欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (8): 1853-1870.doi: 10.3724/SP.J.1006.2022.23001

• 综述 •    下一篇

应用分子标记技术改进作物品种保护和监管

徐云碧1,6,*(), 王冰冰2, 张健3, 张嘉楠4, 李建生5,*()   

  1. 1中国农业科学院作物科学研究所, 中国北京 100081
    2长沙百奥云数据科技有限公司, 中国湖南长沙 410221
    3先正达集团中国, 中国北京102206
    4石家庄博瑞迪生物技术有限公司, 中国河北石家庄 050035
    5中国农业大学国家玉米改良中心, 中国北京100193
    6国际玉米小麦改良中心, 墨西哥特斯科科 56130
  • 收稿日期:2022-01-05 接受日期:2022-02-22 出版日期:2022-08-12 网络出版日期:2022-03-01
  • 通讯作者: 徐云碧,李建生
  • 基金资助:
    国家重点研发计划项目(2016YFD0101803);石家庄市科技孵化计划项目(191540089A);河北省创新能力提升计划项目新型研发机构建设专项(19962911D);中央级公益性科研院所基本科研业务费专项(Y2020PT20);中国农业科学院农业科技创新计划(CAAS-XTCX2016009);中国农业科学院作物科学研究所中央非公益类基础研究项目, 比尔盖茨基金会和CGIAR MAIZE项目资助

Enhancement of plant variety protection and regulation using molecular marker technology

XU Yunbi1,6,*(), WANG Bing-Bing2, ZAHNG Jian3, ZHANG Jia-Nan4, LI Jian-Sheng5,*()   

  1. 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2Biobin Data Sciences, Changsha 410221, Hunan, China
    3Syngenta Group China, Beijing 102206, China
    4MolBreeding Biotechnology Co., Ltd., Shijiazhuang 050035, Hebei, China
    5National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China
    6International Maize and Wheat Improvement Center (CIMMYT), El Batan Texcoco 56130, Mexico
  • Received:2022-01-05 Accepted:2022-02-22 Published:2022-08-12 Published online:2022-03-01
  • Contact: XU Yunbi,LI Jian-Sheng
  • Supported by:
    National Key Research and Development Program of China(2016YFD0101803);Shijiazhuang Science and Technology Incubation Program(191540089A);Hebei Innovation Capability Enhancement Project(19962911D);Central Public-interest Scientific Institution Basal Research Fund(Y2020PT20);Agricultural Science and Technology Innovation Program (ASTIP) of the Chinese Academy of Agricultural Sciences (CAAS)(CAAS-XTCX2016009);Central Non-public-interest Basic Research Fund of the Institute of Crop Science of CAAS, Bill and Melinda Gates Foundation, and CGIAR Research Program MAIZE

摘要:

植物品种保护是植物品种知识产权的重要组成部分。品种特异性、一致性和稳定性(distinctness, uniformity, and stability, DUS)检测和实质性派生品种(essentially derived variety, EDV)评价是植物品种保护中的2个重要概念。DUS-EDV评价经历了从形态性状和系谱为主过渡到了综合利用形态、系谱和分子标记信息的阶段, 并将发展到以分子检测为主的阶段。分子标记的主要类型也从RFLP发展到SSR和SNP。基于靶向测序-液相捕获的芯片技术, 具有分析成本低、标记组配灵活、适合用于不同植物的DUS-EDV评价。利用分子标记检测进行DUS-EDV评价有2个重要策略, 一是在全基因组范围内进行全局性的比较和分析, 二是利用与重要表型有关的功能位点特异性进行局部性、特异性检测。应该针对DUS和EDV分别建立各自的评价标准。DUS可以根据分子标记提供的特殊指纹图谱、单倍型、特有等位基因、特异基因组区段、特异功能标记、最低遗传纯合度、品种内单株间的遗传差异作出判断。EDV的主要评价指标是利用全基因组均匀分布的高密度标记所获得的材料间的遗传相似性, 而不是差异的标记数。所采用的分子标记的数量和基因组覆盖率是决定分子检测效率和可靠性的关键。利用少量标记所获得的品种比较具有较大的抽样误差。区别EDV和非EDV品种的相似性指标可因作物物种和所需要的品种保护水平而异。本文回顾了世界各国主要的作物品种保护实践, 建议在利用分子标记保护品种知识产权和监管品种中, 建立由各方面专家组成的咨询委员会, 根据分子检测技术的发展和功能标记的开发, 不断完善和加强DUS-EDV评价体系, 建立权威的品种保护数据库系统, 有序提供查询和比对服务, 以鼓励种业创新。

