欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (12): 2978-2986.doi: 10.3724/SP.J.1006.2022.14226

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于高密度Bin图谱的大豆百粒重QTL定位和候选基因分析

葛天丽(), 田宇, 张皓, 刘章雄, 李英慧(), 邱丽娟()   

  1. 农作物基因资源与基因改良国家重大科学工程 / 农业农村部北京大豆生物学重点实验室 / 中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2021-12-02 接受日期:2022-02-25 出版日期:2022-12-12 网络出版日期:2022-03-12
  • 通讯作者: 李英慧,邱丽娟
  • 作者简介:葛天丽, E-mail: 2030587001@qq.com第一联系人:

    **同等贡献

  • 基金资助:
    “十三五”国家重点研发计划项目“中欧大豆品种联合鉴定、创新及优异基因源发掘”(2019YFE0105900)

QTL mapping and candidate gene prediction of soybean 100-seed weight based on high-density bin map

GE Tian-Li(), TIAN Yu, ZHANG Hao, LIU Zhang-Xiong, LI Ying-Hui(), QIU Li-Juan()   

  1. National Key Facility for Crop Gene Resources and Genetic Improvement / Key Laboratory of Soybean Biology in Beijing, Ministry of Agriculture and Rural Affairs / Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2021-12-02 Accepted:2022-02-25 Published:2022-12-12 Published online:2022-03-12
  • Contact: LI Ying-Hui,QIU Li-Juan
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    National Key Research and Development Program of China for Crop Breeding “Evaluation, Innovation, and Excellent Gene Excavation for Elite Soybean Cultivars between China and Europe”(2019YFE0105900)

摘要:

百粒重是决定大豆产量的关键因子, 鉴定百粒重相关的QTL和候选基因, 进而利用现代分子设计育种技术改良粒大小, 是培育大粒高产品种的重要途径。本研究以中黄13和中品03-5373为亲本所构建的重组自交系(recombinant inberd lines, RIL)群体为材料, 利用前期构建的高密度Bin图谱和3年6个环境下的百粒重表型, 检测到2个在环境间稳定的百粒重相关QTL, 分别位于12号和18号染色体。其中qSW12-2表型贡献率为7.31%~11.03%, 加性效应为0.52~0.91 g, 增效等位基因来自中黄13。qSW12-2区间长度为0.19 Mb, 覆盖20个注释基因, 进一步根据候选区间内各基因的组织表达量、注释和双亲多态性分析结果, 推测参与油菜素类固醇的生物合成、在籽粒发育期高度表达且携带大效应遗传位点的Glyma.12G195500为百粒重功能基因。基于全基因组重测序数据, 多态性分析表明Glyma.12G195500在385份大豆种质资源形成3种单倍型, 其中以中黄13为代表的携带H2单倍型的种质资源的百粒重显著高于以中品03-5373为代表的携带H1单倍型的种质资源, H2单倍型在大豆驯化过程中被选择。本研究挖掘的新位点可为进一步揭示大豆百粒重的遗传机制和培育高产大豆新品种奠定基础。

关键词: 大豆, 百粒重, Bin图谱, 候选基因, 单倍型分析

Abstract:

The 100-seed weight is a critical factor for soybean yield. Identifying QTLs/genes related to 100-seed weight paves a way for breeding a new type of high-yielding and large-seed cultivar through modern molecular design. In this study, combined with the high-density Bin map and the phenotype of 100-seed weight, two environmentally stable QTLs were detected on chromosomes 12 and 18 in six environments in a RILs population derived from cross of Zhonghuang 13 × Zhongpin 03-5373 (ZH13 × ZP03-5373), respectively. Among them, qSW12-2, could explain 7.31% to 11.03% the observed phenotypic variation and 0.52 to 0.91 g of the additive effect, and its positive allele was derived from ZH13. The physical interval of qSW12-2 was 0.19 Mb that harbored 20 annotated genes. Among them, Glyma.12G195500 carried a large-effect site involved in the biosynthesis of brassinosteroids. According to the gene expression pattern, Glyma.12G195500 preferentially expressed in the developing seeds, suggesting that Glyma.12G195500 was the candidate gene for qSW12-2. Three haplotypes were observed in Glyma.12G195500 in 385 soybean germplasm resources using re-sequencing data. Among them, there was significantly higher in 100-seed weight of ZH13-type H2 haplotype than H1, which was selected during soybean domestication. These results provide genetic loci for revealing the genetic mechanism controlling soybean seed weight and breeding high-yielding cultivars.

