作物学报 ›› 2022, Vol. 48 ›› Issue (8): 1977-1995.doi: 10.3724/SP.J.1006.2022.14131
张天宇(), 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏*()
ZHANG Tian-Yu(), WANG Yue, LIU Ying, ZHOU Ting, YUE Cai-Peng, HUANG Jin-Yong, HUA Ying-Peng*()
摘要:
脯氨酸积累是植物在生物和非生物胁迫下的一种重要的代谢适应性机制。吡咯啉-5-羧酸合成酶(P5CS)、吡咯啉-5-羧酸还原酶(P5CR)酶、脯氨酸脱氢酶(PDH)、吡咯啉-5-羧酸脱氢酶(P5CDH)是依赖谷氨酸的脯氨酸生物合成途径中的关键酶。油菜是世界上重要的油料作物, 在油菜生长发育过程中, 其时常遭受各类生物和非生物胁迫。然而迄今为止, 在异源四倍体油菜中缺乏关于这些脯氨酸代谢基因家族的系统分析报道。本研究利用甘蓝型油菜‘中双11'基因组注释信息, 分别鉴定到上述10个BnaP5CSs、6个BnaP5CRs、8个BnaPDHs以及3个BnaP5CDHs基因。这些基因家族在系统发育上分为不同的进化分支, 同一亚组中的成员具有相似的理化特性、基因/蛋白质结构和保守的基序。进化压力分析表明, 这些基因均遭受了强烈的纯化选择。启动子区的顺式作用元件分析揭示了油菜上述4类基因家族之间均存在共同的和特异的转录调控机制。本研究分别对‘中双11'油菜幼苗进行盐胁迫、低钾、低磷以及铵毒胁迫处理, 分别取地上部及根部进行转录组测定与分析。结果显示, 脯氨酸合成相关基因的表达水平在上述4种胁迫下普遍上调, 而调控脯氨酸降解基因的表达水平则在盐胁迫和低磷胁迫情况下调; 基因共表达分析显示BnaC4.P5CS1a、BnaA5.P5CS1等基因可能在脯氨酸介导的油菜逆境响应网络中发挥核心作用。本研究通过脯氨酸代谢基因家族的生物信息学鉴定以及多种非生物逆境下的转录特征分析, 将为深入研究脯氨酸介导的逆境抗性提供理论依据, 也将为脯氨酸介导油菜非生物胁迫抗性的遗传改良提供优异的基因资源。
[1] |
Liang W, Ma X, Wan P, Liu L. Plant salt-tolerance mechanism: a review. Biochem Biophys Res Commun, 2018, 495: 286-291.
doi: 10.1016/j.bbrc.2017.11.043 |
[2] |
Zheng Y, Cabassa-Hourton C, Planchais S, Lebreton S, Savouré A. The proline cycle as a eukaryotic redox valve. J Exp Bot, 2021, doi: 10.1093/jxb/erab361.
doi: 10.1093/jxb/erab361 |
[3] |
Szabados L, Savouré A. Proline: a multifunctional amino acid. Trends Plant Sci, 2010, 15: 89-97.
doi: 10.1016/j.tplants.2009.11.009 pmid: 20036181 |
[4] |
Hare P D, Cress W A. Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul, 1997, 21: 79-102.
doi: 10.1023/A:1005703923347 |
[5] |
Hu C A, Delauney A J, Verma D P. A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA, 1992, 89: 9354-9358.
doi: 10.1073/pnas.89.19.9354 |
[6] |
Anwar A, Wang K, Wang J, Shi L, Du L, Ye X. Expression of Arabidopsis Ornithine Aminotransferase (AtOAT) encoded gene enhances multiple abiotic stress tolerances in wheat. Plant Cell Rep, 2021, 40: 1155-1170.
doi: 10.1007/s00299-021-02699-0 pmid: 33950277 |
[7] |
Verbruggen N, Hermans C. Proline accumulation in plants: a review. Amino Acids, 2008, 35: 753-759.
