欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (4): 962-974.doi: 10.3724/SP.J.1006.2022.13010

• 耕作栽培·生理生化 • 上一篇    下一篇

连作秸秆还田下玉米氮素积累与氮肥替代效应研究

闫宇婷1(), 宋秋来2, 闫超1, 刘爽1, 张宇辉1, 田静芬1, 邓钰璇1, 马春梅1,*()   

  1. 1东北农业大学农学院, 黑龙江哈尔滨 150000
    2黑龙江省农业科学院耕作栽培研究所, 黑龙江哈尔滨 150000
  • 收稿日期:2021-03-31 接受日期:2021-07-12 出版日期:2022-04-12 网络出版日期:2021-08-09
  • 通讯作者: 马春梅
  • 作者简介:E-mail: 1290058648@qq.com
  • 基金资助:
    国家自然科学基金项目资助(31901473)

Nitrogen accumulation and nitrogen substitution effect of maize under straw returning with continuous cropping

YAN Yu-Ting1(), SONG Qiu-Lai2, YAN Chao1, LIU Shuang1, ZHANG Yu-Hui1, TIAN Jing-Fen1, DENG Yu-Xuan1, MA Chun-Mei1,*()   

  1. 1College of Agronomy, Northeast Agricultural University, Harbin 150000, Heilongjiang, China
    2Institute of cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin 150000, Heilongjiang, China
  • Received:2021-03-31 Accepted:2021-07-12 Published:2022-04-12 Published online:2021-08-09
  • Contact: MA Chun-Mei
  • Supported by:
    National Natural Science Foundation of China(31901473)

摘要:

针对东北地区农作物秸秆资源丰富, 然而焚烧弃置严重, 养分利用率较低等问题, 探讨常年玉米连作下还田秸秆的氮肥替代效应在松嫩平原玉米种植生产上的可行性。试验于2017—2019年在东北农业大学校内试验场进行, 采用框栽、连作方式, 采用再裂区试验设计, 主处理为秸秆不还田(S0)和秸秆还田(S1), 副处理为3个施尿素梯度0 (N0)、175 (N1)、350 (N2) kg hm-2, 再副处理为一次性施肥(基追比1∶0)和2次均匀施肥(基追比1∶1)。结果表明, 每公顷还12 t玉米秸秆可替代单质氮36.80 kg, 2017—2019年黑龙江省产生的玉米秸秆量平均为4650.05万吨, 秸秆还田可替代单质氮14.27万吨。在2次均匀施氮肥处理下, 秸秆氮肥替代量比一次性施氮肥处理高26.88%。秸秆还田与玉米氮肥利用率负相关, 在当地农业常用施尿素量350 kg hm-2 (纯氮161 kg hm-2)下, 玉米氮肥利用率3年平均S0较S1高6.09%, 产量S1较S0高4.66%, 且在秸秆还田、2次等量施氮肥处理玉米产量最高为268.22 g 框-1。综上所述, 东北地区玉米秸秆还田的氮肥替代效果显著, 将秸秆中残留养分有效转化为玉米生长所需氮素, 有利于秸秆资源的肥料化利用, 且作物秸秆与氮肥的长期配施能够显著提高玉米生物产量、产量和氮素累积, 是东北地区玉米增产增效的栽培模式。

关键词: 玉米, 氮肥, 秸秆还田, 氮肥替代量, 氮素积累, 结构方程模型

Abstract:

Crop straw resources in Northeast China are rich, but burning and discarding are serious, and nutrient utilization rate is very low. We explored the feasibility of the substitution of straw returning to nitrogen fertilizer and its effects on nitrogen accumulation under continuous cropping in cold region. A frame culture and continuous positioning experiment was carried out in the experimental site of Northeast Agricultural University from 2017 to 2019, with 15N labeled urea. A three-factor split-plot design was adopted in this experiment, the main plot was straw returning method with no straw returning (S0) and straw returning (S1), and the sub-plot was nitrogen application levels with 0 (N0), 175 (N1), and 350 (N2) kg hm-2. Two application methods were set for each fertilizer application amount, one ratio of base fertilizer and top dressing applied was 1:1, and the other ratio of base fertilizer and top dressing applied was 1:0. The results were as follows: When the straw returning amount was 12 t hm-2, the returning straw could replace 36.8 kg hm-2 pure nitrogen. The average amount of maize straw was 46.50 million tons in Heilongjiang Province from 2017 to 2019, and straw returning could replace 142,700 tons pure nitrogen. The replace amount of pure nitrogen in the ratio of base fertilizer and top dressing (1:1) was 26.88% higher than that in 1:0. Straw returning was negatively correlated with nitrogen use efficiency in maize. The average nitrogen use efficiency of maize in S0 treatment was 6.09% higher than S1 treatment, and the yield of S1 treatment was 4.66% higher than S0 treatment when the urea application amount was 350 kg hm-2 (161 kg hm-2 pure nitrogen). The highest yield of maize was 268.22 g frame-1 in the treatment of straw returning and topdressing with commonly fertilizer applied in local agriculture. In conclusion, the nitrogen substitution effect was remarkable under maize straw returning in Northeast China. Long-term combined application of crop straw and nitrogen fertilizer significantly improved the biomass, yield, and nitrogen accumulation of maize, which was a cultivation mode for increasing yield and efficiency of maize in Northeast China.