Key words: soybean, 100-seed weight, Bin map, candidate genes, haplotype analysis

表1

中黄13/中品03-5373重组自交系及亲本的百粒重性状表型"

环境
Environment
亲本 Parents 群体 Population
中黄13
Zhonghuang 13
中品03-5373
Zhongpin 03-5373
最小值
Min.
最大值
Max.
平均值
Mean
标准差
SD
偏斜度
Skewness
峰度
Kurtosis
CP09 23.8±1.8 18.9±1.2 15.0 26.2 20.37 2.14 0.19 -0.10
SYa09 26.5±1.2 20.2±1.4 13.5 32.0 22.22 3.29 0.26 0.12
CP10 28.9±1.9 22.0±1.5 16.3 31.4 23.24 2.69 0.27 -0.14
SYa10 27.2±1.0 19.3±0.5 15.0 32.1 22.79 3.31 0.41 -0.12
SYi10 30.3±1.7 20.7±1.0 14.9 34.2 23.79 3.00 0.23 0.38
CP11 27.7±1.4 20.4±1.4 15.8 31.6 22.66 2.50 0.31 0.37
BLUP 27.4±2.2 20.3±1.1 16.3 27.7 22.30 1.97 0.23 -0.05

图1

中黄13/中品03-5373重组自交系及亲本的百粒重表型分布特征"

表2

中黄13/中品03-5373 RIL群体中在多环境定位到的百粒重QTL"

位点
QTL
标记区间
Marker internal
物理位置
Physical position
阈值LOD 表型贡献率
PVE (%)
加性效应
Add
环境
Environment
已报道的区间
Reported QTLs
qSW2 mk258-mk259 7850001-8317538 4.24 5.70 0.71a SYi10 Liu et al. 2013[12]
4.25 4.35 0.40a BLUP
qSW5 mk1027-mk1028 41520254-41629890 5.09 7.62 0.83a SYa10 Specht et al. 2001[23]
4.15 4.25 0.40a BLUP
qSW11 mk2301-mk2302 28333312-28950000 3.07 4.19 0.61a SYi10 Li et al. 2008[24]
4.94 5.11 0.43a BLUP
qSW12-1 mk2516-mk2519 34887226-35322974 5.99 4.64 0.56b CP09 Liu et al. 2013[12]
4.74 6.21 0.86b SYa09
qSW12-2 mk2522-mk2523 35526715-35712060 6.44 11.03 0.85b CP10 Liu et al. 2013[12]
6.59 9.19 0.91b SYi10
6.87 7.31 0.52b BLUP
qSW18 Gm18-551.5-Gm18-552.5 55141446-55293847 3.08 5.10 0.58b CP10 Liu et al. 2013[12]
4.56 6.26 0.75b SYi10
8.00 8.64 0.56b BLUP
qSW19 mk4377-mk4378 42546296-44734953 6.26 8.56 0.89b SYi10 Stombaugh et al. 2004[17]
7.76 8.27 0.56b BLUP

附表1

qSW12-2内候选基因在亲本间的大效应SNP变异位点"

基因
Gene
位置
Position
变异类型
Variation type
参考碱基
REF
变异碱基
ALT
中品03-5373
Zhongpin 03-5373
中黄13
Zhonghuang 13
Glyma.12G193900 35561419 Nonsynonymous SNP C T TT CC
Glyma.12G194100 35578344 Nonsynonymous SNP A G GG AA
Glyma.12G194100 35578375 Nonsynonymous SNP G A AA GG
Glyma.12G194100 35583338 Nonsynonymous SNP T G GG TT
Glyma.12G194100 35583347 Nonsynonymous SNP G A AA GG
Glyma.12G194200 35593338 Nonsynonymous SNP G A AA GG
Glyma.12G194200 35593393 Nonsynonymous SNP T C CC TT
Glyma.12G194200 35595213 Nonsynonymous SNP A T TT AA
Glyma.12G194200 35595382 Nonsynonymous SNP G A AA GG
Glyma.12G194300 35603012 Nonsynonymous SNP A C CC AA
Glyma.12G194400 35608860 Nonsynonymous SNP T A AA TT
Glyma.12G194600 35644029 Nonsynonymous SNP C T TT CC
Glyma.12G195100 35667870 Nonsynonymous SNP T G GG TT
Glyma.12G195200 35671604 Nonsynonymous SNP C T TT CC
Glyma.12G195300 35677690 Nonsynonymous SNP A G GG AA
Glyma.12G195300 35677929 Nonsynonymous SNP G A AA GG
Glyma.12G195300 35677965 Nonsynonymous SNP T C CC TT
Glyma.12G195300 35678251 Nonsynonymous SNP C A AA CC
Glyma.12G195300 35677627 Stopgain SNP C G GG CC
Glyma.12G195400 35681037 Nonsynonymous SNP T C CC TT
Glyma.12G195400 35681173 Nonsynonymous SNP C T TT CC
Glyma.12G195400 35681196 Nonsynonymous SNP A C CC AA
Glyma.12G195400 35681366 Nonsynonymous SNP C G GG CC
Glyma.12G195400 35681492 Nonsynonymous SNP T A AA TT
Glyma.12G195500 35691745 Nonsynonymous SNP T C TT CC
Glyma.12G195500 35692321 Nonsynonymous SNP A G GG AA

