作物学报 ›› 2022, Vol. 48 ›› Issue (9): 2180-2195.doi: 10.3724/SP.J.1006.2022.14159
张超1,2,3(), 杨博1,2, 张立源1,2, 肖忠春1,2, 刘景森1,2, 马晋齐1,2, 卢坤1,2, 李加纳1,2,*()
ZHANG Chao1,2,3(), YANG Bo1,2, ZHANG Li-Yuan1,2, XIAO Zhong-Chun1,2, LIU Jing-Sen1,2, MA Jin-Qi1,2, LU Kun1,2, LI Jia-Na1,2,*()
摘要:
收获指数是一个重要的农艺性状, 甘蓝型油菜的收获指数偏低, 有较大的改良空间, 研究油菜收获指数的遗传机理对该性状的改良具有重要的指导意义。本研究利用已构建的高密度遗传图谱对由高、低收获指数亲本衍生而来的包含186个株系的重组自交系进行收获指数的数量性状位点(quantitative trait locus, QTL)定位, 2016—2018连续3年环境及最佳线性无偏预测(best linear unbiased prediction, BLUP)值共定位到12个收获指数相关QTL, 分别位于A03、A05、A06、A07、A09、C04和C05_random染色体上, 单个QTL解释的表型变异在1.27%~14.20%之间。同时, 利用588份重测序自然群体对收获指数性状开展了全基因组关联分析(genome-wide association study, GWAS), 2016、2017、2019年及BLUP值共检测到6个显著关联位点, 分别位于A09、C01和C03染色体上, 其中2019年环境检测到的位于A09上的S9_25882060与S9_25961704重叠, 且与2016年环境检测到的位于A09染色体上的S9_24834640位置接近, 此外2016年环境下GWAS检测到的位点2016HI (S9_24834640)位于2017年环境下重组自交系群体定位的q2017HI-9区段内。对比前人研究, 本研究获得的18个位点中有1个位点与收获指数相关位点重叠, 有6个位点与产量相关性状位点接近。结合本课题组已有的转录组测序结果, 在QTL区段及显著关联的SNP位点附近筛选出36个重点候选基因, 这些基因主要涉及光合作用、跨膜运输、储藏物质合成及转录调控等。这些研究结果为甘蓝型油菜收获指数的遗传改良提供了重要的理论依据。
[1] | 王汉中. 以新需求为导向的油菜产业发展战略. 中国油料作物学报, 2018, 40: 613-617. |
Wang H Z. New-demand oriented oilseed rape industry developing strategy. Chin J Oil Crop Sci, 2018, 40: 613-617. (in Chinese with English abstract) | |
[2] |
Hedden P. The genes of the Green Revolution. Trends Genet, 2003, 19: 5-9.
doi: 10.1016/s0168-9525(02)00009-4 pmid: 12493241 |
[3] | Lu K, Xiao Z C, Jian H J, Peng L, Qu C M, Fu M L, He B, Tie L M, Liang Y, Xu X F, Li J N. A combination of genome-wide association and transcriptome analysis reveals candidate genes controlling harvest index-related traits in Brassica napus. Sci Rep, 2016, 6: 36452. |
[4] | Johnson J M F, Allmaras R R, Reicosky D C. Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agron J, 2006, 98: 622-636. |
[5] |
Swift T A, Fagan D, Benito-Alifonso D, Hill S A, Yallop M L, Oliver T A A, Lawson T, Galan M C, Whitney H M. Photosynthesis and crop productivity are enhanced by glucose-functionalised carbon dots. New Phytol, 2021, 229: 783-790.
doi: 10.1111/nph.16886 |
[6] |
Cucinotta M, Di Marzo M, Guazzotti A, de Folter S, Kater M M, Colombo L. Gynoecium size and ovule number are interconnected traits that impact seed yield. J Exp Bot, 2020, 71: 2479-2489.
doi: 10.1093/jxb/eraa050 pmid: 32067041 |
[7] |
Li G H, Pan J F, Cui K H, Yuan M S, Hu Q Q, Wang W C, Mohapatra P K, Nie L X, Huang J L, Peng S B. Limitation of unloading in the developing grains is a possible cause responsible for low stem non-structural carbohydrate translocation and poor grain yield formation in rice through verification of recombinant inbred lines. Front Plant Sci, 2017, 8: 1369-1369.
doi: 10.3389/fpls.2017.01369 |
[8] |
Li P, Chang T G, Chang S Q, Ouyang X, Qu M G, Song Q F, Xiao L T, Xia S T, Deng Q Y, Zhu X G. Systems model-guided rice yield improvements based on genes controlling source, sink, and flow. J Integr Plant Biol, 2018, 60: 1154-1180.
doi: 10.1111/jipb.12738 |
[9] |
Zhang S H, He X Y, Zhao J L, Cheng Y S, Xie Z M, Chen Y H, Yang T F, Dong J F, Wang X F, Liu Q, Liu W, Mao X X, Fu H, Chen Z M, Liao Y P, Liu B. Identification and validation of a novel major QTL for harvest index in rice (Oryza sativa L.). Rice, 2017, 10: 44.
doi: 10.1186/s12284-017-0183-0 |
[10] |
Pradhan S, Babar M A, Robbins K, Bai G, Mason R E, Khan J, Shahi D, Avci M, Guo J, Maksud Hossain M, Bhatta M, Mergoum M, Asseng S, Amand P S, Gezan S, Baik B K, Blount A, Bernardo A. Understanding the genetic basis of spike fertility to improve grain number, harvest index, and grain yield in wheat under high temperature stress environments. Front Plant Sci, 2019, 10: 1481.
doi: 10.3389/fpls.2019.01481 pmid: 31850009 |
[11] |
Saito H, Fukuta Y, Obara M, Tomita A, Ishimaru T, Sasaki K, Fujita D, Kobayashi N. Two novel QTLs for the harvest index that contribute to high-yield production in rice (Oryza sativa L.). Rice, 2021, 14: 18.
doi: 10.1186/s12284-021-00456-1 |
[12] |
Luo X, Ma C Z, Yue Y, Hu K, Li Y, Duan Z, Wu M, Tu J X, Shen J X, Yi B, Fu T D. Unravelling the complex trait of harvest index in rapeseed (Brassica napus L.) with association mapping. BMC Genomics, 2015, 16: 379.
doi: 10.1186/s12864-015-1607-0 |
[13] |
Chao H B, Raboanatahiry N, Wang X D, Zhao W G, Chen L, Guo L X, Li B J, Hou D L, Pu S, Zhang L N, Wang H, Wang B S, Li M T. Genetic dissection of harvest index and related traits through genome-wide quantitative trait locus mapping in Brassica napus L. Breed Sci, 2019, 69: 104-116.
doi: 10.1270/jsbbs.18115 |
[14] |
Porker K, Straight M, Hunt J R. Evaluation of G × E × M interactions to increase harvest index and yield of early sown wheat. Front Plant Sci, 2020, 11: 994.
doi: 10.3389/fpls.2020.00994 |
[15] |
魏丽娟, 刘瑞影, 张莉, 陈志友, 杨鸿, 霍强, 李加纳. 甘蓝型油菜茎高QTL定位及株高相关位点整合. 作物学报, 2019, 45: 818-828.
doi: 10.3724/SP.J.1006.2019.84133 |
Wei L J, Liu R Y, Zhang L, Chen Z Y, Yang H, Huo Q, Li J N. Detection of stem height QTL and integration of the loci for plant height-related traits in B. napus. Acta Agron Sin, 2019, 45: 818-828. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2019.84133 |
|
[16] | Silva L, Wang S, Zeng Z B. Composite interval mapping and multiple interval mapping: procedures and guidelines for using Windows QTL Cartographer. Methods Mol Biol, 2012, 871: 75. |
[17] | Mccouch S, Cho Y, Yano M, Paul E, Blinstrub M, Morishima H, Mccouch S, Cho Y, Paul E, Morishima H. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13. |
[18] |
Lu K, Wei L J, Li X L, Wang Y T, Wu J, Liu M, Zhang C, Chen Z Y, Xiao Z C, Jian H J, Cheng F, Zhang K, Du H, Cheng X C, Qu C M, Qian W, Liu L Z, Wang R, Zou Q Y, Ying J M, Xu X F, Mei J Q, Liang Y, Chai Y R, Tang Z L, Wan H F, Ni Y, He Y J, Lin N, Fan Y H, Sun W, Li N N, Zhou G, Zheng H K, Wang X W, Paterson A H, Li J N. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun, 2019, 10: 1154.
doi: 10.1038/s41467-019-09134-9 |
[19] |
Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633-2635.
pmid: 17586829 |
[20] |
Barrett J C, Fry B, Maller J, Daly M J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 2005, 21: 263-265.
pmid: 15297300 |
[21] |
Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014, 345: 950-953.
doi: 10.1126/science.1253435 pmid: 25146293 |
[22] | 孙伟. 基于多组学联合分析的甘蓝型油菜产量与收获指数调控机制解析. 西南大学硕士学位论文, 重庆, 2020. |
Sun W. Analysis of the Regulation Mechanism of Yield and Harvest Index in Brassica napus Based on Multi-omics. MS Thesis of Southwest University, Chongqing, China, 2020. (in Chinese with English abstract) | |
[23] |
Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014, 30: 2114-2120.
doi: 10.1093/bioinformatics/btu170 |
[24] |
Dobin A, Davis C A, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras T R. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 2013, 29: 15-21.
doi: 10.1093/bioinformatics/bts635 |
[25] |
Liao Y, Smyth G K, Shi W. featureCounts: an efficient general-purpose program for assigning sequence reads to genomic features. Bioinformatics, 2014, 30: 923-930.
doi: 10.1093/bioinformatics/btt656 |
[26] |
Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014, 15: 550.
doi: 10.1186/s13059-014-0550-8 |
[27] |
孙程明, 陈松, 彭琦, 张维, 易斌, 张洁夫, 傅廷栋. 甘蓝型油菜角果长度性状的全基因组关联分析. 作物学报, 2019, 45: 1303-1310.
doi: 10.3724/SP.J.1006.2019.94021 |
Sun C M, Chen S, Peng Q, Zhang W, Yi B, Zhang J F, Fu T D. Genome-wide association study of silique length in rapeseed (Brassica napus L.). Acta Agron Sin, 2019, 45: 1303-1310. (in Chinese with English abstract) | |
[28] |
孙程明, 陈锋, 陈松, 彭琦, 张维, 易斌, 张洁夫, 傅廷栋. 甘蓝型油菜每角粒数的全基因组关联分析. 作物学报, 2020, 46: 147-153.
doi: 10.3724/SP.J.1006.2020.94060 |
Sun C M, Chen F, Chen S, Peng Q, Zhang W, Yi B, Zhang J F, Fu T D. Genome-wide association study of seed number per silique in rapeseed (Brassica napus L.). Acta Agron Sin, 2020, 46: 147-153. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94060 |
|
[29] |
Ye J, Yang Y H, Chen B, Shi J Q, Luo M Z, Zhan J P, Wang X F, Liu G H, Wang H Z. An integrated analysis of QTL mapping and RNA sequencing provides further insights and promising candidates for pod number variation in rapeseed (Brassica napus L.). BMC Genomics, 2017, 18: 71.
doi: 10.1186/s12864-016-3402-y |
[30] |
张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析. 作物学报, 2021, 47: 650-659.
doi: 10.3724/SP.J.1006.2021.04136 |
Zhang C, Zhao X Z, Pang C K, Peng M L, Wang X D, Chen F, Zhang W, Chen S, Peng Q, Yi B, Sun C M, Zhang J F, Fu T D. Genome-wide association study of 1000-seed weight in rapeseed (Brassica napus L.). Acta Agron Sin, 2021, 47: 650-659. (in Chinese with English abstract) | |
[31] | Jensen P E, Haldrup A, Zhang S, Scheller H V. The PSI-O subunit of plant photosystem I is involved in balancing the excitation pressure between the two photosystems. J Biol Chem, 2004, 279: 24212-24217. |
[32] | Takahashi M, Shigeto J, Sakamoto A, Morikawa H. Selective nitration of PsbO1, PsbO2, and PsbP1 decreases PSII oxygen evolution and photochemical efficiency in intact leaves of Arabidopsis. Plant Signal Behav, 2017, 12: e1376157. |
[33] |
Wientjes E, van Stokkum I H M, van Amerongen H, Croce R. Excitation-energy transfer dynamics of higher plant photosystem I light-harvesting complexes. Biophys J, 2011, 100: 1372-1380.
doi: 10.1016/j.bpj.2011.01.030 pmid: 21354411 |
[34] |
Li N, Song D J, Peng W, Zhan J P, Shi J Q, Wang X F, Liu G H, Wang H Z. Maternal control of seed weight in rapeseed (Brassica napus L.): the causal link between the size of pod (mother, source) and seed (offspring, sink). Plant Biotechnol J, 2019, 17: 736-749.
doi: 10.1111/pbi.13011 |
[35] |
Joshi V, Laubengayer K M, Schauer N, Fernie A R, Jander G. Two Arabidopsis threonine aldolases are nonredundant and compete with threonine deaminase for a common substrate pool. Plant Cell, 2006, 18: 3564-3575.
doi: 10.1105/tpc.106.044958 |
[36] |
Schilmiller A L, Stout J, Weng J K, Humphreys J, Ruegger M O, Chapple C. Mutations in the cinnamate-4-hydroxylase gene impact metabolism, growth and development in Arabidopsis. Plant J, 2009, 60: 771-782.
doi: 10.1111/j.1365-313X.2009.03996.x |
[37] |
Jung S H, Kim R J, Kim K J, Lee D H, Suh M C. Plastidial and mitochondrial mmalonyl CoA-ACP malonyltransferase is essential for cell division and its overexpression increases storage oil content. Plant Cell Physiol, 2019, 60: 1239-1249.
doi: 10.1093/pcp/pcz032 pmid: 30796840 |
[38] |
Puttick D, Dauk M, Lozinsky S, Smith M A. Overexpression of a FAD3 desaturase increases synthesis of a polymethylene- interrupted dienoic fatty acid in seeds of Arabidopsis thaliana L. Lipids, 2009, 44: 753-757.
doi: 10.1007/s11745-009-3315-5 pmid: 19548018 |
[39] |
Lu W, Tang X L, Huo Y Q, Xu R, Qi S D, Huang J G, Zheng C C, Wu C A. Identification and characterization of fructose 1,6- bisphosphate aldolase genes in Arabidopsis reveal a gene family with diverse responses to abiotic stresses. Gene, 2012, 503: 65-74.
doi: 10.1016/j.gene.2012.04.042 |
[40] | Jeppson S, Mattisson H, Demski K, Lager I. A predicted transmembrane region in plant diacylglycerol acyltransferase 2 regulates specificity toward very-long-chain acyl-CoAs. J Biol Chem, 2020, 295: 15398-15406. |
[41] | Huai D X, Zhang Y Y, Zhang C Y, Cahoon E B, Zhou Y M. Combinatorial effects of fatty acid elongase enzymes on nervonic acid production in camelina sativa. PLoS One, 2015, 10: e0131755. |
[42] |
Simkin A J, Lopez-Calcagno P E, Davey P A, Headland L R, Lawson T, Timm S, Bauwe H, Raines C A. Simultaneous stimulation of sedoheptulose 1,7-bisphosphatase, fructose 1,6-bisphophate aldolase and the photorespiratory glycine decarboxylase-H protein increases CO2 assimilation, vegetative biomass and seed yield in Arabidopsis. Plant Biotechnol J, 2017, 15: 805-816.
doi: 10.1111/pbi.12676 |
[43] |
Yu X H, Cai Y H, Keereetaweep J, Wei K, Chai J, Deng E, Liu H, Shanklin J. Biotin attachment domain-containing proteins mediate hydroxy fatty acid-dependent inhibition of acetyl CoA carboxylase. Plant Physiol, 2021, 185: 892-901.
doi: 10.1093/plphys/kiaa109 |
[44] |
Macho-Rivero M A, Herrera-Rodríguez M B, Brejcha R, Schäffner A R, Tanaka N, Fujiwara T, González-Fontes A, Camacho- Cristóbal J J. Boron toxicity reduces water transport from root to shoot in Arabidopsis plants. Evidence for a reduced transpiration rate and expression of major PIP aquaporin genes. Plant Cell Physiol, 2018, 59: 841-849.
doi: 10.1093/pcp/pcy026 |
[45] |
Israel D, Khan S, Warren C R, Zwiazek J J, Robson T M. The contribution of PIP2-type aquaporins to photosynthetic response to increased vapour pressure deficit. J Exp Bot, 2021, 72: 5066-5078.
doi: 10.1093/jxb/erab187 |
[46] |
Karlsson P M, Herdean A, Adolfsson L, Beebo A, Nziengui H, Irigoyen S, Ünnep R, Zsiros O, Nagy G, Garab G, Aronsson H, Versaw W K, Spetea C. The Arabidopsis thylakoid transporter PHT4;1 influences phosphate availability for ATP synthesis and plant growth. Plant J, 2015, 84: 99-110.
doi: 10.1111/tpj.12962 |
[47] | Li N N, Gügel I L, Giavalisco P, Zeisler V, Schreiber L, Soll J, Philippar K. FAX1, a novel membrane protein mediating plastid fatty acid export. PLoS Biol, 2015, 13: e1002053. |
[48] |
Dyson B C, Webster R E, Johnson G N. GPT2: a glucose 6-phosphate/phosphate translocator with a novel role in the regulation of sugar signalling during seedling development. Ann Bot, 2014, 113: 643-652.
doi: 10.1093/aob/mct298 |
[49] |
Manfield I W, Devlin P F, Jen C H, Westhead D R, Gilmartin P M. Conservation, convergence, and divergence of light-responsive, circadian-regulated, and tissue-specific expression patterns during evolution of the Arabidopsis GATA gene family. Plant Physiol, 2007, 143: 941-958.
pmid: 17208962 |
[50] | Jain P, Shah K, Sharma N, Kaur R, Singh J, Vinson C, Rishi V. A-ZIP53, a dominant negative reveals the molecular mechanism of heterodimerization between bZIP53, bZIP10 and bZIP25 involved in Arabidopsis seed maturation. Sci Rep, 2017, 7: 14343. |
[51] |
Li S J, Fu Q T, Huang W D, Yu D Q. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep, 2009, 28: 683-693.
doi: 10.1007/s00299-008-0666-y |
[52] |
Alonso R, Oñate-Sánchez L, Weltmeier F, Ehlert A, Diaz I, Dietrich K, Vicente-Carbajosa J, Dröge-Laser W. A pivotal role of the basic leucine zipper transcription factor bZIP53 in the regulation of Arabidopsis seed maturation gene expression based on heterodimerization and protein complex formation. Plant Cell, 2009, 21: 1747-1761.
doi: 10.1105/tpc.108.062968 |
[53] | Yang W T, Chen S Y, Cheng Y X, Zhang N, Ma Y X, Wang W, Tian H N, Li Y Y, Hussain S, Wang S C. Cell wall/vacuolar inhibitor of fructosidase 1 regulates ABA response and salt tolerance in Arabidopsis. Plant Signal Behav, 2020, 15: 1744293. |
[54] |
Sato A, Yamamoto K T. Overexpression of the non-canonical Aux/IAA genes causes auxin-related aberrant phenotypes in Arabidopsis. Physiol Plant, 2008, 133: 397-405.
doi: 10.1111/j.1399-3054.2008.01055.x |
[55] |
Qian D, Zhang Z, He J X, Zhang P, Ou X B, Li T, Niu L P, Nan Q, Niu Y, He W L, An L Z, Jiang K, Xiang Y. Arabidopsis ADF5 promotes stomatal closure by regulating actin cytoskeleton remodeling in response to ABA and drought stress. J Exp Bot, 2019, 70: 435-446.
doi: 10.1093/jxb/ery385 |
[56] |
Na J K, Kim J K, Kim D Y, Assmann S M. Expression of potato RNA-binding proteins StUBA2a/b and StUBA2c induces hypersensitive-like cell death and early leaf senescence in Arabidopsis. J Exp Bot, 2015, 66: 4023-4033.
doi: 10.1093/jxb/erv207 |
[57] | Zhang L L, Shao Y J, Ding L, Wang M J, Davis S J, Liu J X. XBAT31 regulates thermos responsive hypocotyl growth through mediating degradation of the thermosssensor ELF3 in Arabidopsis. Sci Adv, 2021, 7: eabf4427. |
[1] | 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179. |
[2] | 李胜婷, 徐远芳, 常玮, 刘亚俊, 谷嫄, 朱红, 李加纳, 卢坤. Bna.C02SWEET15通过光周期途径正向调控油菜开花时间[J]. 作物学报, 2022, 48(8): 1938-1947. |
[3] | 夏秀忠, 张宗琼, 杨行海, 荘洁, 曾宇, 邓国富, 宋国显, 黄欲晓, 农保选, 李丹婷. 广西水稻地方品种核心种质芽期耐盐性全基因组关联分析[J]. 作物学报, 2022, 48(8): 2007-2015. |
[4] | 张天宇, 王越, 刘影, 周婷, 岳彩鹏, 黄进勇, 华营鹏. 油菜脯氨酸代谢基因家族的生物信息学分析与核心成员鉴定[J]. 作物学报, 2022, 48(8): 1977-1995. |
[5] | 戴丽诗, 常玮, 张赛, 钱明超, 黎小东, 张凯, 李加纳, 曲存民, 卢坤. Bna-novel-miR36421调节拟南芥株型和花器官发育的功能验证[J]. 作物学报, 2022, 48(7): 1635-1644. |
[6] | 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821. |
[7] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[8] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[9] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[10] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[11] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[12] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[13] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[14] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[15] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
|