关键词: 植物品种保护, 特异性-一致性-稳定性(DUS), 实质性派生品种(EDV), 分子标记, 分子检测, 遗传相似性

Abstract:

Plant variety protection is one of the important approaches for plant intellectual property protection. The distinctness, uniformity and stability (DUS) and essentially derived variety (EDV) are two major concepts in plant variety protection. DUS-EDV has been evaluated largely through morphological traits and pedigrees at the very beginning, to an integrated approach using morphological traits, pedigrees and molecular marker information and now to a stage largely driven by molecular diagnostics. Molecular diagnostic technology has been evolved from RFLP to SSR and SNP marker systems. The liquid SNP chip, represented by genotyping by target sequencing through capture in solution, has advantages of low cost, high flexibility in marker combinations and wide suitability for DUS-EDV evaluation across plant species. There are two important strategies in DUS-EDV evaluation, one being examined based on the analysis and comparison at the whole genome level and the other being examined at specific genomic regions for target functional loci associated with important phenotypes. Evaluation criteria should be established separately for DUS and EDV. The former can be evaluated based on the criteria constructed for specific fingerprint maps, haplotypes, unique alleles, genomic regions, target functional markers, minimum genetic homozygosity, and within-variety variation, whereas the latter can be examined by the genetic similarity between the potential EDV and check variety estimated using a large number of molecular markers evenly distributed across the genome, rather than by the number of markers. The number and the genomic coverage of molecular markers are two key factors affecting the efficiency and reliability in DUS and EDV assessment. Using only a small number of markers in such assessment will likely result in a large sampling error for the estimates. The threshold of genetic similarity required for distinguishing EDV and non-EDV can vary greatly across plant species and with the levels of plant variety protection. After reviewed the current status of plant variety protection across countries, the authors proposed that a national consultant expert committee should be established for consistent support to implement and improve DUS-EDV system, and an official database system should be constructed for public service and comparison of variety DNA fingerprint data to facilitate innovative activities in plant breeding.

Key words: plant variety protection, distinctness-uniformity-stability (DUS), essentially derived variety (EDV), molecular marker, molecular diagnostics, genetic similarity

表1

用于植物品种保护的分子标记检测系统及其发展"

世代
Generation (years)
支撑技术
Support technique
代表分子标记
Representative molecular markers
检测方式
Diagnostics
特征
Characteristics
G1
(1980s)
凝胶电泳
Gel electrophoresis
RFLP, RAPD 琼脂糖和聚丙烯酰胺凝胶电泳,
EB和银染
Agarose and polyacrylamide gel electrophoresis with EB and silver staining
手动, 实验室, 极高成本, 不灵活
Manual, exp. laboratory, very high cost, not flexible, 100 DP/D
G2
(1990s)
荧光检测
Florescence
electrophoresis
SSR, AFLP, KASP, SNP 聚丙烯酰胺凝胶电泳加荧光检测
Polyacrylamide gel electrophoresis and florescence detection
半自动, 实验台, 高成本, 不太灵活
Semi-automatic, exp. station, high cost, little flexible, 1000 DP/D
G3
(2000s)
固相芯片
Solid chips
SNP, 包括InDel
SNP, including InDels
探针杂交和荧光检测
Probe hybridization and florescence detection
自动, 工作站, 低成本, 比较灵活
Automatic, workstation, low cost, less flexible, 1M+ DP/D
G4
(2010s)
液相芯片
Liquid chips
SNP, 包括InDel
SNP, including InDels
靶向测序基因型检测和液相捕获
Genotyping by target sequencing (GBTS) and captured in solution
自动, 工作站, 极低成本, 非常灵活
Automatic, workstation, very low cost, very flexible, 1M+ DP/D
G5
(2020s)
全测序
Fully sequencing
SNP和所有序列变异
SNP and all sequence
variations
序列阅读和比较
Sequence reading and comparison
高度自动, 便携式, 几乎零成本,
超灵活
Highly automatic, carry-on, almost no cost, extremely flexible, 1B+ DP/D

图1

四个亲本对后代的贡献及其检测——逐步改良杂交法: (L1×L2 RIL × L3×L4 RIL)重组近交系"

图2

四个亲本对后代的贡献及其检测——MAGIC式杂交法[(L1×L2) × (L3×L4)]重组近交系"

图3

玉米自交系郑58的亲缘关系组成及其遗传贡献 根据张人予等[17]更新和修改。"

图4

根据分子水平的遗传相似性所确定的EDV判断标准及其实例"

[1] 徐云碧, 杨泉女, 郑洪建, 许彦芬, 桑志勤, 郭子锋, 彭海, 张丛, 蓝昊发, 王蕴波, 吴坤生, 陶家军, 张嘉楠. 靶向测序基因型检测(GBTS)技术及其应用. 中国农业科学, 2020, 53: 2983-3004.
Xu Y B, Yang Q N, Zheng H J, Xu Y F, Sang Z Q, Guo Z F, Peng H, Zhang C, Lan H F, Wang Y B, Wu K S, Tao J J, Zhang J N. Genotyping by target sequencing (GBTS) and its applications. Sci Agric Sin, 2020, 53: 2983-3004 (in Chinese with English abstract).
[2] Xu Y B. Molecular Plant Breeding. Oxfordshire, UK: CABI Publishing House, 2010.
[3] Cooke R J, Reeves J C. Plant genetic resources and molecular markers: variety registration in a new era. Plant Genet Resour, 2003, 1: 81-87.
doi: 10.1079/PGR200312
[4] Heckenberger M, Bohn M, Melchinger A. Identification of essentially derived varieties obtained from biparental crosses of homozygous lines. Crop Sci, 2005, 45: 1120-1131.
doi: 10.2135/cropsci2004.0110
[5] Heckenberger M. Identification of Essentially Derived Varieties in Maize (Zea mays L.) Using Molecular Markers, Morphological traits, and Heterosis. PhD Dissertation of University of Hohenheim,Stuttgart, Germany, 2004.
[6] UPOV, International Union for the Protection of New Varieties of Plants. Guidance on the use of biochemical and molecular markers in the examination of distinctness, uniformity and stability (DUS), TGP/15. https://www.upov.int/edocs/tgpdocs/en/tgp_15.pdf. 2013.
[7] Jamali S H, Cockram J, Hickey L T. Insights into deployment of DNA markers in plant variety protection and registration. Theor Appl Genet, 2019, 132: 1911-1929.
doi: 10.1007/s00122-019-03348-7
[8] 徐云碧, 朱立煌. 分子数量遗传. 北京: 中国农业出版社, 1994.
Xu Y B, Zhu L H. Molecular Quantitative Genetics. Beijing: China Agriculture Press, 1994. (in Chinese)
[9] Botstein D R, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Human Genet, 1980, 32: 314-331.
[10] Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res, 1990, 18: 7231-7238.
[11] Williams J G K, Kubelik A R, Livak K J, Rafalski J A, Tingey S V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990, 18: 6531-6535.
pmid: 1979162
[12] Zabeau M, Voss P.. Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application. 92402629.7 (Publ. Number 0 534 858 A1). 1993.
[13] Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman H, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res, 1995, 23: 4407-4414.
pmid: 7501463
[14] Tauz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res, 1984, 12: 4127-4138.
doi: 10.1093/nar/12.10.4127
[15] Guo Z, Wang H, Tao J, Ren Y, Xu C, Wu K, Zou C, Zhang J, Xu Y. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Mol Breed, 2019, 39: 37.
doi: 10.1007/s11032-019-0940-4
[16] Guo Z, Yang Q, Huang F, Zheng H, Sang Z, Xu Y, Zhang C, Wu K, Tao J, Prasanna B M, Olsen M S, Wang Y, Zhang J, Xu Y. Development of high-resolution multiple-SNP arrays for genetic analyses and molecular breeding through genotyping by target sequencing and liquid chip. Plant Commun, 2021, 2: 100230.
doi: 10.1016/j.xplc.2021.100230
[17] Zhang R, Xu G, Li J, Yan J, Li H, Yang X, Patterns of genomic variation in Chinese maize inbred lines and implications for genetic improvement. Theor Appl Genet, 2018, 131: 1207-1221.
doi: 10.1007/s00122-018-3072-z
[18] Collard B, Jahufer M, Brouwer J, Pang E. An introduction to markers, quantitative trait loci (QTL) mapping and marker- assisted selection for crop improvement: the basic concepts. Euphytica, 2005, 142: 169-196.
doi: 10.1007/s10681-005-1681-5
[19] Liu Y, He Z, Appels R, Xia X. Functional markers in wheat: current status and future prospects. Theor Appl Genet, 2012, 125: 1-10.
doi: 10.1007/s00122-012-1829-3
[20] Kage U, Kumar A, Dhokane D, Karre S, Kushalappa A C. Functional molecular marker for crop improvement. Crit Rev Biotechnol, 2015, 16: 1-14.
doi: 10.3109/07388559609146599
[21] Chai Y C, Hao X M, Yang X H, Allen W B, Li J M, Yan J B, Shen B, Li J S. Validation of DGAT1-2 polymorphisms associated with oil content and development of functional markers for molecular breeding of high-oil maize. Mol Breed, 2012, 29: 939-949.
doi: 10.1007/s11032-011-9644-0
[22] UPOV, International Union for the Protection of New Varieties of Plants. Guidelines for the conduct of tests for distinctness, uniformity and stability, rice (Oryza sativa L.). TG/16/8. https://www.upov.int/edocs/tgdocs/en/tg016.pdf, 2004.
[23] Arens P, Mansilla C, Deinum D, Cavellini L, Moretti A, Rolland S, van der Schoot H, Calvache D, Ponz F, Collonnier C, Mathis R, Smilde D, Caranta C, Vosman B. Development and evaluation of robust molecular markers linked to disease resistance in tomato for distinctness, uniformity and stability testing. Theor Appl Genet, 2010, 120: 655-664.
doi: 10.1007/s00122-009-1183-2 pmid: 19855951
[24] Cockram J, White J, Zuluaga D L, Smith D, Comadran J, Macaulay M, Luo Z, Kearsey M J, Werner P, Harrap D, Tapsell C, Liu H, Hedley P E, Stein N, Schulte D, Steuernagel B, Marshall D F, Thomas W T B, Ramsay L, Mackay I, Balding D J, Waugh R, O'Sullivan D M. Genome wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proc Natl Acad Sci USA, 2010, 107: 21611-21616.
doi: 10.1073/pnas.1010179107
[25] Cockram J, Jones H, Norris C, O'Sullivan D M. Evaluation of diagnostic molecular markers for DUS phenotypic assessment in the cereal crop, barley (Hordeum vulgare ssp vulgare L.). Theor Appl Genet, 2012, 125: 1735-1749.
doi: 10.1007/s00122-012-1950-3 pmid: 22898724
[26] Gore M A, Chia J M, Elshire R J, Sun Q, Ersoz E S, Hurwitz B L, Peiffer J A, McMullen M D, Grills G S, Ross-Ibarra J, Ware D H, Buckler E S. A first-generation haplotype map of maize. Science, 2009, 326: 1115-1117.
doi: 10.1126/science.1177837
[27] Chia J M, Song C, Bradbury P J, Costich D, de Leon N, Doebley J, Elshire R J, Gaut B, Geller L, Glaubitz J C, Gore M, Guill K E, Holland J, Hufford M B, Lai J, Li M, Liu X, Lu Y, Richard McCombie R, Nelson R, Poland J, Prasanna B M, Pyhäjärvi T, Rong T, Sekhon R S, Sun Q, Tenaillon M I, Tian F, Wang J, Xu X, Zhang Z, Kaeppler S M, Ross-Ibarra J, McMullen M D, Buckler E S, Zhang G, Xu Y, Ware D. Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet, 2012, 44: 803-807.
doi: 10.1038/ng.2313
[28] Bukowski R, Guo X, Lu Y, Zou C, He B, Rong Z, Wang B, Xu D, Yang B, Xie C, Fan L, Gao S, Xu X, Zhang G, Li Y, Jiao Y, Doebley J F, Ross-Ibarra J, Lorant A, Buffalo V, Romay M C, Buckler E S, Ware D, Lai J, Sun Q, Xu Y. Construction of the third- generation Zea mays haplotype map. GigaScience, 2018, 7: 1-12.
doi: 10.1093/gigascience/gix134 pmid: 29300887
[29] Jordan K W, Wang S, Lun Y, Gardiner L J, MacLachlan R, Hucl P, Wiebe K, Wong D, Forrest K L, Sharpe A G, Sidebottom C H, Hall N, Toomajian C, Close T, Dubcovsky J, Akhunova A, Talbert L, Bansal U K, Bariana H S, Hayden M J, Pozniak C, Jeddeloh J A, Hall A, Akhunov E. A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol, 2015, 16: 48.
doi: 10.1186/s13059-015-0606-4
[30] Wang C C, Yu H, Huang J, Wang W S, Faruquee M, Zhang F, Zhao X Q, Fu B Y, Chen K, Zhang H L, Tai S S, Wei C, McNally K L, Alexandrov N, Gao X Y, Li J, Li Z K, Xu J L, Zheng T Q. Towards a deeper haplotype mining of complex traits in rice with RFGB v2.0. Plant Biotechnol J, 2020, 18: 14-16.
doi: 10.1111/pbi.13215
[31] Torkamaneh D, Laroche J, Valliyodan B, O'Donoughue L, Cober E, Rajcan I, Abdelnoor R V, Sreedasyam A, Schmutz J, Nguyen H T, Belzile F. Soybean (Glycine max) Haplotype Map (GmHapMap): a universal resource for soybean translational and functional genomics. Plant Biotechnol J, 2021, 19: 324-334.
doi: 10.1111/pbi.13466
[32] Ye J, Wang X, Wang W, Yu H, Ai G, Li C, Sun P, Wang X, Li H, Ouyang B, Zhang J, Zhang Y, Han H, Giovannoni J J, Fei Z, Ye Z. Genome-wide association study reveals the genetic architecture of 27 agronomic traits in tomato. Plant Physiol, 2021, 186: 2078-2092.
doi: 10.1093/plphys/kiab230
[33] Lu Y, Yan J, Guimarães C T, Taba S, Hao Z, Gao S, Chen S, Li J, Zhang S, Vivek B S, Magorokosho C, Mugo S, Makumbi D, Parentoni S N, Shah T, Rong T, Crouch J H, Xu Y. Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet, 2009, 120: 93-115.
doi: 10.1007/s00122-009-1162-7
[34] Mace E S, Tai S, Gilding E K, Li Y, Prentis P J, Bian L, Campbell B C, Hu W, Innes D J, Han X, Cruickshank A. Whole-genome sequencing reveals untapped genetic potential in Africa's indigenous cereal crop sorghum. Nat Commun, 2013, 4: 2320.
doi: 10.1038/ncomms3320
[35] Olufowote J O, Xu Y, Chen X, Park W D, Beachell H M, Dilday R H, Goto M, McCouch S R. Comparative evaluation of within-cultivar variation of rice (Oryza sativa L.) using microsatellite and RFLP markers. Genome, 1997, 40: 370-378.
pmid: 9202415
[36] Singh R K, Sharma R K, Singh A K, Singh V P, Singh N K, Tiwari S P, Mohapatra T. Suitability of mapped sequence tagged microsatellite site markers for establishing distinctness, uniformity and stability in aromatic rice. Euphytica, 2004, 135: 135-143.
doi: 10.1023/B:EUPH.0000014905.10397.08
[37] Lombard V, Tireau B, Blouet F, Zhang D, Baril C P. Usefulness of AFLP markers to estimate varietal homogeneity of rapeseed inbred line varieties in the context of plant registration and protection. Euphytica, 2002, 125: 121-127.
doi: 10.1023/A:1015755217589
[38] Tommasini L, Batley J, Arnold G M, Cooke R J, Donini P, Lee D, Law J R, Lowe C, Moule C, Trick M, Edwards K J. The development of multiplex simple sequence repeat (SSR) markers to complement distinctness, uniformity and stability testing of rape (Brassica napus L.) varieties. Theor Appl Genet, 2003, 106: 1091-1101.
pmid: 12671758
[39] Cooke R J, Bredemeijer G M M, Ganal M W, Peeters R, Isaac P, Rendell S, Jackson J, Roder M S, Korzun V, Wendehake K, Areshchenkova T, Dijcks M, Laborie D, Bertrand L, Vosman B. Assessment of the uniformity of wheat and tomato varieties at DNA microsatellite loci. Euphytica, 2003, 132: 331-341.
doi: 10.1023/A:1025046919570
[40] Yim G R, Ding D R, Wang C P, Leong W H, Hong Y. Microsatellite markers to complement distinctness, uniformity, stability testing of Brassica chinensis (Xiaobaicai) varieties. Open Hort J, 2009, 2: 54-61.
[41] Vélez M D, Ibánez J. Assessment of the uniformity and stability of grapevine cultivars using a set of microsatellite markers. Euphytica, 2012, 186: 419-432.
doi: 10.1007/s10681-012-0633-0
[42] Wang L X, Li H B, Gu T C, Liu L H, Pang B S, Qiu J, Zhao C P. Assessment of wheat variety stability using SSR markers. Euphytica, 2013, 195: 435-452.
doi: 10.1007/s10681-013-1006-z
[43] Julier B, Barre P, Lambroni P, Delaunay S, Thomasset M, Lafaillette F, Gensollen V. Use of GBS markers to distinguish among lucerne varieties, with comparison to morphological traits. Mol Breed, 2018, 38: 133.
doi: 10.1007/s11032-018-0891-1
[44] Achard F, Butruille M, Madjarac S, Nelson P T, Duesing J, Laffont J L, Nelson B, Xiong J, Mikel M A, Smith J S C. Single nucleotide polymorphisms facilitate distinctness-uniformity- stability testing of soybean cultivars for plant variety protection. Crop Sci, 2020, 60: 2280-2303.
doi: 10.1002/csc2.20201
[45] Saccomanno B, Wallace M, O'Sullivan D M, Cockram J. Use of genetic markers for the detection of off-types for DUS phenotypic traits in the inbreeding crop, barley. Mol Breed, 2020, 40: 13.
doi: 10.1007/s11032-019-1088-y
[46] Van Eeuwijk F, Law J. Statistical aspects of essential derivation, with illustrations based on lettuce and barley. Euphytica, 2004, 137: 129-137.
doi: 10.1023/B:EUPH.0000040510.31827.ae
[47] Leigh F, Law J R, Lea V J, Donini P, Reeves J C. A comparison of molecular markers and statistical tools for diversity and EDV assessments. In:The Wake of the Double Helix: from the Green Revolution to the Gene Revolution. Proceedings of an International Congress, Bologna, Italy, 2003. pp 349-363.
[48] Noli E, Teriaca M S, Conti S. Criteria for the definition of similarity thresholds for identifying essentially derived varieties. Plant Breed, 2013, 132: 525-531.
doi: 10.1111/pbr.12109
[49] Noli E, Teriaca M S, Conti S. Identification of a threshold level to assess essential derivation in durum wheat. Mol Breed, 2012, 29: 687-698.
doi: 10.1007/s11032-011-9582-x
[50] Borchert T, Krueger J, Hohe A. Implementation of a model for identifying essentially derived varieties in vegetatively propagated Calluna vulgaris varieties. BMC Genet, 2008, 9: 1.
doi: 10.1186/1471-2156-9-1
[51] Maccaferri M, Sanguineti M C, Xie C, Smith J S C, Tuberosa R. Relationships among durum wheat accessions. II: A comparison of molecular and pedigree information. Genome, 2007, 50: 385-399.
pmid: 17546097
[52] ISF, International Seed Federation. Guidelines for the handling of a dispute on essential derivation in maize lines. https://www.worlseed.org/wp-content/uploads/2015/10/ISF_Guidelines_Disputes_EDV_Maize_2014.pdf. 2014.
[53] UPOV, nternational Union for the Protection of New Varieties of Plants. Identification of SNP markers to aid assessment of essential derivation in maize. BMT/14/7 Rev. https://www.upov.int/edocs/mdocs/upov/en/bmt_14/bmt_14_7_rev.pdf. 2014.
[54] Janis M D, Smith S. Technological change and the design of plant variety protection regimes. Chicago-Kent Law Rev, 2007, 82: 1557-1615.
[55] Hufford M B, Seetharam A S, Woodhouse M R, Chougule K M, Ou S, Liu J, Ricci W A, Guo T, Olson A, Qiu Y, Coletta R D, Tittes S, Hudson A I, Marand A P, Wei S, Lu Z, Wang B, Tello-Ruiz M K, Piri R D, Wang N won Kim D, Zeng Y, O'Connor C H, Li X, Gilbert A M, Baggs E, Krasileva K V, Portwood II J L, Cannon E K S, Andorf C M, Manchanda N, Snodgrass S J, Hufnagel D E, Jiang Q, Pedersen S, Syring M L, Kudrna D A, Llaca V, Fengler K, Schmitz R J, Ross-Ibarra J, Yu J, Gent J I, Hirsch C N, Ware D, Dawe R K. De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science, 2021, e373: 655-662.
[56] Liu Z, Li J, Fan X, Htwe N M P S, Wang S, Huang W, Yang J, Xing L, Chen L, Li Y, Guan R, Chang R, Wang D, Qiu L. Assessing the numbers of SNPs needed to establish molecular IDs and characterize the genetic diversity of soybean cultivars derived from Tokachi nagaha. Crop J, 2017, 5: 326-336.
doi: 10.1016/j.cj.2016.11.001
[57] Yang Y, Tian H, Wang R, Wang L, Yi H, Liu Y, Xu L, Fan Y, Zhao J, Wang F. Variety discrimination power: an appraisal index for loci combination screening applied to plant variety discrimination. Front Plant Sci, 2021, 12: 566796.
doi: 10.3389/fpls.2021.566796
[58] 王凤格, 杨扬, 易红梅, 赵久然, 任洁, 王璐, 葛建镕, 江彬, 张宪晨, 田红丽, 侯振华. 中国玉米审定品种标准SSR指纹库的构建. 中国农业科学, 2017, 50: 1-14.
Wang F G, Yang Y, Yi H M, Zhao J R, Ren J, Wang L, Ge J R, Jiang B, Zhang X C, Tian H L, Hou Z H. Construction of an SSR-based standard fingerprint database for corn variety authorized in China. Sci Agric Sin, 2017, 50: 1-14. (in Chinese with English abstract)
[59] 陆徐忠, 倪金龙, 李莉, 汪秀峰, 马卉, 张小娟, 杨剑波. 利用SSR分子指纹和商品信息构建水稻品种身份证. 作物学报, 2014, 40: 823-829.
Lu X Z, Ni J L, Li L, Wang X F, Ma H, Zhang X J, Yang J B. Construction of rice variety based on ID used SSR fingerprint and commodity information. Acta Agron Sin, 2014, 40: 823-829. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2014.00823
[60] 王立新, 李云伏, 常利芳, 黄岚, 李宏博, 葛玲玲, 刘丽华, 姚骥, 赵昌平. 建立小麦品种DNA 指纹的方法研究. 作物学报, 2007, 33: 1738-1740.
Wang L X, Li Y F, Chang L F, Huang L, Li H B, Ge L L, Liu L H, Yao J, Zhao C P. Method of ID constitution for wheat cultivars. Acta Agron Sin, 2007, 33: 1738-1740 (in Chinese with English abstract).
[61] 高运来, 朱荣胜, 刘春燕, 李文福, 蒋洪蔚, 李灿东, 姚丙晨, 胡国华, 陈庆山. 黑龙江部分大豆品种分子ID 的构建. 作物学报, 2009, 35: 211-218.
Gao Y L, Zhu R S, Liu C Y, Li W F, Jiang H W, Li C D, Yao B C, Hu G H, Chen Q S. Establishment of molecular ID in soybean varieties in Heilongjiang. Acta Agron Sin, 2009, 35: 211-218. (in Chinese with English abstract)
[62] 马琳, 刘海珍, 陆徐忠, 倪金龙, 张小娟, 杨剑波. 130份甘蓝型油菜种质分子身份证的构建. 中国油料作物学报, 2013, 35: 231-239.
Ma L, Liu H Z, Lu X Z, Ni J L, Zhang X J, Yang J B. Molecular identity of 130 Brassica napus varieties. Chin J Oil Crops Sci, 2013, 35: 231-239. (in Chinese with English abstract)
[63] Yan J, Zou D, Li C, Zhang Z, Song S, Wang X. SR4R: an integrative SNP resource for genomic breeding and population research in rice. Genom Proteom Bioinform, 2020, 18: 173-185.
doi: 10.1016/j.gpb.2020.03.002
[64] Jiang B, Zhao Y, Yi H, Huo Y, Wu H, Ren J, Ge J, Zhao J, Wang F. PIDS: a user-friendly plant DNA fingerprint database management system. Genes, 2020, 11: 373.
[65] Groeneveld E, Lichtenberg H. The SNPpit-a high performance database system for managing large scale SNP data. PLoS One, 2016, 11: e0164043.
[1] 惠志明, 徐建飞, 简银巧, 卞春松, 段绍光, 胡军, 李广存, 金黎平. 基于2b-RAD测序的四倍体马铃薯熟性相关的分子标记开发[J]. 作物学报, 2022, 48(9): 2274-2284.
[2] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[3] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[4] 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521.
[5] 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323.
[6] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[7] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
[8] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[9] 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284.
[10] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[11] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[12] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[13] 黄冰艳,齐飞艳,孙子淇,苗利娟,房元瑾,郑峥,石磊,张忠信,刘华,董文召,汤丰收,张新友. 以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价[J]. 作物学报, 2019, 45(4): 546-555.
[14] 张平,姜一梅,曹鹏辉,张福鳞,伍洪铭,蔡梦颖,刘世家,田云录,江玲,万建民. 通过分子标记辅助选择将耐储藏主效QTL qSS-9 Kas转入宁粳4号提高其种子贮藏能力[J]. 作物学报, 2019, 45(3): 335-343.
[15] 牟碧涛,赵卓凡,岳灵,李川,张钧,李章波,申汉,曹墨菊. 两份玉米CMS-C恢复系的育性恢复力测定及恢复基因的分子标记定位[J]. 作物学报, 2019, 45(2): 225-234.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[4] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[5] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[6] 田志坚;易蓉;陈建荣;郭清泉;张学文. 苎麻纤维素合成酶基因cDNA的克隆及表达分析[J]. 作物学报, 2008, 34(01): 76 -83 .
[7] 赵秀琴;朱苓华;徐建龙;黎志康. 灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位[J]. 作物学报, 2007, 33(09): 1536 -1542 .
[8] 吴影;宋丰顺;陆徐忠;赵 伟;杨剑波;李莉. 实时荧光PCR技术定量检测转基因大豆方法的研究[J]. 作物学报, 2007, 33(10): 1733 -1737 .
[9] 勾玲;黄建军;张宾;李涛;孙锐;赵明. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688 -1695 .
[10] 于晶;张林;崔红;张永侠;苍晶;郝再彬;李卓夫. 高寒地区冬小麦东农冬麦1号越冬前的生理生化特性[J]. 作物学报, 2008, 34(11): 2019 -2025 .