作物学报 ›› 2022, Vol. 48 ›› Issue (8): 1884-1893.doi: 10.3724/SP.J.1006.2022.14140
刘成(), 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬*(), 盖钧镒*()
LIU Cheng(), ZHANG Ya-Xuan, CHEN Xian-Lian, HAN Wei, XING Guang-Nan, HE Jian-Bo, ZHANG Jiao-Ping, ZHANG Feng-Kai, SUN Lei, LI Ning, WANG Wu-Bin*(), GAI Jun-Yi*()
摘要:
一年生野生大豆是栽培大豆的祖先, 在长期驯化改良过程中, 百粒重逐渐增大, 阐明该变化的遗传基础, 对大豆的进化研究与品种改良具有重要意义。为了解析大豆百粒重驯化的遗传基础, 本研究以177份全基因组重测序的野生大豆染色体片段代换系(SojaCSSLP5)为材料, 通过3个不同环境的表型评价, 检测到13个与大豆百粒重相关的野生染色体片段, 均具有减小大豆百粒重的加性效应, 变幅为-0.49~ -1.19 g, 这与野生大豆具有较小百粒重相符。检测到的这些野生染色体片段分布在大豆11条染色体上, 可以解释76.70%的表型变异, 单个片段表型贡献率变幅为2.45%~15.14%。其中片段Gm03_LDB_15和Gm12_LDB_46的贡献率超过10%, 为大豆百粒重由野生向栽培进化的大效应片段。结合双亲栽培大豆南农1138-2和野生大豆N24852的转录组数据和基因组数据, 在这些区段内共预测到13个百粒重候选基因, 涉及以下调控植物种子大小的途径: 泛素蛋白激酶调控途径、G蛋白信号途径、裂原活化蛋白激酶途径、植物激素途径、转录调控因子途径和HAIKU途径。与前人利用栽培大豆的研究结果相比, 本研究检测到13个大豆百粒重相关野生染色体片段中有4个片段是新检测到的, 表明有9个野生染色体片段可能为野生大豆传递给栽培大豆的共享片段, 而这4个新检测到的野生染色体片段相对应栽培片段可能为栽培大豆特有的进化片段。
[1] |
Zhou Z K, Jiang Y, Wang Z, Gou Z H, Lyu J, Li W Y, Yu Y J, Shu L P, Zhao Y J, Ma Y M, Fang C, Shen Y T, Liu T F, Li C C, Li Q, Wu M, Wang M, Wu Y S, Dong Y, Wan W T, Wang X, Ding Z L, Gao Y D, Xiang H, Zhu B G, Lee S H, Wang W, Tian Z X. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol, 2015, 33: 408-416.
doi: 10.1038/nbt.3096 |
[2] |
Wang M, Li W Z, Fang C, Xu F, Liu Y C, Wang Z, Yang R, Zhang M, Liu S L, Lu S J, Lin T, Tang J Y, Wang Y Q, Wang H R, Lin H, Zhu B G, Chen M S, Kong F J, Liu B H, Zeng D L, Jackson S A, Chu C C, Tian Z X. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet, 2018, 50: 1435-1441.
doi: 10.1038/s41588-018-0229-2 pmid: 30250128 |
[3] |
Liu B H, Watanabe S, Uchiyama T, Kong F J, Kanazawa A, Xia Z J, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J. The soybean stem growth habit gene Dt1is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol, 2010, 153: 198-210.
doi: 10.1104/pp.109.150607 |
[4] |
Sun L, Miao Z, Cai C, Zhang D, Zhao M, Wu Y, Zhang X, Swarm S A, Zhou L, Zhang Z J, Nelson R L, Ma J. GmHs1-1, encoding a calcineurin-like protein, controls hard-seededness in soybean. Nat Genet, 2015, 47: 939-943.
doi: 10.1038/ng.3339 |
[5] |
Han Y P, Li D M, Zhu D, Li H Y, Li X P, Teng W L, Li W B. QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor Appl Genet, 2012, 125: 671-683.
doi: 10.1007/s00122-012-1859-x |
[6] |
Kato S, Sayama T, Fujii K, Yumoto S, Kono Y, Hwang T Y, Kikuchi A, Takada Y, Tanaka Y, Shiraiwa T, Ishimoto M. A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds. Theor Appl Genet, 2014, 127: 1365-1374.
doi: 10.1007/s00122-014-2304-0 |
[7] |
Xin D W, Qi Z M, Jiang H W, Hu Z B, Zhu R S, Hu J H, Han H Y, Hu G H, Liu C Y, Chen Q S. QTL location and epistatic effect analysis of 100-seed weight using wild soybean (Glycine soja Sieb. & Zucc.) chromosome segment substitution lines. PLoS One, 2016, 11: e0149380.
doi: 10.1371/journal.pone.0149380 |
[8] |
Liu D Q, Yan Y L, Fujita Y, Xu D H. Identification and validation of QTLs for 100-seed weight using chromosome segment substitution lines in soybean. Breed Sci, 2018, 68: 442-448.
doi: 10.1270/jsbbs.17127 |
[9] |
Wu D P, Zhan Y H, Sun Q X, Xu L X, Lian M, Zhao X, Han Y P, Li W B. Identification of quantitative trait loci underlying soybean (Glycine max [L.] Merr.) seed weight including main, epistatic and QTL × environment effects in different regions of Northeast China. Plant Breed, 2018, 137: 194-202.
doi: 10.1111/pbr.12574 |
[10] |
Li Y H, Reif J C, Hong H L, Li H H, Liu Z X, Ma Y S, Li J, Tian Y, Li Y F, Li W B, Qiu L J. Genome-wide association mapping of QTL underlying seed oil and protein contents of a diverse panel of soybean accessions. Plant Sci, 2018, 266: 95-101.
doi: 10.1016/j.plantsci.2017.04.013 |
[11] |
Li D M, Zhao X, Han Y P, Li W B, Xie F T. Genome-wide association mapping for seed protein and oil contents using a large panel of soybean accessions. Genomics, 2019, 111: 90-95.
doi: 10.1016/j.ygeno.2018.01.004 |
[12] |
Zhang Y H, He J B, Wang Y F, Xing G N, Zhao J M, Li Y, Yang S P, Palmer R G, Zhao T J, Gai J Y. Establishment of a 100-seed weight quantitative trait locus-allele matrix of the germplasm population for optimal recombination design in soybean breeding programmes. J Exp Bot, 2015, 66: 6311-6325.
doi: 10.1093/jxb/erv342 |
[13] |
He J B, Meng S, Zhao T J, Xing G N, Yang S P, Li Y, Guan R Z, Lu J J, Wang Y F, Xia Q J, Yang B, Gai J Y. An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding. Theor Appl Genet, 2017, 130: 2327-2343.
doi: 10.1007/s00122-017-2962-9 |
[14] |
Li D D, Pfeiffer T W, Cornelius P L. Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Sci, 2008, 48: 571-581.
doi: 10.2135/cropsci2007.06.0361 |
[15] |
Liu B, Fujita T, Yan Z H, Sakamoto S, Xu D, Abe J. QTL mapping of domestication-related traits in soybean (Glycine max). Ann Bot, 2007, 100: 1027-1038.
doi: 10.1093/aob/mcm149 |
[16] |
Maughan P J, Maroof M A S, Buss G R. Molecular-marker analysis of seed weight: genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor Appl Genet, 1996, 93: 574-579.
doi: 10.1007/BF00417950 pmid: 24162350 |
[17] |
Sebolt A M, Shoemaker R C, Diers B W. Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci, 2000, 40: 1438-1444.
doi: 10.2135/cropsci2000.4051438x |
[18] | Wang W B, He Q Y, Yang H Y, Xiang S H, Xing G N, Zhao T J, Gai J Y. Identification of QTL/segments related to seed-quality traits in G. soja using chromosome segment substitution lines. Plant Genet Resour, 2014, 12: S65-S69. |
[19] |
Yang K, Moon J K, Jeong N, Chun H K, Kang S T, Back K, Jeong S C. Novel major quantitative trait loci regulating the content of isoflavone in soybean seeds. Genes Genom, 2011, 33: 685-692.
doi: 10.1007/s13258-011-0043-z |
[20] |
Wang W B, He Q Y, Yang H Y, Xiang S H, Zhao T J, Gai J Y. Development of a chromosome segment substitution line population with wild soybean (Glycine soja Sieb. et Zucc.) as donor parent. Euphytica, 2013, 189: 293-307.
doi: 10.1007/s10681-012-0817-7 |
[21] |
Chen Z L, Wang B B, Dong X M, Liu H, Ren L H, Chen J, Hauck A, Song W B, Lai J S. An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics, 2014, 15: 433.
doi: 10.1186/1471-2164-15-433 |
[22] |
Li G Q, Wang Y, Chen M S, Edae E, Poland J, Akhunov E, Chao S M, Bai G H, Carver B F, Yan L L. Precisely mapping a major gene conferring resistance to Hessian fly in bread wheat using genotyping-by-sequencing. BMC Genomics, 2015, 16: 108.
doi: 10.1186/s12864-015-1297-7 |
[23] |
Wu X L, Ren C W, Joshi T, Vuong T, Xu D, Nguyen H T. SNP discovery by high-throughput sequencing in soybean. BMC Genomics, 2010, 11: 469.
doi: 10.1186/1471-2164-11-469 |
[24] |
Xu X Y, Zeng L, Tao Y, Vuong T, Wan J R, Boerma R, Noe J, Li Z L, Finnerty S, Pathan S M, Shannon J G, Nguyen H T. Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Natl Acad Sci USA, 2013, 110: 13469-13474.
doi: 10.1073/pnas.1222368110 |
[25] |
Liu C, Chen X L, Wang W B, Hu X Y, Han W, He Q Y, Yang H Y, Xiang S H, Gai J Y. Identifying wild versus cultivated gene-alleles conferring seed coat color and days to flowering in soybean. Int J Mol Sci, 2021, 22: 1559-1580.
doi: 10.3390/ijms22041559 |
[26] |
Li Y H, Zheng L Y, Corke F, Smith C, Bevan M W. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana Gene Dev, 2008, 22: 1331-1336.
doi: 10.1101/gad.463608 |
[27] |
Ashikari M, Wu J Z, Yano M, Sasaki T, Yoshimura A. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci USA, 1999, 96: 10284-10289.
doi: 10.1073/pnas.96.18.10284 |
[28] |
Schruff M C, Spielman M, Tiwari S, Adams S, Fenby N, Scott R J. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development, 2006, 133: 251-261.
pmid: 16339187 |
[29] |
Garcia D, Saingery V, Chambrier P, Mayer U, Jurgens G, Berger F. Arabidopsis haiku mutants reveal new controls of seed size by endosperm. Plant Physiol, 2003, 131: 1661-1670.
doi: 10.1104/pp.102.018762 |
[30] |
Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707-711.
doi: 10.1038/ng.2612 pmid: 23583977 |
[31] |
Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001 |
[32] |
Teng W, Han Y, Du Y, Sun D, Zhang Z, Qiu L, Sun G, Li W. QTL analyses of seed weight during the development of soybean (Glycine max L. Merr.). Heredity, 2009, 102: 372-380.
doi: 10.1038/hdy.2008.108 pmid: 18971958 |
[33] |
Vieira A J D, Oliveira D A D, Soares T C B, Schuster L, Piovesan N D, Martinez C A, Barros E G, Moreira M A. Use of the QTL approach to the study of soybean trait relationships in two populations of recombinant inbred lines at the F7 and F8 generations. Braz J Plant Physiol, 2006, 18: 281-290.
doi: 10.1590/S1677-04202006000200004 |
[34] |
Hacisalihoglu G, Burton A L, Gustin J L, Eker S, Asikli S, Heybet E H, Ozturk L, Cakmak I, Yazici A, Burkey K O, Orf J, Settles A M. Quantitative trait loci associated with soybean seed weight and composition under different phosphorus levels. J Integr Plant Biol, 2018, 60: 232-241.
doi: 10.1111/jipb.12612 |
[35] |
Sun Y N, Pan J B, Shi X L, Du X Y, Wu Q, Qi Z M, Jiang H W, Xin D W, Liu C Y, Hu G H, Chen Q S. Multi-environment mapping and meta-analysis of 100-seed weight in soybean. Mol Biol Rep, 2012, 39: 9435-9443.
doi: 10.1007/s11033-012-1808-4 |
[36] |
Funatsuki H, Kawaguchi K, Matsuba S, Sato Y, Ishimoto M. Mapping of QTL associated with chilling tolerance during reproductive growth in soybean. Theor Appl Genet, 2005, 111: 851-861.
pmid: 16059730 |
[37] |
Hyten D L, Pantalone V R, Sams C E, Saxton A M, Landau-Ellis D, Stefaniak T R, Schmidt M E. Seed quality QTL in a prominent soybean population. Theor Appl Genet, 2004, 109: 552-561.
pmid: 15221142 |
[38] |
Mian M A R, Bailey M A, Tamulonis J P, Shipe E R, Carter T E, Parrott W A, Ashley D A, Hussey R S, Boerma H R. Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet, 1996, 93: 1011-1016.
doi: 10.1007/BF00230118 pmid: 24162474 |
[39] |
Luo J H, Liu H, Zhou T Y, Gu B G, Huang X H, Shang-Guan Y Y, Zhu J J, Li Y, Zhao Y, Wang Y C, Zhao Q, Wang A H, Wang Z Q, Sang T, Wang Z X, Han B. An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size, and grain number in rice. Plant Cell, 2013, 25: 3360-3376.
doi: 10.1105/tpc.113.113589 |
[40] |
Sun S Y, Wang L, Mao H L, Shao L, Li X H, Xiao J H, Ou-Yang Y D, Zhang Q F. A G-protein pathway determines grain size in rice. Nat Commun, 2018, 9: 851.
doi: 10.1038/s41467-018-03141-y |
[41] |
Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING- type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623-630.
doi: 10.1038/ng2014 |
[42] |
Dong H, Dumenil J, Lu F H, Na L, Vanhaeren H, Naumann C, Klecker M, Prior R, Smith C, McKenzie N, Saalbach G, Chen L L, Xia T, Gonzalez N, Seguela M, Inze D, Dissmeyer N, Li Y H, Bevan M W. Ubiquitylation activates a peptidase that promotes cleavage and destabilization of its activating E3 ligases and diverse growth regulatory proteins to limit cell proliferation in Arabidopsis. Gene Dev, 2017, 31: 197-208.
doi: 10.1101/gad.292235.116 pmid: 28167503 |
[43] |
Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2011, 122: 211-223.
doi: 10.1007/s00122-010-1437-z |
[44] |
Zhao B, Dai A, Wei H, Wang B, Jiang N, Feng X. Arabidopsis KLU homologue GmCYP78A72 regulates seed size in soybean. Plant Mol Biol, 2016, 90: 33-47.
doi: 10.1007/s11103-015-0392-0 |
[45] | Tang X F, Su T, Han M, Wei L, Wang W W, Yu Z Y, Xue Y G, Wei H B, Du Y J, Greiner S, Rausch T, Liu L J. Suppression of extracellular invertase inhibitor gene expression improves seed weight in soybean (Glycine max). J Exp Bot, 2017, 68: 469-482. |
[46] |
Ge L F, Yu J B, Wang H L, Luth D, Bai G H, Wang K, Chen R J. Increasing seed size and quality by manipulating BIG SEEDS1 in legume species. Proc Natl Acad Sci USA, 2016, 113: 12414-12419.
doi: 10.1073/pnas.1611763113 |
[47] |
Liu J Y, Zhang Y W, Han X, Zuo J F, Zhang Z, Shang H, Song Q, Zhang Y M. An evolutionary population structure model reveals pleiotropic effects of GmPDAT for traits related to seed size and oil content in soybean. J Exp Bot, 2020, 71: 6988-7002.
doi: 10.1093/jxb/eraa426 |
[48] |
Wang S D, Liu S, Wang J, Yokosho K, Zhou B, Yu Y C, Liu Z, Frommer W B, Ma J F, Chen L Q, Guan Y F, Shou H X, Tian Z X. Simultaneous changes in seed size, oil content, and protein content driven by selection of SWEET homologues during soybean domestication. Nat Sci Rev, 2020, 7: 1776-1786.
doi: 10.1093/nsr/nwaa110 |
[49] |
Lu X, Li Q T, Xiong Q, Li W, Bi Y D, Lai X L, Man W Q, Zhang W K, Ma B, Chen S Y, Zhang J S. The transcriptomic signature of developing soybean seeds reveals the genetic basis of seed trait adaptation during domestication. Plant J, 2016, 86: 530-544.
doi: 10.1111/tpj.13181 |
[50] |
Lu X, Xiong Q, Cheng T, Li Q T, Liu X L, Bi Y D, Li W, Zhang W K, Ma B, Lai Y C, Du W G, Man W Q, Chen S Y, Zhang J S. A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Mol Plant, 2017, 10: 670-684.
doi: 10.1016/j.molp.2017.03.006 |
[51] |
Nguyen C X, Paddock K J, Zhang Z Y, Stacey M G. GmKIX8-1 regulates organ size in soybean and is the causative gene for the major seed weight QTL qSw17-1. New Phytol, 2021, 229: 920-934.
doi: 10.1111/nph.16928 |
[1] | 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643. |
[2] | 王吴彬, 童飞, KHAN Mueen Alam, 张雅轩, 贺建波, 郝晓帅, 邢光南, 赵团结, 盖钧镒. 大豆根部水压胁迫耐逆指数遗传体系解析[J]. 作物学报, 2021, 47(5): 847-859. |
[3] | 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461. |
[4] | 蒙姜宇, 梁光伟, 贺亚军, 钱伟. 甘蓝型油菜耐盐和耐旱相关性状的QTL分析[J]. 作物学报, 2021, 47(3): 462-471. |
[5] | 曾健, 徐先超, 徐昱斐, 王秀成, 于海燕, 冯贝贝, 邢光南. 利用动态转录组学挖掘大豆百粒重候选基因[J]. 作物学报, 2021, 47(11): 2121-2133. |
[6] | 孙志广, 王宝祥, 周振玲, 方磊, 迟铭, 李景芳, 刘金波, Bello Babatunde Kazeem, 徐大勇. 水稻萌发耐淹性种质资源筛选及QTL定位[J]. 作物学报, 2021, 47(1): 61-70. |
[7] | 王大川,汪会,马福盈,杜婕,张佳宇,徐光益,何光华,李云峰,凌英华,赵芳明. 增加穗粒数的水稻染色体代换系Z747鉴定及相关性状QTL定位[J]. 作物学报, 2020, 46(01): 140-146. |
[8] | 蒙姜宇,傅鹰,贺亚军,钱伟. 利用DH和IF2群体检测油菜籽粒油酸、亚油酸、亚麻酸含量QTL[J]. 作物学报, 2019, 45(9): 1338-1348. |
[9] | 陈影,张晟瑞,王岚,王连铮,李斌,孙君明. 野生和栽培大豆种质油脂组成特点及其与演化的关系[J]. 作物学报, 2019, 45(7): 1038-1049. |
[10] | 崔国庆,王世明,马福盈,汪会,向朝中,李云峰,何光华,张长伟,杨正林,凌英华,赵芳明. 水稻高秆染色体片段代换系Z1377的鉴定及重要农艺性状QTL定位[J]. 作物学报, 2018, 44(10): 1477-1484. |
[11] | 郭海平, 孙高阳, 张晓祥, 闫鹏帅, 刘坤, 谢惠玲, 汤继华, 丁冬, 李卫华. 基于SSSL群体的玉米穗下节间长QTL分析[J]. 作物学报, 2018, 44(04): 522-532. |
[12] | 贺亚军, 吴道明, 傅鹰, 钱伟. 利用DH和IF2群体检测甘蓝型油菜株高相关性状QTL[J]. 作物学报, 2018, 44(04): 533-541. |
[13] | 马岩松,刘章雄,文自翔,魏淑红,杨春明,王会才,杨春燕,卢为国,徐冉,张万海,吴纪安,胡国华,栾晓燕,付亚书,郭. 群体构成方式对大豆百粒重全基因组选择预测准确度的影响[J]. 作物学报, 2018, 44(01): 43-52. |
[14] | 周勇,陶亚军,姚 锐,李 畅,谭文琛,裔传灯,龚志云,梁国华*. 利用染色体片段代换系定位水稻叶片形态性状QTL[J]. 作物学报, 2017, 43(11): 1650-1657. |
[15] | 陈雪萍**,荆凌云**,王嘉,荐红举,梅家琴,徐新福,李加纳,刘列钊*. 甘蓝型油菜茎秆菌核病抗性与木质素及其单体比例的相关性分析及QTL定位[J]. 作物学报, 2017, 43(09): 1280-1289. |
|