作物学报 ›› 2022, Vol. 48 ›› Issue (12): 2978-2986.doi: 10.3724/SP.J.1006.2022.14226
葛天丽(), 田宇, 张皓, 刘章雄, 李英慧(), 邱丽娟()
GE Tian-Li(), TIAN Yu, ZHANG Hao, LIU Zhang-Xiong, LI Ying-Hui(), QIU Li-Juan()
摘要:
百粒重是决定大豆产量的关键因子, 鉴定百粒重相关的QTL和候选基因, 进而利用现代分子设计育种技术改良粒大小, 是培育大粒高产品种的重要途径。本研究以中黄13和中品03-5373为亲本所构建的重组自交系(recombinant inberd lines, RIL)群体为材料, 利用前期构建的高密度Bin图谱和3年6个环境下的百粒重表型, 检测到2个在环境间稳定的百粒重相关QTL, 分别位于12号和18号染色体。其中qSW12-2表型贡献率为7.31%~11.03%, 加性效应为0.52~0.91 g, 增效等位基因来自中黄13。qSW12-2区间长度为0.19 Mb, 覆盖20个注释基因, 进一步根据候选区间内各基因的组织表达量、注释和双亲多态性分析结果, 推测参与油菜素类固醇的生物合成、在籽粒发育期高度表达且携带大效应遗传位点的Glyma.12G195500为百粒重功能基因。基于全基因组重测序数据, 多态性分析表明Glyma.12G195500在385份大豆种质资源形成3种单倍型, 其中以中黄13为代表的携带H2单倍型的种质资源的百粒重显著高于以中品03-5373为代表的携带H1单倍型的种质资源, H2单倍型在大豆驯化过程中被选择。本研究挖掘的新位点可为进一步揭示大豆百粒重的遗传机制和培育高产大豆新品种奠定基础。
[1] |
Ma Y J, Kan G Z, Zhang X N, Wang Y L, Zhang W, Du H Y, Yu D Y. Quantitative Trait Loci (QTL) mapping for glycinin and β-conglycinin contents in soybean (Glycine max L. Merr.). J Agric Food Chem, 2016, 64: 3473-3483.
doi: 10.1021/acs.jafc.6b00167 |
[2] |
Edwards C J, Hartwig E E. Effect of seed size upon rate of germination in soybeans. Agron J, 1971, 63: 429-450.
doi: 10.2134/agronj1971.00021962006300030024x |
[3] |
Mian M A, Bailey M A, Tamulonis J P, Shipe E R, Carter T E, Parrott W A, Ashley D A, Hussey R S, Boerma H R. Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet, 1996, 93: 1011-1016.
doi: 10.1007/BF00230118 pmid: 24162474 |
[4] |
Zhou Z K, Jiang Y, Wang Z, Gou Z H, Jun L, Li W Y, Yu Y J, Shu L P, Zhao Y J, Ma Y M, Fang C, Shen Y T, Liu T F, Li C C, Li Q, Wu M, Wang M, Wu Y S, Dong Y, Wan W T, Wang X, Ding Z L, Gao Y D, Xiang H, Zhu B G, Lee S H, Wang W, Tian Z X. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol, 2015, 33: 408-414.
doi: 10.1038/nbt.3096 pmid: 25643055 |
[5] |
Raghuprakash K R, Joseph J, George L G, Brian M W. Identification of new QTLs for seed mineral, cysteine, and methionine concentrations in soybean [Glycine max (L). Merr.]. Mol Breed, 2014, 34: 431-445.
doi: 10.1007/s11032-014-0045-z |
[6] |
Lu X, Xiong Q, Cheng T, Li Q T, Liu X L, Bi Y D, Li W, Zhang W K, Ma B, Lai Y C, Du W G, Man W Q, Chen S Y, Zhang J S. A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Mol Plant, 2017, 10: 670-684.
doi: 10.1016/j.molp.2017.03.006 |
[7] |
Jiang W B, Huang H Y, Hu Y W, Zhu S W, Wang Z Y, Lin W H. Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiol, 2013, 162: 1965-1977.
doi: 10.1104/pp.113.217703 |
[8] |
Wang S D, Liu S L, Wang J, Kengo Y, Zhou B, Yu Y C, Liu Z, Wolf B F, Ma J F, Chen L Q, Guan Y F, Shou H X, Tian Z X. Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl Sci Rev, 2020, 7: 1776-1786.
doi: 10.1093/nsr/nwaa110 |
[9] |
Nguyen C X, Paddock K J, Zhang Z Y, Stacey M G. GmKIX8-1 regulates organ size in soybean and is the causative gene for the major seed weight QTL qSw17-1. New Phytol, 2020, 229: 920-934.
doi: 10.1111/nph.16928 |
[10] |
Lu X, Li Q T, Xiong Q, Li W, Bi Y D, Lai Y C, Liu X L, Man W Q, Zhang W K, Ma B, Chen S Y, Zhang J S. The transcriptomic signature of developing soybean seeds reveals genetic basis of seed trait adaptation during domestication. Plant J, 2016, 86: 530-544.
doi: 10.1111/tpj.13181 |
[11] |
Zhao B T, Dai A H, Wei H C, Yang S X, Wang B S, Jiang N, Feng X Z. Arabidopsis KLU homologue GmCYP78A72 regulates seed size in soybean. Plant Mol Biol, 2016, 90: 33-47.
doi: 10.1007/s11103-015-0392-0 |
[12] | Liu Y L, Li Y H, Jochen C R, Michael F M, Liu Z X, Liu B, Zhang S S, Yan L, Chang R Z, Qiu L J. Identification of quantitative trait loci underlying plant height and seed weight in soybean. Plant Genome, 2013, 6: 1-11. |
[13] |
Wang B B, Zhu Y B, Zhu J J, Liu Z P, Liu H, Dong X M, Guo J J, Li W, Chen J, Gao C, Zheng X M, Lai J S, Zhao H M, Song W B. Identification and fine-mapping of a major maize leaf width QTL in a re-sequenced large recombinant inbred lines population. Front Plant Sci, 2018, 9: 101-112.
doi: 10.3389/fpls.2018.00101 pmid: 29487604 |
[14] |
Xu X Y, Zeng L, Tao Y, Tri V, Wan J R, Roger B, Jim Noe, Zenglu Li, Steve F, Safiullah M P, Grover S, Henry T N. Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Natl Acad Sci USA, 2013, 110: 13469-13474.
doi: 10.1073/pnas.1222368110 |
[15] |
Qi X P, Li M W, Xie M, Liu X, Ni M, Shao G H, Song C, Aldrin K Y Y, Tao Y, Wong F L, Sachiko I, Wong C F, Wong K S, Xu C Y, Li C Q, Wang Y, Guan R, Sun F M, Fan G Y, Xiao Z X, Zhou F, Phang T H, Liu X, Tong S W, Chan T F, Yiu S M, Tabata S, Wang J, Xu X, Lam H M. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun, 2014, 5: 4340.
doi: 10.1038/ncomms5340 pmid: 25004933 |
[16] |
Tian Y, Yang L, Lu H F, Zhang B, Li Y F, Liu C, Ge T L, Liu Y L, Han J N, Li Y H, Qiu L J. QTL analysis for plant height and fine mapping of two environmentally stable QTL with major effects in soybean. J Integr Agric, 2021, 21: 933-946.
doi: 10.1016/S2095-3119(21)63693-6 |
[17] |
Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3: 269-283.
doi: 10.1016/j.cj.2015.01.001 |
[18] | Bates D, Mchler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw, 2014, 1406: 133-199. |
[19] |
Li C, Li Y H, Li Y F, Lu H F, Hong H L, Tian Y, Li H Y, Zhao T, Zhou X W, Liu J, Zhou X N, Scott A J, Liu B, Qiu L J. A domestication-associated gene GmPRR3b regulates the circadian clock and flowering time in soybean. Mol Plant, 2020, 13: 745-759.
doi: 10.1016/j.molp.2020.01.014 |
[20] | Yu H H, Xie W B, Wang J, Xing Y Z, Xu C G, Li X H, Xiao J H, Zhang Q F. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One, 2018, 6: e17595. |
[21] |
Yao D, Liu Z Z, Zhang J, Liu S Y, Qu J, Guan S Y, Pan L D, Wang D, Liu J W, Wang P W. Analysis of quantitative trait loci for main plant traits in soybean. Genet Mol Res, 2015, 14: 6101-6109.
doi: 10.4238/2015.June.8.8 pmid: 26125811 |
[22] | 董骥驰, 杨靖, 郭涛, 陈立凯, 陈志强, 王慧. 基于高密度Bin图谱的水稻抽穗期QTL定位. 作物学报, 2018, 44: 938-946. |
Dong J C, Yang J, Guo T, Chen L K, Chen Z Q, Wang H. QTL Mapping for heading date in rice using high-density Bin map. Acta Agron Sin, 2018, 44: 938-946. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.00938 |
|
[23] |
Specht J E, Chase K, Macrander M, Graef G E, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493-509.
doi: 10.2135/cropsci2001.412493x |
[24] | Li W X, Zheng D H, Kyujung V, Suk H L. QTL mapping for major agronomic traits across two years in soybean (Glycine max L. Merr.). J Crop Sci Biotechnol, 2008, 11: 171-190. |
[25] |
Safiullah M P, Tri V, Kerry C, Jeong D L, Grover S, Craig A R, Mark R E, Joseph W B, Perry B C, David L H, Henry T N, David A S. Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Sci, 2013, 53: 765-774.
doi: 10.2135/cropsci2012.03.0153 |
[26] |
Orf J H, Chase K, Jarvik K, Mansur L M, Cregan P B, Adler F R, Lark K G. Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci, 1999, 39: 1642-1651.
doi: 10.2135/cropsci1999.3961642x |
[27] |
Stombaugh S K, Orf J H, Jung H G, Chase K, Lark K G, Somers D A. Quantitative trait loci associated with cell wall polysaccharides in soybean seed. Crop Sci, 2004, 44: 2101-2106.
doi: 10.2135/cropsci2004.2101 |
[28] |
Han Y P, Li D M, Zhu D, Li H Y, Li X P, Teng W L, Li W B. QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor Appl Genet, 2012, 125: 671-683.
doi: 10.1007/s00122-012-1859-x pmid: 22481120 |
[29] |
Mehrzad E, Elroy R C, Istvan R. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Theor Appl Genet, 2013, 126: 1677-1687.
doi: 10.1007/s00122-013-2083-z pmid: 23536049 |
[30] |
Wu Y Z, Fu Y C, Zhao S S, Gu P, Zhu Z F, Sun C Q, Tan L B. CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant Biotechnol J, 2016, 14: 377-386.
doi: 10.1111/pbi.12391 |
[31] |
Zhou Y, Tao Y J, Zhu J Y, Miao J, Liu J, Liu Y H, Yi C D, Yang Z F, Gong Z Y, Liang G H. GNS4, a novel allele of DWARF11, regulates grain number and grain size in a high-yield rice variety. Rice, 2017, 10: 34-45.
doi: 10.1186/s12284-017-0171-4 |
[1] | 王慧, 吴志医, 张玉娥, 喻德跃. 应用RNA重测序分析低硫条件下大豆基因表达谱[J]. 作物学报, 2023, 49(1): 105-118. |
[2] | 梁政, 柯美玉, 陈志威, 陈栩, 高震. 大豆GmPIN2家族基因调控根系发育功能初探[J]. 作物学报, 2023, 49(1): 24-35. |
[3] | 白智媛, 陈向阳, 郑阿香, 张力, 邹军, 张大同, 陈阜, 尹小刚. 1991—2019年美国大豆区试品种(系)农艺和品质性状时空变化特征[J]. 作物学报, 2023, 49(1): 177-187. |
[4] | 赵凌, 梁文化, 赵春芳, 魏晓东, 周丽慧, 姚姝, 王才林, 张亚东. 利用高密度Bin遗传图谱定位水稻抽穗期QTL[J]. 作物学报, 2023, 49(1): 119-128. |
[5] | 王锐璞, 董振营, 高悦欣, 鲍建喜, 殷芳冰, 李金萍, 龙艳, 万向元. 玉米籽粒淀粉含量全基因组关联分析和候选基因预测[J]. 作物学报, 2023, 49(1): 140-152. |
[6] | 齐阳阳, 窦汝娜, 赵彩桐, 张帜, 李文滨, 姜振峰. 大豆生长节间响应温度和外源GA诱导的赤霉素途径关键基因分析[J]. 作物学报, 2023, 49(1): 62-72. |
[7] | 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179. |
[8] | 张超, 杨博, 张立源, 肖忠春, 刘景森, 马晋齐, 卢坤, 李加纳. 基于QTL定位和全基因组关联分析挖掘甘蓝型油菜收获指数相关位点[J]. 作物学报, 2022, 48(9): 2180-2195. |
[9] | 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因[J]. 作物学报, 2022, 48(8): 1884-1893. |
[10] | 怀园园, 张晟瑞, 武婷婷, 李静, 孙石, 韩天富, 李斌, 孙君明. 大豆主要营养品质性状相关分子标记的育种应用潜力评价[J]. 作物学报, 2022, 48(8): 1957-1976. |
[11] | 柯丹霞, 霍娅娅, 刘怡, 李锦颖, 刘晓雪. 大豆TGA转录因子基因GmTGA26在盐胁迫中的功能分析[J]. 作物学报, 2022, 48(7): 1697-1708. |
[12] | 杨飞, 张征锋, 南波, 肖本泽. 水稻产量相关性状的全基因组关联分析及候选基因筛选[J]. 作物学报, 2022, 48(7): 1813-1821. |
[13] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[14] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[15] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
|