛, 王明田, 秦俭, 孙永健, 马均, 李娜. 不同株型杂交籼稻对氮肥的耐受性差异比较[J]. 作物学报, 2021, 47(8): 1593-1602.
[4] 李博, 张驰, 曾玉玲, 李秋萍, 任洪超, 卢慧, 杨帆, 陈虹, 王丽, 陈勇, 任万军, 邓飞. 播期对四川盆地杂交籼稻米饭食味品质的影响[J]. 作物学报, 2021, 47(7): 1360-1371.
[5] 董明辉, 陈培峰, 江贻, 曹鹏辉, 宋云生, 顾俊荣, 谢裕林, 乔中英, 张文地, 黄丽芬. 江苏太湖地区不同生育类型粳稻品种产量对不同播期气候因子的响应[J]. 作物学报, 2021, 47(5): 952-963.
[6] 徐田军, 吕天放, 赵久然, 王荣焕, 张勇, 蔡万涛, 刘月娥, 刘秀芝, 陈传永, 邢锦丰, 王元东, 刘春阁. 不同播期条件下黄淮海区主推夏播玉米品种籽粒灌浆特性[J]. 作物学报, 2021, 47(3): 566-574.
[7] 钟晓媛, 邓飞, 陈多, 田青兰, 赵敏, 王丽, 陶有凤, 任万军. 播期对机插杂交籼稻不同茎蘖部位稻穗枝梗数和颖花数的影响[J]. 作物学报, 2021, 47(10): 2012-2027.
[8] 时晓娟, 韩焕勇, 王方永, 郝先哲, 高宏云, 罗宏海. DPC+化学封顶对不同施氮量下棉花叶片光合生理特性的影响[J]. 作物学报, 2020, 46(9): 1416-1429.
[9] 王士红,杨中旭,史加亮,李海涛,宋宪亮,孙学振. 增密减氮对棉花干物质和氮素积累分配及产量的影响[J]. 作物学报, 2020, 46(3): 395-407.
[10] 陈天晔, 袁嘉琦, 刘艳阳, 许轲, 郭保卫, 戴其根, 霍中洋, 张洪程, 李国辉, 魏海燕. 江淮下游不同播期对稻-麦周年作物产量、品质及温光资源利用的影响[J]. 作物学报, 2020, 46(10): 1566-1578.
[11] 张驰, 何连华, 廖爽, 高云天, 朱世林, 李博, 周伟, 陈勇, 胡剑锋, 项祖芬, 任万军. 不同生态条件下播期对机插杂交籼稻日产量的影响[J]. 作物学报, 2020, 46(10): 1579-1590.
[12] 宁芳,张元红,温鹏飞,王瑞,王倩,董朝阳,贾广灿,李军. 不同降水状况下旱地玉米生长与产量对施氮量的响应[J]. 作物学报, 2019, 45(5): 777-791.
[13] 刘月娥,吕天放,赵久然,王荣焕,徐田军,陈传永,张译天,王元东,刘秀芝. 不同玉米杂交品种吐丝持续期特性及其对播期的响应[J]. 作物学报, 2019, 45(2): 310-315.
[14] 陈诗豪,李正阳,陈佳露,张元卿,魏育明,郑有良,蒲至恩. 品种与栽培条件对小麦籽粒生物活性物质含量的影响[J]. 作物学报, 2019, 45(11): 1756-1763.
[15] 安盼盼, 明博, 董朋飞, 张秒, 黄大召, 赵亚丽, 李潮海. 黄淮南部玉米产量对气候生态条件的响应[J]. 作物学报, 2018, 44(03): 442-453.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!