Key words: maize, nitrogen fertilizer, straw returning, nitrogen replacement amount, nitrogen accumulation, structural equation model

表3

玉米成熟期干物质重"

处理
Treatment
2017 2018 2019
茎秆 Stalk 籽粒 Grain 茎秆 Stalk 籽粒 Grain 茎秆 Stalk 籽粒 Grain
N0 S1 187.58±8.61 a 201.65±3.20 a 146.56±2.13 a 202.20±5.97 a 136.85±6.56 a 193.23±5.77 a
S0 178.97±1.63 a 192.70±5.75 a 148.52±3.23 a 193.53±8.50 a 142.97±6.12 a 187.46±7.41 a
N1 N1-1S1 247.27±3.00 a 236.45±0.32 a 162.84±0.37 a 224.52±2.32 a 159.76±2.40 a 223.20±2.34 a
N1-1S0 220.08±2.63 b 220.40±1.11 b 155.84±0.68 b 215.74±2.61 b 157.36±0.14 a 201.77±2.39 c
N1-0S1 226.23±6.15 b 226.91±6.51 b 163.17±0.47 a 214.36±1.50 b 152.46±2.55 b 213.29±3.27 b
N1-0S0 213.53±1.85 c 215.98±0.47 c 165.99±3.15 a 213.13±1.48 b 149.91±3.58 b 198.53±3.24 c
N2 N2-1S1 266.40±3.52 a 247.94±1.04 a 181.43±1.56 a 244.11±0.17 a 178.32±1.77 a 249.55±4.78 a
N2-1S0 253.01±1.08 b 237.49±2.71 b 163.52±2.25 b 229.04±1.95 b 165.72±4.78 b 225.08±3.24 c
N2-0S1 251.93±1.22 b 234.78±0.29 b 183.68±4.10 a 232.07±3.03 b 165.63±2.04 b 233.95±1.51 b
N2-0S0 239.70±4.71 c 227.56±1.44 c 179.58±2.23 a 220.91±1.18 c 160.94±1.52 b 217.64±0.99 d
秸秆还田S ** ** ns ** ns **
施氮肥N ** ** ** ** ** **
S×N ** ** ** ** ns **

表1

试验处理施肥量(g 框-1)"

处理
Treatment
基肥Base fertilizer 追肥尿素(15N标记)
Topdressing CH415N2O
重过磷酸钙
Ca(H2PO4)2·H2O
硫酸钾
K2SO4
尿素(15N标记)
CH415N2O
N0 1.06 1.06 0 0
N1-1 1.06 1.06 0.62 0.62
N1-0 1.06 1.06 1.24 0
N2-1 1.06 1.06 1.24 1.24
N2-0 1.06 1.06 2.48 0

表2

玉米成熟期氮素含量"