doi: 10.1007/s00726-008-0061-6 pmid: 18379856 |
[8] |
Szoke A, Miao G H, Hong Z, Verma D P. Subcellular location of delta-pyrroline-5-carboxylate reductase in root/nodule and leaf of soybean. Plant Physiol, 1992, 99: 1642-1649.
doi: 10.1104/pp.99.4.1642 pmid: 16669085 |
[9] |
Székely G, Abrahám E, Cséplo A, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik J, Schmelzer E, Koncz C, Szabados L. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J, 2008, 53: 11-28.
doi: 10.1111/j.1365-313X.2007.03318.x |
[10] |
Dobrá J, Vanková R, Havlová M, Burman A J, Libus J, Storchová H. Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery. J Plant Physiol, 2011, 168: 1588-1597.
doi: 10.1016/j.jplph.2011.02.009 |
[11] |
Wang L, Guo Z, Zhang Y, Wang Y, Yang G, Yang L, Wang R, Xie Z. Characterization of LhSorP5CS, a gene catalyzing proline synthesis in Oriental hybrid lily Sorbonne: molecular modelling and expression analysis. Bot Stud, 2017, 58: 10.
doi: 10.1186/s40529-017-0163-0 pmid: 28510193 |
[12] |
Fang Y, Coulter J A, Wu J, Liu L, Li X, Dong Y, Ma L, Pu Y, Sun B, Niu Z, Jin J, Zhao Y, Mi W, Xu Y, Sun W. Identification of differentially expressed genes involved in amino acid and lipid accumulation of winter turnip rape (Brassica rapa L.) in response to cold stress. PLoS One, 2021, 16: e0245494.
doi: 10.1371/journal.pone.0245494 |
[13] |
Silva-Ortega C, Ochoa-Alfaro A, Reyes-Agüero J, Aguado- Santacruz G, Jiménez-Bremont J. Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant Physiol Biochem, 2008, 46: 82-92.
doi: 10.1016/j.plaphy.2007.10.011 |
[14] |
Signorelli S, Monza J. Identification of Δ-pyrroline 5-carboxylate synthase (P5CS) genes involved in the synthesis of proline in Lotus japonicus. Plant Signal Behav, 2017, 12: e1367464.
doi: 10.1080/15592324.2017.1367464 |
[15] |
Dai W, Wang M, Gong X, Liu J H. The transcription factor FcWRKY40 of Fortunella crassifolia functions positively in salt tolerance through modulation of ion homeostasis and proline biosynthesis by directly regulating SOS2 and P5CS1 homologs. New Phytol, 2018, 219: 972-989.
doi: 10.1111/nph.15240 |
[16] |
Kishor P, Hong Z, Miao G H, Hu C, Verma D. Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol, 1995, 108: 1387-1394.
pmid: 12228549 |
[17] |
Giberti S, Funck D, Forlani G. Δ1-pyrroline-5-carboxylate reductase from Arabidopsis thaliana: stimulation or inhibition by chloride ions and feedback regulation by proline depend on whether NADPH or NADH acts as co-substrate. New Phytol, 2014, 202: 911-919.
doi: 10.1111/nph.12701 |
[18] |
Mani S, Van De Cotte B, Van Montagu M, Verbruggen N. Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. Plant Physiol, 2002, 128: 73-83.
doi: 10.1104/pp.010572 |
[19] | Rizzi Y S, Monteoliva M I, Fabro G, Grosso C L, Laróvere L E, Alvarez M E. P5CDH affects the pathways contributing to Pro synthesis after ProDH activation by biotic and abiotic stress conditions. Front Plant Sci, 2015, 6: 572. |
[20] |
Deuschle K, Funck D, Forlani G, Stransky H, Biehl A, Leister D, van der Graaff E, Kunze R, Frommer W B. The role of [delta]1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell, 2004, 16: 3413-3425.
pmid: 15548746 |
[21] |
An H, Qi X, Gaynor M, Hao Y, Gebken S C, Mabry M E, McAlvay A C, Teakle G R, Conant G C, Barker M S, Fu T, Yi B, Pires J C. Transcriptome and organellar sequencing highlights the complex origin and diversification of allotetraploid Brassica napus. Nat Commun, 2019, 10: 2878.
doi: 10.1038/s41467-019-10757-1 |
[22] |
Sun F, Fan G, Hu Q, Zhou Y, Guan M, Tong C, Li J, Du D, Qi C, Jiang L, Liu W, Huang S, Chen W, Yu J, Mei D, Meng J, Zeng P, Shi J, Liu K, Wang X, Wang X, Long Y, Liang X, Hu Z, Huang G, Dong C, Zhang H, Li J, Zhang Y, Li L, Shi C, Wang J, Lee S, Guan C, Xu X, Liu S, Liu X, Chalhoub B, Hua W, Wang H. The high-quality genome of Brassica napus cultivar ‘ZS11' reveals the introgression history in semi-winter morphotype. Plant J, 2017, 92: 452-468.
doi: 10.1111/tpj.13669 |
[23] |
Swarbreck D, Wilks C, Lamesch P, Berardini T Z, Garcia- Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C, Zhang P, Huala E. The Arabidopsis information resource (TAIR): gene structure and function annotation. Nucleic Acids Res, 2008, 36: D1009-D1014.
doi: 10.1093/nar/gkm965 pmid: 17986450 |
[24] | Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Li P, Hua W, Wang X. BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol, 2011, 11: 136. |
[25] |
Song J M, Guan Z, Hu J, Guo C, Yang Z, Wang S, Liu D, Wang B, Lu S, Zhou R, Xie W Z, Cheng Y, Zhang Y, Liu K, Yang Q Y, Chen L L, Guo L. Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants, 2020, 6: 34-45.
doi: 10.1038/s41477-019-0577-7 |
[26] |
Song J M, Liu D, Xie W Z, Yang Z, Guo L, Liu K, Yang Q Y, Chen L L. BnPIR: Brassica napus pan-genome information resource for 1689 accessions. Plant Biotechnol J, 2021, 19: 412-414.
doi: 10.1111/pbi.13491 |
[27] |
Ostergaard L, King G. Standardized gene nomenclature for the Brassica genus. Plant Methods, 2008, 4: 10.
doi: 10.1186/1746-4811-4-10 pmid: 18492252 |
[28] | Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res, 2012, 40: W597-W603. |
[29] | Horton P, Park K J, Obayashi T, Fujita N, Harada H, Adams- Collier C J, Nakai K. WoLF PSORT: protein localization predictor. Nucleic Acids Res, 2007, 35: W585-W 587. |
[30] |
Yu C S, Lin C S, Hwang J K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci, 2004, 13: 1402-1406.
doi: 10.1110/ps.03479604 |
[31] |
Petersen T, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods, 2011, 8: 785-786.
doi: 10.1038/nmeth.1701 pmid: 21959131 |
[32] | Szklarczyk D, Gable A L, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva N T, Morris J H, Bork P, Jensen L J, Mering C V. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res, 2019, 47: D607-D613. |
[33] |
Davidson R, del Campo A M. Combinatorial and computational investigations of Neighbor-Joining bias. Front Genet, 2020, 11: 584785.
doi: 10.3389/fgene.2020.584785 |
[34] |
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018, 35: 1547-1549.
doi: 10.1093/molbev/msy096 |
[35] | Letunic I, Bork P. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res, 2021, 49: W293-W296. |
[36] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: 10.1016/j.molp.2020.06.009 |
[37] |
Blanc G, Wolfe K H. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell, 2004, 16: 1667-1678.
doi: 10.1105/tpc.021345 |
[38] | Bailey T L, Boden M, Buske F A, Frith M, Grant C E, Clementi L, Ren J, Li W W, Noble W S. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res, 2009, 37: W202-W208. |
[39] |
Kelley L A, Mezulis S, Yates C M, Wass M, Sternberg M N. The Phyre 2 web portal for protein modeling, prediction and analysis. Nat Protoc, 2015, 10: 845-858.
doi: 10.1038/nprot.2015.053 |
[40] | Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res, 2002, 30: 325-327. |
[41] | Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol, 2011, 696: 291-303. |
[42] |
Xu G, Guo C, Shan H, Kong H. Divergence of duplicate genes in exon-intron structure. Proc Natl Acad Sci USA, 2012, 109: 1187-1192.
doi: 10.1073/pnas.1109047109 |
[43] |
Schmidt R, Acarkan A, Boivin K. Comparative structural genomics in the Brassicaceae family. Plant Physiol Biochem, 2001, 39: 253-262.
doi: 10.1016/S0981-9428(01)01239-6 |
[44] |
Schranz M E, Lysak M A, Mitchell-Olds T. The ABC's of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci, 2006, 11: 535-542.
pmid: 17029932 |
[45] |
Parkin I A, Gulden S M, Sharpe A G, Lukens L, Trick M, Osborn T C, Lydiate D J. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics, 2005, 171: 765-781.
doi: 10.1534/genetics.105.042093 |
[46] |
Cheng F, Wu J, Fang L, Wang X. Syntenic gene analysis between Brassica rapa and other Brassicaceae species. Front Plant Sci, 2012, 3: 198.
doi: 10.3389/fpls.2012.00198 pmid: 22969786 |
[47] |
Van Leene J, Hollunder J, Eeckhout D, Persiau G, Van de Slijke E, Stals H, Van Isterdael G, Verkest A, Neirynck S, Buffel Y, De Bodt S, Maere S, Laukens K, Pharazyn A, Ferreira P, Eloy N, Renne C, Meyer C, Faure J, Steinbrenner J, Beynon J, Larkin J, Van de Peer Y, Hilson P, Kuiper M, De Veylder L, Van Onckelen H, Inzé D, Witters E, De Jaeger G. Targeted interactomics reveals a complex core cell cycle machinery in Arabidopsis thaliana. Mol Syst Biol, 2010, 6: 397.
doi: 10.1038/msb.2010.53 |
[48] |
Borsani O, Zhu J, Verslues P E, Sunkar R, Zhu J K. Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 2005, 123: 1279-1291.
pmid: 16377568 |
[49] | Hooper C M, Castleden I R, Tanz S K, Aryamanesh N, Millar A H. SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res, 2017, 45: D1064-D1074. |
[50] |
Hooper C M, Tanz S K, Castleden I R, Vacher M, Small I D, Millar A H. SUBAcon: a consensus algorithm for unifying the subcellular localization data of the Arabidopsis proteome. Bioinformatics, 2014, 30: 3356-3364.
doi: 10.1093/bioinformatics/btu550 |
[51] |
Elthon T E, Stewart C R. Submitochondrial location and electron transport characteristics of enzymes involved in proline oxidation. Plant Physiol, 1981, 67: 780-784.
doi: 10.1104/pp.67.4.780 pmid: 16661754 |
[52] |
Shrestha A, Cudjoe D K, Kamruzzaman M, Siddique S, Fiorani F, Léon J, Naz A A. Abscisic acid-responsive element binding transcription factors contribute to proline synthesis and stress adaptation in Arabidopsis. J Plant Physiol, 2021, 261: 153414.
doi: 10.1016/j.jplph.2021.153414 |
[53] |
Cheng L, Li X, Huang X, Ma T, Liang Y, Ma X, Peng X, Jia J, Chen S, Chen Y, Deng B, Liu G. Overexpression of sheepgrass R1-MYB transcription factor LcMYB1 confers salt tolerance in transgenic Arabidopsis. Plant Physiol Biochem, 2013, 70: 252-260.
doi: 10.1016/j.plaphy.2013.05.025 |
[54] |
Li X, Tang Y, Li H, Luo W, Zhou C, Zhang L, Lyu J. A wheat R2R3 MYB gene TaMpc1-D4 negatively regulates drought tolerance in transgenic Arabidopsis and wheat. Plant Sci, 2020, 299: 110613.
doi: 10.1016/j.plantsci.2020.110613 |
[55] |
Verma D, Jalmi S K, Bhagat P K, Verma N, Sinha A K. A bHLH transcription factor, MYC2, imparts salt intolerance by regulating proline biosynthesis in Arabidopsis. FEBS J, 2020, 287: 2560-2576.
doi: 10.1111/febs.15157 |
[56] |
Veerabagu M, Kirchler T, Elgass K, Stadelhofer B, Stahl M, Harter K, Mira-Rodado V, Chaban C. The interaction of the Arabidopsis response regulator ARR18 with bZIP63 mediates the regulation of PROLINE DEHYDROGENASE expression. Mol Plant, 2014, 7: 1560-1577.
doi: 10.1093/mp/ssu074 |
[57] |
Fabro G, Kovács I, Pavet V, Szabados L, Alvarez M E. Proline accumulation and AtP5CS2 gene activation are induced by plant-pathogen incompatible interactions in Arabidopsis. Mol Plant Microbe Interact, 2004, 17: 343-350.
doi: 10.1094/MPMI.2004.17.4.343 |
[58] |
Ronde J, Spreeth M H, Cress W A. Effect of antisense L-Δ1-pyrroline-5-carboxylate reductase transgenic soybean plants subjected to osmotic and drought stress. Plant Growth Regul, 2000, 32: 13-26.
doi: 10.1023/A:1006338911617 |
[59] |
Ronde J, Laurie R N, Caetano T, Greyling M M, Kerepesi I. Comparative study between transgenic and non-transgenic soybean lines proved transgenic lines to be more drought tolerant. Euphytica, 2004, 138: 123-132.
doi: 10.1023/B:EUPH.0000046806.68554.5b |
[60] |
Göring H, Thien B H. Influence of nutrient deficiency on proline accumulation in the cytoplasm of Zea mays L. seedlings. Biochem Physiol Pflanzen, 1979, 174: 9-16.
doi: 10.1016/S0015-3796(17)30541-3 |
[61] | 王翠平, 华学军, 林彬, 刘爱华. 甘蓝型油菜脯氨酸合成相关同源基因的进化和差异表达分析. 作物学报, 2017, 43: 1480-1488. |
Wang C P, Hua X J, Lin B, Liu A H. Evolutionary fate and expression pattern of genes related to proline biosynthesis in Brassica napus. Acta Agron Sin, 2017, 43: 1480-1488. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.01480 |
[1] | 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195. |
[2] | 李胜婷, 徐远芳, 常玮, 刘亚俊, 谷嫄, 朱红, 李加纳, 卢坤. Bna.C02SWEET15通过光周期途径正向调控油菜开花时间[J]. 作物学报, 2022, 48(8): 1938-1947. |
[3] | 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600. |
[4] | 戴丽诗, 常玮, 张赛, 钱明超, 黎小东, 张凯, 李加纳, 曲存民, 卢坤. Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证[J]. 作物学报, 2022, 48(7): 1635-1644. |
[5] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[6] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[7] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[8] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[9] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[10] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[11] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[12] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[13] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
[14] | 曹亮, 杜昕, 于高波, 金喜军, 张明聪, 任春元, 王孟雪, 张玉先. 外源褪黑素对干旱胁迫下绥农26大豆鼓粒期叶片碳氮代谢调控的途径分析[J]. 作物学报, 2021, 47(9): 1779-1790. |
[15] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
|