图2

种子发育不同时期大豆百粒重相关候选基因特异性表达分析 红色字体基因: 大豆百粒重候选基因。数据信息来源于SoyBase中大豆参考基因组Wm82.a2.v1 (var. Williams 82)提供的RNA-Seq。"

表3

Glyma.12G195500在亲本间的大效应SNP变异位点"

基因
Gene
位置
Position
变异类型
Variation type
中黄13
Zhonghuang 13
中品03-5373
Zhongpin 03-5373
Glyma.12G195500 Gm12_35691745** Nonsynonymous SNP C T
Glyma.12G195500 Gm12_35692321** Nonsynonymous SNP A G

图3

RIL群体中携带Glyma.12G195500不同基因型材料的百粒重差异"

图4

Glyma.12G195500在385份大豆种质资源中的单倍型分析 A: Glyma.12G195500的基因结构和单倍型; 线性基因结构显示了UTR (黑色矩形)、CDS区域(青色矩形)和内含子(水平黑色实线)。红色垂直实线代表385个大豆资源中的功能SNP位点; B: 3种单倍型编码的蛋白质的结构; 斜线前后的氨基酸缩写代表参考和替代氨基酸; C: 单倍型在野生大豆、地方品种和选育品种中的发生频率; D: 单倍型间百粒重差异显著性分析; 条形图上方的字母表示P值。"