处理
Treatment
2017 2018 2019
茎秆 Stalk 籽粒 Grain 茎秆 Stalk 籽粒Grain 茎秆 Stalk 籽粒 Grain
N0 S1 7.40±0.20 a 14.41±0.76 a 8.11±0.19 a 13.93±0.49 a 6.10±0.08 a 12.91±0.28 a
S0 7.20±0.01 a 13.65±0.03 a 7.92±0.30 a 13.44±0.11 a 6.02±0.30 a 12.63±0.12 a
N1 N1-1S1 9.71±0.05 a 16.93±0.20 a 9.22±0.07 a 16.81±0.20 a 8.81±0.20 a 15.72±0.10 a
N1-1S0 9.42±0.07 b 16.04±0.12 b 8.71±0.01 c 15.92±0.08 b 8.17±0.03 b 15.04±0.13 c
N1-0S1 8.83±0.50 c 15.92±0.11 b 9.02±0.03 b 16.04±0.10 b 8.70±0.12 a 15.31±0.01 b
N1-0S0 8.33±0.35 c 15.02±0.31 c 9.03±0.01 b 15.43±0.03 c 8.61±0.14 a 14.72±0.03 d
N2 N2-1S1 11.13±0.04 a 18.92±0.07 a 9.72±0.03 a 17.72±0.02 a 9.80±0.20 a 16.81±0.11 a
N2-1S0 9.44±0.08 b 17.74±0.02 b 9.42±0.09 b 16.95±0.38 b 9.60±0.13 a 15.31±0.05 c
N2-0S1 9.45±0.01 b 17.03±0.21 c 9.33±0.06 b 16.57±0.22 b 9.20±0.05 b 15.71±0.11 b
N2-0S0 9.22±0.02 c 16.02±0.11 d 9.14±0.03 c 16.05±0.02 c 8.90±0.01 c 14.54±0.01 d
秸秆还田S ** ns ns * ns **
施氮肥N ** ** ** ** ** **
S×N ns ** ns ns ns **

表4

玉米成熟期氮积累量"

处理
Treatment
2017 2018 2019
茎秆 Stalk 籽粒Grain 茎秆Stalk 籽粒 Grain 茎秆 Stalk 籽粒 Grain
N0 S1 1.662±0.050 a 2.974±0.033 a 1.021±0.003 a 2.694±0.106 a 0.825±0.014 a 2.801±0.117 a
S0 1.612±0.003 a 2.773±0.201 a 1.059±0.038 a 2.588±0.095 a 0.845±0.020 a 2.684±0.059 a
N1 N1-1S1 2.564±0.031 a 3.967±0.035 a 1.959±0.002 a 3.592±0.061 a 1.372±0.042 a 3.766±0.027 a
N1-1S0 2.177±0.021 b 3.514±0.015 c 1.299±0.024 c 3.254±0.025 c 1.330±0.006 a 3.321±0.004 b
N1-0S1 2.288±0.111 b 3.701±0.051 b 1.684±0.102 b 3.422±0.042 b 1.331±0.011 a 3.166±0.033 c
N1-0S0 1.826±0.088 c 3.400±0.114 c 1.229±0.070 c 3.185±0.069 c 1.294±0.006 b 3.015±0.151 c
N2 N2-1S1 2.965±0.135 a 4.709±0.049 a 2.854±0.034 a 3.837±0.126 a 1.597±0.040 a 4.511±0.028 a
N2-1S0 2.434±0.034 b 4.058±0.246 b 2.388±0.107 b 3.481±0.087 b 1.557±0.013 a 3.910±0.044 b
N2-0S1 2.400±0.016 b 3.938±0.055 b 2.495±0.033 b 3.511±0.030 b 1.495±0.012 b 3.866±0.017 b
N2-0S0 2.257±0.040 c 3.812±0.071 b 1.956±0.035 c 3.290±0.008 c 1.483±0.008 b 3.265±0.028 c
秸秆还田S ** ** ** ** ns **
施氮肥N ** ** ** ** ** **
S×N ns ** ns ns ** **

表5

玉米成熟期茎秆和籽粒15N丰度"

处理
Treatment
2017 2018 2019
茎秆 Stalk 籽粒 Grain 茎秆 Stalk 籽粒 Grain 茎秆Stalk 籽粒 Grain
N1 N1-1S1 0.489±0.001 b 0.467±0.001 b 0.515±0.005 b 0.498±0.002 b 0.563±0.010 b 0.565±0.001 b
N1-1S0 0.503±0.001 a 0.456±0.002 c 0.557±0.003 a 0.535±0.002 a 0.632±0.026 a 0.578±0.001 a
N1-0S1 0.454±0.001 c 0.476±0.002 a 0.466±0.002 c 0.440±0.002 d 0.531±0.005 c 0.536±0.008 c
N1-0S0 0.502±0.002 a 0.466±0.002 b 0.506±0.004 b 0.471±0.003 c 0.566±0.017 b 0.544±0.001 c
N2 N2-1S1 0.596±0.003 a 0.580±0.002 a 0.656±0.001 c 0.633±0.001 b 0.761±0.007 b 0.742±0.008 b
N2-1S0 0.600±0.004 a 0.579±0.001 a 0.712±0.002 a 0.691±0.003 a 0.818±0.065 a 0.834±0.014 a
N2-0S1 0.552±0.001 c 0.535±0.001 b 0.595±0.008 d 0.536±0.002 d 0.653±0.028 c 0.658±0.012 c
N2-0S0 0.582±0.004 b 0.521±0.001 c 0.671±0.001 b 0.595±0.003 c 0.799±0.024 a 0.752±0.010 b
秸秆还田S ** ** ** ** ** **
施氮肥N ** ** ** ** ** **
S×N ** ** ** ** ns **

图1

玉米植株氮素来源比例 S1: 秸秆还田; S0: 秸秆不还田; N1-1: 施尿素量为175 kg hm-2且基追比为1:1; N1-0: 施尿素量为175 kg hm-2且基追比为1:0; N2-1: 施尿素量为350 kg hm-2且基追比为1:1; N2-0: 施尿素量为350 kg hm-2且基追比为1:0。"

图2

玉米秸秆替代氮肥估算比例 相同年份不同处理间比较。不同小写字母表示处理间差异显著(P < 0.05)。N1-1: 施尿素量为175 kg hm-2且基追比为1:1; N1-0: 施尿素量为175 kg hm-2且基追比为1:0; N2-1: 施尿素量为350 kg hm-2且基追比为1:1; N2-0: 施尿素量为350 kg hm-2且基追比为1:0。"

表6

玉米氮肥利用率"

处理
Treatment
氮肥利用率Nitrogen use efficiency
2017 2018 2019 平均Average
N1 N1-1S1 38.24±0.26 a 37.58±0.11 b 39.78±0.98 a 38.53
N1-1S0 33.07±0.79 bc 39.29±0.30 a 41.71±0.84 a 38.02
N1-0S1 34.22±0.39 b 22.54±0.39 d 34.47±1.20 b 30.41
N1-0S0 32.41±0.45 c 29.99±0.74 c 36.43±0.72 b 32.94
N2 N2-1S1 39.14±0.40 a 41.48±0.51 a 41.68±0.83 a 40.77
N2-1S0 38.61±0.76 a 42.73±0.79 a 43.72±1.60 a 41.69
N2-0S1 30.94±0.47 b 28.35±0.54 c 35.08±0.86 b 31.46
N2-0S0 31.46±0.44 b 35.20±0.53 b 37.07±1.24 b 34.58
秸秆还田S ** ** ns
施氮肥N ** ** **
S×N ** ** **

表7

玉米产量"

处理
Treatment
产量Yield
2017 2018 2019 平均Average
N0 S1 244.37±0.24 a 235.11±2.29 a 240.57±1.30 a 240.02
S0 224.10±2.13 b 225.03±1.74 b 220.70±2.18 b 223.28
N1 N1-1S1 274.94±0.97 a 240.90±1.62 b 283.85±0.20 a 266.56
N1-1S0 256.28±1.52 c 231.52±3.18 c 264.00±1.10 c 250.60
N1-0S1 267.33±1.40 b 251.88±2.60 a 269.84±2.20 b 263.02
N1-0S0 252.30±0.77 d 234.92±2.26 bc 256.87±1.38 d 248.03
N2 N2-1S1 264.95±1.26 a 288.30±1.42 a 251.42±2.11 a 268.22
N2-1S0 250.86±1.35 b 278.48±1.81 c 236.14±2.65 b 255.16
N2-0S1 249.25±1.74 b 283.00±0.40 b 249.94±1.03 a 260.73
N2-0S0 247.83±1.72 b 273.05±0.45 d 229.82±1.15 c 250.23
秸秆还田S ** ** **
施氮肥N ** ** **
S×N ** ** ns

图3

氮肥利用率和产量影响因素的结构方程模型(SEM) 方框表示应用在模型中的变量。箭头的粗细表示影响关系强度。箭头旁边的数字为标准化路径系数。实线和虚线分别表示正向相关和负向相关。显著性水平: “*”表示P < 0.05; “**”表示P < 0.01; “***”表示P < 0.001。R2值是指模型拟合情况, 表示该变量被解释比例。"

[1] Zhuang M H, Zhang J, Kong Z Y, Fleming R M, Zhang C Y, Zhang Z Y. Potential environmental benefits of substituting nitrogen and phosphorus fertilizer with usable crop straw in China during 2000-2017. J Clean Prop, 2020, 267:122-125.
[2] 国家统计局. 中国统计年鉴. 北京: 中国统计出版社, 2020.
National Bureau of Statistics. China Statistical Yearbook. Beijing: China Statistics Press, 2020 (in chinese).
[3] 刘晓永, 李书田. 中国秸秆养分资源及还田的时空分布特征. 农业工程学报, 2017, 33(21):1-19.
Liu X Y, Li S T. Temporal and spatial distribution characteristics of crop straw nutrient resources and returning to farmland in China. Trans CSAE, 2017, 33(21):1-19 (in Chinese with English abstract).
[4] 柴如山, 徐悦, 程启鹏, 王擎运, 马超, 叶新新, 章力干, 郜红建. 安徽省主要作物秸秆养分资源量及还田利用潜力. 中国农业科学, 2021, 54:95-109.
Chai R S, Xu Y, Cheng Q P, Wang Q Y, Ma C, Ye X X, Zhang L G, Gao H J. Nutrient resource quantity of main crop straw and utilization potential under straw returning in Anhui province. Sci Agric Sin, 2021, 54:95-109 (in Chinese with English abstract).
[5] 串丽敏, 何萍, 赵同科, 徐新朋, 周卫, 郑怀国. 中国小麦季氮素养分循环与平衡特征. 应用生态学报, 2015, 26:76-86.
Chuan L M, He P, Zhao T K, Xu X P, Zhou W, Zheng H G. Nitrogen cycling and balance for wheat in China. Chin J Appl Ecol, 2015, 26:76-86 (in Chinese with English abstract).
[6] 曾研华, 范呈根, 吴建富, 曾勇军, 周春火, 谭雪明, 潘晓华, 石庆华. 等养分条件下稻草还田替代双季早稻氮钾肥比例的研究. 植物营养与肥料学报, 2017, 23:658-668.
Zeng Y H, Fan C G, Wu J F, Zeng Y J, Zhou C H, Tan X M, Pan X H, Shi Q H. Replacement ratio of nitrogen and potassium fertilizer by straw incorporation in early rice under the same nitrogen, phosphorus and potassium input. Plant Nutr Fert Sci, 2017, 23:658-668 (in Chinese with English abstract).
[7] 曾研华, 吴建富, 曾勇军, 范呈根, 谭雪明, 潘晓华, 石庆华. 机收稻草全量还田减施化肥对双季晚稻养分吸收利用及产量的影响. 作物学报, 2018, 44:454-462.
Zeng Y H, Wu J F, Zeng Y J, Fan C G, Tan X M, Pan X H, Shi Q H. Effects of straw incorporation with reducing chemical fertilizers on nutrient absorption and utilization and grain yield of double-cropping late rice under mechanical harvest. Acta Agron Sin, 2018, 44:454-462 (in Chinese with English abstract).
[8] Powlson D S, Pruden G, Johnston A E, Jenkinson D S. The nitrogen cycle in the broadbalk wheat experiment: recovery and losses of 15N-labelled fertilizer applied in spring and inputs of nitrogen from the atmosphere. J Agric Sci-Cambridge, 1986, 107:591-609.
doi: 10.1017/S0021859600069768
[9] Glendining M J, Poulton P R, Powlson D S, Jenkinson D S. Fate of 15N-labeled fertilizer applied to spring barley grown on soils of contrasting nutrient status. Plant Soil, 1997, 195:83-98.
doi: 10.1023/A:1004295531657
[10] Dourado N D, Powlson D, Bakar R B, Bacchi O O S, Basanta M V, Cong P T, Keerthisinghe G, Ismaili M, Rahman S M, Reichardt K, Safwat M S A, Sangakkara R, Timm L C, Wang J Y, Zagal E, Kessel C. Multiseason recoveries of organic and inorganic nitrogen-15 in tropical cropping systems. Soil Sci Soc AMJ, 2010, 74:139-152.
[11] Macdonald A J, Poulton P, Powlson P S, Jenkinson D S. Effects of season, soil type and cropping on recoveries, residues and losses of 15N-labelled fertilizer applied to arable crops in the spring. J Agric Sci-Cambridge, 1997, 129:125-154.
doi: 10.1017/S0021859697004619
[12] Tosti G, Benincasa P, Farneselli M, Pace R, Tei F, Guiducci M, Thorup-Kristensen K. Green manuring effect of pure and mixed barley-hairy vetch winter cover crops on maize and processing tomato N nutrition. Eur J Agron, 2012, 43:136-146.
doi: 10.1016/j.eja.2012.06.004
[13] 白伟, 安景文, 张立祯, 逄焕成, 孙占祥, 牛世伟, 蔡倩. 秸秆还田配施氮肥改善土壤理化性状提高春玉米产量. 农业工程学报, 2017, 33(15):168-176.
Bai W, An J W, Zhang L Z, Pang H C, Sun Z X, Niu S W, Cai Q. Improving of soil physical and chemical properties and increasing spring maize yield by straw turnover plus nitrogen fertilizer. Trans CSAE, 2017, 33(15):168-176 (in Chinese with English abstract).
[14] 侯贤清, 李荣, 吴鹏年, 李培富, 王西娜. 秸秆还田配施氮肥对土壤碳氮含量与玉米生长的影响. 农业机械学报, 2018, 49(9):238-246.
Hou X Q, Li R, Wu P N, Li P F, Wang X N. Effects of straw returning with nitrogen application on soil carbon, nitrogen content and maize growth. Trans CSAE, 2018, 49(9):238-246 (in Chinese with English abstract).
[15] Yang H S, Xu M M, Li Y F, Xu C F, Zhai S L, Liu J. The impacts of ditch-buried straw layers on the interface soil physicochemical and microbial properties in a rice-wheat rotation system. Soil Tillage Res, 2020, 202:104656.
[16] Jian J S, Du X, Reiter M S, Stewart R D. A meta-analysis of global cropland soil carbon changes due to cover cropping. Soil Biol Biochem, 2020, 143:107735.
[17] Akhtar K, Wang W Y, Ren G X, Khan A, Feng Y Z. Integrated use of straw mulch with nitrogen fertilizer improves soil functionality and soybean production. Environ Int, 2019, 132:105092.
[18] 李涛, 何春娥, 葛晓颖, 欧阳竹. 秸秆还田施氮调节碳氮比对土壤无机氮、酶活性及作物产量的影响. 中国生态农业学报, 2016, 24:1633-1642.
Li T, He C E, Ge X Y, Ou-Yang Z. Responses of soil mineral N contents, enzyme activities and crop yield to different C/N ratio mediated by straw retention and N fertilization. Chin J Eco-Agric, 2016, 24:1633-1642 (in Chinese with English abstract).
[19] Cong P T, Dung T D, Hien T M, Hien N T, Choudhury A T, Kecskés M L, Kennedy I R. Inoculant plant growth-promoting microorganisms enhance utilization of urea-N and grain yield of paddy rice in southern Vietnam. Eur J Soil Biol. 2009, 45:52-61.
doi: 10.1016/j.ejsobi.2008.06.006
[20] 梁斌, 赵伟, 杨学云, 周建斌. 氮肥及其与秸秆配施在不同肥力土壤的固持及供应. 中国农业科学, 2012, 45:1750-1757.
Liang B, Zhao W, Yang X Y, Zhou J B. Nitrogen retention and supply after addition of N fertilizer and its combination with straw in the soils with different fertilities. Sci Agric Sin, 2012, 45:1750-1757 (in Chinese with English abstract).
[21] Zhao S C, Li K J, Zhou W, Qiu S H, Huang S W, He P. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agric Ecosyst Environ, 2016, 216:82-88.
doi: 10.1016/j.agee.2015.09.028
[22] 陈良, 池惠荣, 高占峰, 曾艳军, 徐晓荣. 主要农作物对 15N标记肥料丰度的选择: II. 玉米大豆. 核农学通报, 1991, 12(2):79-83.
Chen L, Chi H R, Gao Z F, Zeng Y J, Xu X R. Main crop fertilizer of 15N markers abundance choice: II. Corn, soybean. Bull Nucl Agron, 1991, 12(2):79-83 (in Chinese with English abstract).
[23] 龚振平, 邓乃榛, 宋秋来, 李中韬. 基于长期定位试验的松嫩平原还田玉米秸秆腐解特征研究. 农业工程学报, 2018, 34(8):139-145.
Gong Z P, Deng N Z, Song Q L, Li Z T. Decomposing characteristics of maize straw returning in Songnen Plain in long-time located experiment. Trans CSAE, 2018, 34(8):139-145 (in Chinese with English abstract).
[24] 何甜甜, 王静, 符云鹏, 符新妍, 刘天, 李亚坤, 李建华. 等碳量添加秸秆和生物炭对土壤呼吸及微生物生物量碳氮的影响. 环境科学, 2021, 42:450-458.
He T T, Wang J, Fu Y P, Fu X Y, Liu T, Li Y K, Li J H. Effects of adding straw and biochar with equal carbon content on soil respiration and microbial biomass carbon and nitrogen. Chin J Environ Sci, 2021, 42:450-458 (in Chinese with English abstract).
[25] Yan S S, Song J M, Fan J S, Yan C, Dong S K, Ma C M, Gong Z P. Changes in soil organic carbon fractions and microbial community under rice straw return in northeast China. Glob Ecol Conserv, 2020, 22:e00962.
[26] 于舒函, 龚振平, 马春梅, 王永吉, 张喜亭. 秸秆还田与施氮肥对松嫩平原玉米氮素吸收及产量的影响. 玉米科学, 2017, 25(4):129-134.
Yu S H, Gong Z P, Ma C M, Wang Y J, Zhang X T. Effects of straw returning and nitrogen fertilizer on nitrogen uptake and yield of maize in Songnen Plain. J Maize Sci, 2017, 25(4):129-134 (in Chinese with English abstract).
[27] 高杰, 于舒函, 李二艳, 于雷, 马春梅. 松嫩平原秸秆还田对连作春玉米氮素供应与吸收的影响. 核农学报, 2021, 35:183-191.
Gao J, Yu S H, Li E Y, Yu L, Ma C M. Effect of straw returning on the supply and absorption of nitrogen in continuous spring maize in Songnen Plain. Acta Agric Nucl Sin, 2021, 35:183-191 (in Chinese with English abstract).
[28] 王秋菊, 焦峰, 刘峰, 迟凤琴, 姜辉, 李鹏绯. 草甸白浆土稻秆氮利用效率及氮素调控对水稻产量的影响. 农业工程学报, 2019, 35(11):86-94.
Wang Q J, Jiao F, Liu F, Chi F Q, Jiang H, Li P F. Nitrogen utilization efficiency of rice straw and effect of nitrogen regulation technology on yield in meadow albic soil. Trans CSAE, 2019, 35(11):86-94 (in Chinese with English abstract).
[29] 韩上, 武际, 李敏, 唐杉, 王慧, 程文龙, 石祖梁, 桑亚松. 秸秆还田条件下氮肥运筹对作物产量和氮肥利用效率的影响. 中国土壤与肥料, 2020, (3):23-28.
Han S, Wu J, Li M, Tang S, Wang H, Cheng W L, Shi Z L, Sang Y S. Effects of nitrogen fertilization managements on crops yield and nitrogen nutrient use efficiency under straw returning. China Soils Fert, 2020, (3):23-28 (in Chinese with English abstract).
[30] 张维乐, 戴志刚, 任涛, 周先竹, 王忠良, 李小坤, 丛日环. 不同水旱轮作体系秸秆还田与氮肥运筹对作物产量及养分吸收利用的影响. 中国农业科学, 2016, 49:1254-1266.
Zhang W L, Dai Z G, Ren T, Zhou X Z, Wang Z L, Li X K, Cong R H. Effects of nitrogen fertilization managements with residues incorporation on crops yield and nutrients uptake under different paddy-upland rotation systems. Sci Agric Sin, 2016, 49:1254-1266 (in Chinese with English abstract).
[31] 张鑫, 周卫, 艾超, 黄绍敏, 梁国庆. 秸秆还田下氮肥运筹对夏玉米不同时期土壤酶活性及细菌群落结构的影响. 植物营养与肥料学报, 2020, 26:295-306.
Zhang X, Zhou W, Ai C, Huang S M, Liang G Q. Effects of nitrogen management on soil enzyme activities and bacterial community structure in summer maize growing stages under straw incorporation. Plant Nutr Fert Sci, 2020, 26:295-306 (in Chinese with English abstract).
[32] 杨晨璐, 刘兰清, 王维钰, 任广鑫, 冯永忠, 杨改河. 麦玉复种体系下秸秆还田与施氮对作物水氮利用及产量的效应研究. 中国农业科学, 2018, 51:1664-1680.
Yang C L, Liu L Q, Wang W Y, Ren G X, Feng Y Z, Yang G H. Effects of the application of straw returning and nitrogen fertilizer on crop yields, water and nitrogen utilization under wheat- maize multiple cropping system. Sci Agric Sin, 2018, 51:1664-1680 (in Chinese with English abstract).
[33] 匡恩俊, 迟凤琴, 宿庆瑞, 张久明, 高中超. 三江平原地区不同有机物料腐解规律的研究. 中国生态农业学报, 2010, 18:736-741.
Kuang E J, Chi F Q, Su Q R, Zhang J M, Gao Z C. Decomposition regularity of organic materials in Sanjiang Plain region. Chin J Eco-Agric, 2010, 18:736-741 (in Chinese with English abstract).
[34] 张经廷, 张丽华, 吕丽华, 董志强, 姚艳荣, 金欣欣, 姚海坡, 贾秀领. 还田作物秸秆腐解及其养分释放特征概述. 核农学报, 2018, 32:2274-2280.
Zhang J T, Zhang L H, Lyu L H, Dong Z Q, Yao Y R, Jin X X, Yao H P, Jia X L. Overview of the characteristics of crop straw decomposition and nutrients release of returned field crops. Acta Agric Nucl Sin, 2018, 32:2274-2280 (in Chinese with English abstract).
[35] 闫超. 水稻秸秆还田腐解规律及土壤养分特性的研究. 东北农业大学硕士学位论文,黑龙江哈尔滨, 2015.
Yan C. Studies on Decomposition Regularity of Returning Rice Straw and Soil Nutrient Properties. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang,China, 2015 (in Chinese with English abstract).
[36] Zhang C M, Chang Z, Thompson G. Carbon and nitrogen forms in soil organic matter influenced by incorporated wheat and corn residues. Soil Sci Plant Nutr, 2017, 63:377-387.
doi: 10.1080/00380768.2017.1359797
[37] 柴如山, 王擎运, 叶新新, 江波, 赵强, 王强, 章力干, 郜红建. 我国主要粮食作物秸秆还田替代化学氮肥潜力. 农业环境科学学报, 2019, 38:2583-2593.
Chai R S, Wang Q Y, Ye X X, Jiang B, Zhao Q, Wang Q, Zhang L G, Gao H J. Nitrogen resource quantity of main grain crop straw in China and the potential of synthetic nitrogen substitution under straw returning. J Agro-Environ Sci, 2019, 38:2583-2593 (in Chinese with English abstract).
[38] Lu C Y, Chen H H, Teng Z Z, Yuan L, Ma J, He H B, Chen X, Zhang X D, Shi Y. Effects of N fertilization and maize straw on the dynamics of soil organic N and amino acid N derived from fertilizer N as indicated by 15N labeling. Geoderma, 2018, 321:118-126.
doi: 10.1016/j.geoderma.2018.02.014
[39] 张雅洁, 陈晨, 陈曦, 常江, 章力干, 郜红建. 小麦-水稻秸秆还田对土壤有机质组成及不同形态氮含量的影响. 农业环境科学学报, 2015, 34:2155-2161.
Zhang Y J, Chen C, Chen X, Chang J, Zhang L G, Gao H J. Effects of wheat and rice straw returning on soil organic matter composition and content of different nitrogen forms in soil. J Agro-Environ Sci, 2015, 34:2155-2161 (in Chinese with English abstract).
[40] Grandy A S, Salam D S, Wickings K, McDaniel M D, Culman S W, Snapp S S. Soil respiration and litter decomposition responses to nitrogen fertilization rate in no-till corn systems. Agric Ecosyst Environ, 2013, 179:35-40.
doi: 10.1016/j.agee.2013.04.020
[41] 周岚, 杨永, 王占海, 陈阜, 曾昭海. 玉米-大豆轮作及氮肥施用对土壤细菌群落结构的影响. 作物学报, 2013, 39:2016-2022.
doi: 10.3724/SP.J.1006.2013.02016
Zhou L, Yang Y, Wang Z H, Chen F, Zeng Z H. Influence of maize-soybean rotation and N fertilizer on bacterial community composition. Acta Agron Sin, 2013, 39:2016-2022 (in Chinese with English abstract).
[42] 郑丹. 不同条件下作物秸轩养分释放规律的研究. 东北农业大硕士学位论文,黑龙江哈尔滨, 2012.
Zheng D. The Nutrient Releasing Regularity of Crop Stalks under Different Conditions. MS Thesis of Northeast Agricultural University, Harbin, Heilongjiang,China, 2012 (in Chinese with English abstract).
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[9] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[10] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[11] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[12] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[13] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
[14] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[15] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!