[1] Ma Y J, Kan G Z, Zhang X N, Wang Y L, Zhang W, Du H Y, Yu D Y. Quantitative Trait Loci (QTL) mapping for glycinin and β-conglycinin contents in soybean (Glycine max L. Merr.). J Agric Food Chem, 2016, 64: 3473-3483.
doi: 10.1021/acs.jafc.6b00167
[2] Edwards C J, Hartwig E E. Effect of seed size upon rate of germination in soybeans. Agron J, 1971, 63: 429-450.
doi: 10.2134/agronj1971.00021962006300030024x
[3] Mian M A, Bailey M A, Tamulonis J P, Shipe E R, Carter T E, Parrott W A, Ashley D A, Hussey R S, Boerma H R. Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet, 1996, 93: 1011-1016.
doi: 10.1007/BF00230118 pmid: 24162474
[4] Zhou Z K, Jiang Y, Wang Z, Gou Z H, Jun L, Li W Y, Yu Y J, Shu L P, Zhao Y J, Ma Y M, Fang C, Shen Y T, Liu T F, Li C C, Li Q, Wu M, Wang M, Wu Y S, Dong Y, Wan W T, Wang X, Ding Z L, Gao Y D, Xiang H, Zhu B G, Lee S H, Wang W, Tian Z X. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol, 2015, 33: 408-414.
doi: 10.1038/nbt.3096 pmid: 25643055
[5] Raghuprakash K R, Joseph J, George L G, Brian M W. Identification of new QTLs for seed mineral, cysteine, and methionine concentrations in soybean [Glycine max (L). Merr.]. Mol Breed, 2014, 34: 431-445.
doi: 10.1007/s11032-014-0045-z
[6] Lu X, Xiong Q, Cheng T, Li Q T, Liu X L, Bi Y D, Li W, Zhang W K, Ma B, Lai Y C, Du W G, Man W Q, Chen S Y, Zhang J S. A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Mol Plant, 2017, 10: 670-684.
doi: 10.1016/j.molp.2017.03.006
[7] Jiang W B, Huang H Y, Hu Y W, Zhu S W, Wang Z Y, Lin W H. Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiol, 2013, 162: 1965-1977.
doi: 10.1104/pp.113.217703
[8] Wang S D, Liu S L, Wang J, Kengo Y, Zhou B, Yu Y C, Liu Z, Wolf B F, Ma J F, Chen L Q, Guan Y F, Shou H X, Tian Z X. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl Sci Rev, 2020, 7: 1776-1786.
doi: 10.1093/nsr/nwaa110
[9] Nguyen C X, Paddock K J, Zhang Z Y, Stacey M G. GmKIX8-1 regulates organ size in soybean and is the causative gene for the major seed weight QTL qSw17-1. New Phytol, 2020, 229: 920-934.
doi: 10.1111/nph.16928
[10] Lu X, Li Q T, Xiong Q, Li W, Bi Y D, Lai Y C, Liu X L, Man W Q, Zhang W K, Ma B, Chen S Y, Zhang J S. The transcriptomic signature of developing soybean seeds reveals genetic basis of seed trait adaptation during domestication. Plant J, 2016, 86: 530-544.
doi: 10.1111/tpj.13181
[11] Zhao B T, Dai A H, Wei H C, Yang S X, Wang B S, Jiang N, Feng X Z. Arabidopsis KLU homologue GmCYP78A72 regulates seed size in soybean. Plant Mol Biol, 2016, 90: 33-47.
doi: 10.1007/s11103-015-0392-0
[12] Liu Y L, Li Y H, Jochen C R, Michael F M, Liu Z X, Liu B, Zhang S S, Yan L, Chang R Z, Qiu L J. Identification of quantitative trait loci underlying plant height and seed weight in soybean. Plant Genome, 2013, 6: 1-11.
[13] Wang B B, Zhu Y B, Zhu J J, Liu Z P, Liu H, Dong X M, Guo J J, Li W, Chen J, Gao C, Zheng X M, Lai J S, Zhao H M, Song W B. Identification and fine-mapping of a major maize leaf width QTL in a re-sequenced large recombinant inbred lines population. Front Plant Sci, 2018, 9: 101-112.
doi: 10.3389/fpls.2018.00101 pmid: 29487604
[14] Xu X Y, Zeng L, Tao Y, Tri V, Wan J R, Roger B, Jim Noe, Zenglu Li, Steve F, Safiullah M P, Grover S, Henry T N. Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Natl Acad Sci USA, 2013, 110: 13469-13474.
doi: 10.1073/pnas.1222368110
[15] Qi X P, Li M W, Xie M, Liu X, Ni M, Shao G H, Song C, Aldrin K Y Y, Tao Y, Wong F L, Sachiko I, Wong C F, Wong K S, Xu C Y, Li C Q, Wang Y, Guan R, Sun F M, Fan G Y, Xiao Z X, Zhou F, Phang T H, Liu X, Tong S W, Chan T F, Yiu S M, Tabata S, Wang J, Xu X, Lam H M. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun, 2014, 5: 4340.
doi: 10.1038/ncomms5340 pmid: 25004933
[16] Tian Y, Yang L, Lu H F, Zhang B, Li Y F, Liu C, Ge T L, Liu Y L, Han J N, Li Y H, Qiu L J. QTL analysis for plant height and fine mapping of two environmentally stable QTL with major effects in soybean. J Integr Agric, 2021, 21: 933-946.
doi: 10.1016/S2095-3119(21)63693-6
[17] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001
[18] Bates D, Mchler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw, 2014, 1406: 133-199.
[19] Li C, Li Y H, Li Y F, Lu H F, Hong H L, Tian Y, Li H Y, Zhao T, Zhou X W, Liu J, Zhou X N, Scott A J, Liu B, Qiu L J. A domestication-associated gene GmPRR3b regulates the circadian clock and flowering time in soybean. Mol Plant, 2020, 13: 745-759.
doi: 10.1016/j.molp.2020.01.014
[20] Yu H H, Xie W B, Wang J, Xing Y Z, Xu C G, Li X H, Xiao J H, Zhang Q F. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One, 2018, 6: e17595.
[21] Yao D, Liu Z Z, Zhang J, Liu S Y, Qu J, Guan S Y, Pan L D, Wang D, Liu J W, Wang P W. Analysis of quantitative trait loci for main plant traits in soybean. Genet Mol Res, 2015, 14: 6101-6109.
doi: 10.4238/2015.June.8.8 pmid: 26125811
[22] 董骥驰, 杨靖, 郭涛, 陈立凯, 陈志强, 王慧. 基于高密度Bin图谱的水稻抽穗期QTL定位. 作物学报, 2018, 44: 938-946.
Dong J C, Yang J, Guo T, Chen L K, Chen Z Q, Wang H. QTL Mapping for heading date in rice using high-density Bin map. Acta Agron Sin, 2018, 44: 938-946. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00938
[23] Specht J E, Chase K, Macrander M, Graef G E, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493-509.
doi: 10.2135/cropsci2001.412493x
[24] Li W X, Zheng D H, Kyujung V, Suk H L. QTL mapping for major agronomic traits across two years in soybean (Glycine max L. Merr.). J Crop Sci Biotechnol, 2008, 11: 171-190.
[25] Safiullah M P, Tri V, Kerry C, Jeong D L, Grover S, Craig A R, Mark R E, Joseph W B, Perry B C, David L H, Henry T N, David A S. Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Sci, 2013, 53: 765-774.
doi: 10.2135/cropsci2012.03.0153
[26] Orf J H, Chase K, Jarvik K, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642-1651.
doi: 10.2135/cropsci1999.3961642x
[27] Stombaugh S K, Orf J H, Jung H G, Chase K, Lark K G, Somers D A. Quantitative trait loci associated with cell wall polysaccharides in soybean seed. Crop Sci, 2004, 44: 2101-2106.
doi: 10.2135/cropsci2004.2101
[28] Han Y P, Li D M, Zhu D, Li H Y, Li X P, Teng W L, Li W B. QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor Appl Genet, 2012, 125: 671-683.
doi: 10.1007/s00122-012-1859-x pmid: 22481120
[29] Mehrzad E, Elroy R C, Istvan R. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Theor Appl Genet, 2013, 126: 1677-1687.
doi: 10.1007/s00122-013-2083-z pmid: 23536049
[30] Wu Y Z, Fu Y C, Zhao S S, Gu P, Zhu Z F, Sun C Q, Tan L B. CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant Biotechnol J, 2016, 14: 377-386.
doi: 10.1111/pbi.12391
[31] Zhou Y, Tao Y J, Zhu J Y, Miao J, Liu J, Liu Y H, Yi C D, Yang Z F, Gong Z Y, Liang G H. GNS4, a novel allele of DWARF11, regulates grain number and grain size in a high-yield rice variety. Rice, 2017, 10: 34-45.
doi: 10.1186/s12284-017-0171-4
[1] 王慧, 吴志医, 张玉娥, 喻德跃. 应用RNA重测序分析低硫条件下大豆基因表达谱[J]. 作物学报, 2023, 49(1): 105-118.
[2] 梁政, 柯美玉, 陈志威, 陈栩, 高震. 大豆GmPIN2家族基因调控根系发育功能初探[J]. 作物学报, 2023, 49(1): 24-35.
[3] 白智媛, 陈向阳, 郑阿香, 张力, 邹军, 张大同, 陈阜, 尹小刚. 1991—2019年美国大豆区试品种(系)农艺和品质性状时空变化特征[J]. 作物学报, 2023, 49(1): 177-187.
[4] 赵凌, 梁文化, 赵春芳, 魏晓东, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin遗传图谱定位水稻抽穗期QTL[J]. 作物学报, 2023, 49(1): 119-128.
[5] 王锐璞, 董振营, 高悦欣, 鲍建喜, 殷芳冰, 李金萍, 龙艳, 万向元. 玉米籽粒淀粉含量全基因组关联分析和候选基因预测[J]. 作物学报, 2023, 49(1): 140-152.
[6] 齐阳阳, 窦汝娜, 赵彩桐, 张帜, 李文滨, 姜振峰. 大豆生长节间响应温度和外源GA诱导的赤霉素途径关键基因分析[J]. 作物学报, 2023, 49(1): 62-72.
[7] 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179.
[8] 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195.
[9] 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因[J]. 作物学报, 2022, 48(8): 1884-1893.
[10] 怀园园, 张晟瑞, 武婷婷, 李静, 孙石, 韩天富, 李斌, 孙君明. 大豆主要营养品质性状相关分子标记的育种应用潜力评价[J]. 作物学报, 2022, 48(8): 1957-1976.
[11] 柯丹霞, 霍娅娅, 刘怡, 李锦颖, 刘晓雪. 大豆TGA转录因子基因GmTGA26在盐胁迫中的功能分析[J]. 作物学报, 2022, 48(7): 1697-1708.
[12] 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821.
[13] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[14] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[15] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[3] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[4] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[5] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[6] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[7] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[8] 柯丽萍;郑滔;吴学龙;何海燕;陈锦清. 甘蓝型油菜SLG基因片段的克隆及序列分析[J]. 作物学报, 2008, 34(05): 764 -769 .
[9] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[10] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .