欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (12): 2967-2977.doi: 10.3724/SP.J.1006.2022.14210

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

利用病毒诱导的基因沉默cDNA文库高通量筛选鉴定棉花功能基因

梁曦彤1,2(), 高先原1, 周琳1, 穆春1, 杜明伟1, 李芳军1(), 田晓莉1(), 李召虎1   

  1. 1植物生长调节剂教育部工程研究中心 / 中国农业大学农学院, 北京100193
    2盐城师范学院, 江苏盐城 224007
  • 收稿日期:2021-11-10 接受日期:2022-03-25 出版日期:2022-12-12 网络出版日期:2022-04-19
  • 通讯作者: 李芳军,田晓莉
  • 作者简介:E-mail: liangxt116@163.com
  • 基金资助:
    国家重点研发计划项目“大田经济作物逆境生理及调控”(2018YFD1000903)

High throughput identification of cotton gene via screening cotton cDNA library of virus induced gene silencing

LIANG Xi-Tong1,2(), GAO Xian-Yuan1, ZHOU Lin1, MU Chun1, DU Ming-Wei1, LI Fang-Jun1(), TIAN Xiao-Li1(), LI Zhao-Hu1   

  1. 1Engineering Research Center of Plant Growth Regulator, Ministry of Education / College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
    2Yancheng Teachers University, Yancheng 224007, Jiangsu, China
  • Received:2021-11-10 Accepted:2022-03-25 Published:2022-12-12 Published online:2022-04-19
  • Contact: LI Fang-Jun,TIAN Xiao-Li
  • Supported by:
    National Key Research and Development Program of China “Physiological Basis and Regulation of Stress Resistance of Cash Crops in Field”(2018YFD1000903)

摘要:

为快速、高通量研究棉花功能基因, 本研究以陆地棉欣试17为材料, 棉花GhCLA1为标记基因, 利用棉花病毒诱导的基因沉默(virus induced gene silencing, VIGS) cDNA文库对幼苗生长和盐胁迫应答相关基因进行筛选和鉴定。VIGS转化7~14 d观察植株长势和盐胁迫应答表型, 共获得8个与幼苗生长相关以及4个与盐胁迫应答相关的基因。水培条件下, VIGS沉默GhANT17GhSTP14GhUSPAGhFES1GhS15-4GhRBL8基因对植株地上部生长较对照植株有明显的抑制作用; VIGS沉默GhOIDO基因促进了植株生长; VIGS沉默GhRBCSC1基因抑制叶片中叶绿素的合成。盐胁迫处理条件下, 与对照植株相比VIGS沉默GhATCYP1GhSAC52基因提高了植株的耐盐性, VIGS沉默GhPSBWGhRBCSC2的植株对盐胁迫更敏感。本研究建立了高通量筛选棉花功能基因的技术体系, 为快速挖掘、研究棉花功能基因提供了可行技术手段。

关键词: 棉花, VIGS cDNA文库, 盐胁迫, 幼苗生长

Abstract:

To rapidly and efficiently explore functional genes in cotton, we have developed a functional genomic screen based on virus induced gene silencing (VIGS) assays to identify key players controlling cotton seedling growth and salt response with Gossypium hirsutum Xinshi 17 as plant materials and GhCLA1 as a visual marker gene. After 7-14 days of Agrobacterium- mediated transformation of cotton VIGS cDNA library, the phenotype of seedling growth and salt stress response were recorded. A total of eight genes related to seedling growth and four genes related to salt stress response were obtained. In hydroponic conditions, silencing of GhANT17, GhSTP14, GhUSPA, GhFES1, GhS15-4, and GhRBL8 significantly hindered shoot growth, while the silencing of GhOIDO promoted plant growth. GhRBCSC1-silenced plants had albino leaves. Under salt stress, silencing of GhATCYP1 and GhSAC52 improved salt tolerance. GhPSBW- and GhRBCSC2-silenced plants were more sensitive to salt stress compared with the control plants. Here, we established a technical system for high-throughput screening of functional genes in cotton, which provided a feasible tool for rapid mining and research of cotton functional genomic.

Key words: cotton, VIGS cDNA library, salt tolerant, seedling growth

表1

VIGS cDNA文库筛选获得的候选基因沉默效率鉴定引物"

基因Gene 引物Primer (5°-3°)
GhACTIN9 F: GCCTTGGACTATGAGCAGGA; R: AAGAGATGGCTGGAAGAGGA
GhRBCSC1 F: GCCAACAACGACATCACTTC; R: ATCGGGCAGGTATGAGAGAG
GhANT17 F: ATGGTGACCTCAGTGCTACC; R: ACCTCTTTGTCCTCCGACTC
GhSTP14 F: TAGAAACAAAGGGCGTCG; R: CGAAAGATACAAGGGAACTGC
GhUSPA F: CGGTGTAGCAGTGGATTACTC; R: AGACTCGTCGCTTTGATGG
GhFES1 F: CAGGGTTGATTTGGTCCAC; R: CAGATTCCTTGAGTTTAGCCG
GhS15-4 F: CGATTTGGATGCTCTCCTTG; R: ACGCAGGTGGGTTCTAACTG
GhRBL8 F: CCACCCTTTCCGTTACAAG; R: GGCAACACATTTCCAACC
GhOIDO1 F: CAGCCATTGAGTTCCGTTC; R: TTCTGCTTCGTCTCCACTG
GhATCYP1 F: AGGAGTGTTCCAGGATTGC; R: CGGGCTATCTTGTAACCAAAG
GhSAC52 F: ATTGGAGGCACATTGAGC; R: ACGAGAACAGAGTAAGATTGGC
GhPSBW F: AAAGGACCCGTTGAAAGG; R: GGCAAGTGTAGAAGGAGTTGAC
GhRBCSC2 F: ACAGATACTCAACCCAACGG; R: TTCTTCGGTGGTCCCTTAC

表2

VIGS cDNA文库筛选获得的候选基因注释"

序号No. 基因ID
Gene ID
基因注释
Gene annotation
1 Gohir.D09G2158, Gohir.A09G213678 40S核糖体蛋白S15-4 40S ribosomal protein S15-4
2 Gohir.D05G2788, Gohir.A05G2771 60S核糖体蛋白L10 60S ribosomal protein L10-like
3 Gohir.A02G1627, Gohir.D03G0176 60S核糖体蛋白L8 60S ribosomal protein L8
4 Gohir.A11G2127, Gohir.D11G2105 富含ACT结构域的蛋白ACR10 ACT domain-containing protein ACR10-like
5 Gohir.D01G0567 酰基载体蛋白2 Acyl carrier protein 2
6 Gohir.D13G0291 邻氨基苯甲酸合成酶β亚基2 Anthranilate synthase beta subunit 2
7 Gohir.D12G0929, Gohir.A12G0833 ATP合酶亚单位O ATP synthase subunit O
8 Gohir.D09G0993, Gohir.A09G0999 钙调素 Calmodulin
9 Gohir.A13G0243 叶绿体叶绿素II A-B结合蛋白 Chloroplast chlorophyl II A-B binding protein
10 Gohir.A12G2050, Gohir.D12G2242 真核细胞翻译起始因子2的α亚基
Eukaryotic translation initiation factor 2 subunit alpha
11 Gohir.A11G0557 Hsp70核苷酸交换因子fes1 Hsp70 nucleotide exchange factor fes1
12 Gohir.D08G1902 白细胞花青素双加氧酶ANT17 Leucoanthocyanidin dioxygenase ANT17
13 Gohir.D01G1750 苹果酸脱氢酶 Malate dehydrogenase
14 Gohir.A01G2084 非共生血红蛋白2 Non-symbiotic hemoglobin 2
15 Gohir.D04G0066 寡糖基转移酶复合物亚单位OSTC
Oligosaccharyltransferase complex subunit OSTC-like
16 Gohir.A13G2343 氧戊二酸/铁依赖性加氧酶 Oxoglutarate/iron-dependent oxygenase
17 Gohir.D01G1561, Gohir.A01G1642 肽基脯氨酰顺反异构酶 Peptidyl-prolyl cis-trans isomerase
18 Gohir.D07G1064, Gohir.A07G1022 肽基脯氨酰顺反异构酶CYP71
Peptidyl-prolyl cis-trans isomerase CYP71
19 Gohir.D12G0718, Gohir.A02G1550 肽基脯氨酰顺反异构酶FKBP13
Peptidyl-prolyl cis-trans isomerase FKBP13
20 Gohir.A02G0314 光系统I反应中心XI亚基 Photosystem I reaction centre subunit XI
21 Gohir.D04G0349, Gohir.A05G3807 光系统II氧释放增强蛋白2 Photosystem II oxygen-evolving enhancer protein 2
22 Gohir.A08G1884, Gohir.D08G2068 光系统II反应中心W蛋白 Photosystem II reaction center W protein
23 Gohir.D08G2068, Gohir.A11G1277 光系统II反应中心W蛋白 Photosystem II reaction center W protein
24 Gohir.D13G2157 2-酮戊二酸依赖性双加氧酶AOP1
Probable 2-oxoglutarate-dependent dioxygenase AOP1
25 Gohir.D05G3057 功能未知蛋白质DUF1749 Protein of unknown function DUF1749
26 Gohir.D11G0269
Gohir.A11G0277
蛋白酪氨酸磷酸酶线粒体1亚型1
Protein-tyrosine phosphatase mitochondrial 1-like isoform 1
27 Gohir.D02G1705 丙酮酸脱氢酶E1组分α-1亚基
Pyruvate dehydrogenase E1 component subunit alpha-1
28 Gohir.D11G1696, Gohir.A11G1632 核酮糖二磷酸羧化酶小链 Ribulose bisphosphate carboxylase small chain
29 Gohir.D11G1697 核酮糖二磷酸羧化酶小链 Ribulose bisphosphate carboxylase small chain
30 Gohir.A11G1633 核酮糖二磷酸羧化酶小链 Ribulose bisphosphate carboxylase small chain
31 Gohir.A03G0224 核酮糖二磷酸羧化酶小链1A Ribulose bisphosphate carboxylase small chain 1A
32 Gohir.D03G1463 核酮糖二磷酸羧化酶小链1A Ribulose bisphosphate carboxylase small chain 1A
33 Gohir.D07G1809 核酮糖二磷酸羧化酶小链X1转录本
Ribulose bisphosphate carboxylase small chain, transcript variant X1
34 Gohir.A11G1632 核酮糖-1,5-二磷酸羧化酶/加氧酶小亚基(rbcS2b)
Ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit (rbcS2b)
35 Gohir.D07G1759 核酮糖二磷酸羧化酶小链 Ribulose-bisphosphate carboxylase small chain
36 Gohir.D13G1755 Sec非依赖型蛋白移位酶TATA Sec-independent protein translocase protein TATA
37 Gohir.D01G1645 SKP1蛋白1A SKP1-like protein 1A
38 Gohir.A06G0566, Gohir.D06G0550 糖转运蛋白14 STP14 Sugar transport protein 14 STP14
39 Gohir.D13G0715 编码未知功能蛋白 Uncharacterized
40 Gohir.D12G1716 编码未知功能蛋白 Uncharacterized
41 Gohir.A13G0543 编码未知功能蛋白 Uncharacterized
42 Gohir.A03G0386, Gohir.D03G1298 广谱应激蛋白A Universal stress protein A-like protein

表3

VIGS cDNA文库筛选获得生长发育基因"

基因名
Gene name
基因ID
Gene ID
基因注释
Gene annotation
GhRBCSC1 Gohir.D07G1759 核酮糖二磷酸羧化酶小链 Ribulose-bisphosphate carboxylase small chain
GhANT17 Gohir.D08G1902 白细胞花青素双加氧酶ANT17 Leucoanthocyanidin dioxygenase ANT17
GhSTP14 Gohir.A06G0566, Gohir.D06G0550 糖转运蛋白14 STP14 Sugar transport protein 14 STP14
GhUSPA Gohir.A03G0386, Gohir.D03G1298 广谱应激蛋白A Universal stress protein A-like protein
GhFES1 Gohir.A11G0557 Hsp70核苷酸交换因子fes1 Hsp70 nucleotide exchange factor fes1
GhS15-4 Gohir.D09G2158, Gohir.A09G213678 40S核糖体蛋白S15-4 40S ribosomal protein S15-4
GhRBL8 Gohir.A02G1627, Gohir.D03G0176 60S核糖体蛋白L8 60S ribosomal protein L8
GhOIDO Gohir.A13G2343 氧戊二酸/铁依赖性加氧酶 Oxoglutarate/iron-dependent oxygenase

图1

沉默生长相关基因对棉花幼苗生长的影响 A: VIGS沉默GhRBCSC1基因的植株生长表型; B: VIGS沉默GhANT17基因的植株生长表型; C: VIGS沉默GhSTP14基因的植株生长表型; D: VIGS沉默GhUSPA基因的植株生长表型; E: VIGS沉默GhFES1基因的植株生长表型; F: VIGS沉默GhS15-4基因的植株生长表型; G: VIGS沉默GhRBL8基因的植株生长表型; H: VIGS沉默GhCLA1基因的植株叶片白化表型。"

图2

VIGS沉默生长相关基因对棉花幼苗生物量的影响 A: VIGS生长相关基因对棉花植株地上部鲜重的影响; B: VIGS生长相关基因对棉花植株根系鲜重的影响。*和**分别代表在0.05和0.01水平差异显著。"

图3

VIGS沉默生长相关基因的沉默效率"

图4

VIGS沉默GhOIDO基因对棉花幼苗生长的影响 A: VIGS沉默GhOIDO基因的植株生长表型; B: VIGS沉默GhOIDO基因对棉花植株地上部鲜重的影响; C: VIGS沉默GhOIDO基因对棉花植株根系鲜重的影响; D: GhOIDO基因的沉默效率鉴定。"

表4

VIGS cDNA 文库筛选获得盐胁迫应答基因"

基因名
Gene name
基因ID
Gene ID
基因注释
Gene annotation
GhATCYP1 Gohir.D01G1561, Gohir.A01G1642 陆地棉肽基脯氨酰顺反异构酶G. hirsutum peptidyl-prolyl cis-trans isomerase
GhSAC52 Gohir.D05G2788, Gohir.A05G2771 陆地棉60S核糖体蛋白L10 G. hirsutum 60S ribosomal protein L10
GhPSBW Gohir.D08G2068, Gohir.A11G1277 陆地棉光系统II反应中心W蛋白G. hirsutum photosystem II reaction center W protein
GhRBCSC2 Gohir.D11G1696, Gohir.A11G1632 核酮糖二磷酸羧化酶小链 Ribulose bisphosphate carboxylase small chain

图5

VIGS沉默棉花盐胁迫响应基因的胁迫应答表型 A: VIGS沉默GhATCYP1基因的盐胁迫表型; B: VIGS沉默GhSAC52基因的盐胁迫表型; C: VIGS沉默GhPSBW基因的盐胁迫表型; D: VIGS沉默GhRBCSC2基因的盐胁迫表型。"

图6

VIGS沉默棉花盐胁迫响应基因对植株生物量的影响 A: VIGS沉默棉花盐胁迫响应基因植株的地上部鲜重; B: VIGS沉默棉花盐胁迫响应基因植株的根系鲜重。*和**分别代表在0.05和0.01水平差异显著。"

图7

VIGS沉默棉花盐胁迫响应基因的沉默效率"

[1] 孙巨龙, 刘帅, 胡启星, 白志刚, 崔爱花. 不同种植密度对棉花空间成铃分布的影响. 棉花科学, 2021, 43(1): 31-36.
Sun J L, Liu S, Hu Q S, Bai Z G, Cui A H. The influence of different planting density on the spatial distribution of cotton boll. Cotton Sci, 2021, 43(1): 31-36 (in Chinese with English abstract).
[2] 宋丽, 刘喜平, 仲杰, 李成奇. 棉花耐盐机理与盐害防御研究进展. 江苏农业科学, 2020, 48(16): 48-51.
Song L, Liu X P, Zhong J, Li C Q. Research progress on salt tolerance mechanism and salt damage prevention of cotton. Jiangsu Agric Sci, 2020, 48(16): 48-51. (in Chinese)
[3] Gao X, Wheeler T, Li Z, Kenerley C M, Shan L. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to verticillium wilt. Plant J, 2011, 66: 293-305.
doi: 10.1111/j.1365-313X.2011.04491.x
[4] Baulcombe D. RNA silencing in plants. Nature, 2004, 431: 356-363.
doi: 10.1038/nature02874
[5] Llave C. Virus-derived small interfering RNAs at the core of plant-virus interactions. Trends Plant Sci, 2010, 15: 701-707.
doi: 10.1016/j.tplants.2010.09.001 pmid: 20926332
[6] Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto Y Y, Sieburth L, Voinnet O. Widespread translational inhibition by plant miRNAs and siRNAs. Science, 2008, 320: 1185-1190.
doi: 10.1126/science.1159151 pmid: 18483398
[7] 宋震, 李中安, 周常勇. 病毒诱导的基因沉默(VIGS)研究进展. 园艺学报, 2014, 41: 1885-1894.
Song Z, Li Z A, Zhou C Y. Research advances of virus-induced gene silencing (VIGS). Acta Hortic Sin, 2014, 41: 1885-1894. (in Chinese with English abstract)
[8] Becker A, Lange M. VIGS—genomics goes functional. Trends Plant Sci, 2010, 15: 1-4.
doi: 10.1016/j.tplants.2009.09.002
[9] 吴磊, 姜朋, 张瑜, 马鸿翔, 张旭. 苏麦3号小麦穗部病毒诱导的基因沉默(VIGS)体系的建立及验证. 江苏农业学报, 2017, 33: 248-252.
Wu L, Jiang P, Zhang Y, Ma H X, Zhang X. Construction and validation of virus-induced gene silencing (VIGS) systemin spike of wheat variety Sumai 3. Jiangsu J Agric Sci, 2017, 33: 248-252. (in Chinese with English abstract)
[10] 李聪聪, 安晓晖, 张中起, 刘康, 孙敬. 玉米TRV-VIGS的优化与顶腐病抗病基因的鉴定. 核农学报, 2019, 33: 2111-2118.
doi: 10.11869/j.issn.100-8551.2019.11.2111
Li C C, An X H, Zhang Z Q, Liu K, Sun J. Optimization of TRV-VIGS system and identification of top rot resistance genes in maize. Acta Agric Nucl Sin, 2019, 33: 2111-2118. (in Chinese with English abstract)
[11] 李亚军, 田振东, 柳俊, 谢从华. 利用病毒诱导的基因沉默(VIGS)技术快速鉴定两个马铃薯晚疫病抗性相关Est片段El732276El732318的功能. 农业生物技术学报, 2012, 20: 16-22.
Li Y J, Tian Z D, Liu J, Xie C H. Function of two potato ESTs EL732276 and EL732318 related to late blight resistance using virus-induced gene silencing (VIGS). J Agric Biotechnol, 2012, 20: 16-22. (in Chinese with English abstract)
[12] 刘天波, 蔡海林, 滕凯, 曾维爱, 毛辉, 魏润洁, 周志成, 周向平, 戴良英, 唐前君. 病毒诱导的基因沉默防控烟草马铃薯Y病毒病研究. 中国烟草学报, 2020, 26(5): 82-89.
Liu T B, Cai H L, Teng K, Zeng W A, Mao H, Wei R J, Zhou X P, Dai L L, Tang Q J. Control of tobacco potato Y by virus-induced gene silencing. Acta Tab Sin, 2020, 26(5): 82-89. (in Chinese with English abstract)
[13] 杨波, 刘海霞, 牛铁泉, 张鹏飞, 梁长梅, 赵旗峰, 温鹏飞. TRV介导的葡萄叶片VvANR基因瞬时表达分析. 核农学报, 2021, 35: 826-836.
doi: 10.11869/j.issn.100-8551.2021.04.0826
Yang B, Liu H X, Niu T Q, Zhang P F, Liang C M, Zhao Q F, Wen P F. Transient expression of VvANR gene in grape leaves mediated by TRV. Acta Agric Nucl Sin, 2021, 35: 826-836. (in Chinese with English abstract)
[14] 张蕊, 李博, 李旭, 尚文静, 韩迎春, 程琨, 刘娜, 郑文明. TaSPX3基因VIGS沉默表达降低小麦对叶锈病(Puccinia recondite f. sp. tritici)的抗性. 中国农业大学学报, 2021, 26(1): 26-32.
Zhang R, Li B, Li X, Shang W J, Han Y C, Cheng K, Liu N, Zheng W M. Silencing the expression of TaSPX3 by VIGS decreased the resistance of leaf rust. J China Agric Univ, 2021, 26(1): 26-32. (in Chinese with English abstract)
[15] 左琦. 利用病毒诱导的基因沉默技术探讨番茄PG与乙烯关系. 天津大学硕士学位论文, 天津, 2010.
Zuo Q. Relationship between PG and Ethylene of Tomato by Virus-induced Gene Silence Technology. MS Thesis of Tianjin University, Tianjin, China, 2010 (in Chinese with English abstract).
[16] Yang D D, An J, Li F J, Agrinya E A, Tian X L, Li Z H. The GhREV transcription factor regulate the development of shoot apical meristem in cotton (Gossypium hirsutum). J Cotton Sci, 2020, 3: 46-53.
[17] Ramegowda V, Senthil-Kumar M, Udayakumar M, Mysore K S. A high-throughput virus-induced gene silencing protocol identifies genes involved in multi-stress tolerance. BMC Plant Biol, 2013, 13: 193.
doi: 10.1186/1471-2229-13-193 pmid: 24289810
[18] 孙威, 许奕, 许桂莺, 孙佩光, 宋顺, 常胜合. 病毒诱导的基因沉默及其在植物研究中的应用. 生物技术通报, 2015, 31(10): 105-110.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.018
Sun W, Xu Y, Xu G Y, Sun P G, Song S, Chang S H. Virus-induced gene silencing and its application in plant research. Biotechnol Bull, 2015, 31(10): 105-110. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.018
[19] 王秋莹, 王伟巧, 张艳, 王国宁, 吴立强, 张桂寅, 马峙英, 杨君, 王省芬. 棉花CRVW的克隆与抗黄萎病功能分析. 中国农业科学, 2019, 52: 1858-1869.
Wang Q Y, Wang Wi Q, Zhang Y, Wang G N, Wu L Q, Zhang G Y, Ma Z Y, Yang J, Wang X F. Cloning and functional characterization of gene CRVW involved in cotton resistance to Verticillium wilt. Sci Agric Sin, 2019, 52: 1858-1869. (in Chinese with English abstract)
[20] 王慧飞, 刘琳琳, 甄军波, 刘迪, 欧阳艳飞, 迟吉娜, 冯雪, 张一名, 孙艳香, 陈光. 病毒诱导的精氨琥珀酸合成酶基因沉默对棉花氮代谢的影响. 东北林业大学学报, 2020, 48(5): 72-78.
Wang H F, Liu L L, Zhen J B, Liu D, Ou-yang Y F, Chi J N, Feng X, Zhang Y M, Sun Y X, Chen G. Effects of virus-induced gene silencing (VIGS) of argininosuccinate synthase gene on cotton nitrogen metabolism. J Northeast For Univ, 2020, 48(5): 72-78. (in Chinese with English abstract)
[21] Moreno J I, Raquel M, Castresana C. Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J, 2005, 41: 451-463.
doi: 10.1111/j.1365-313X.2004.02311.x
[22] 穆春, 周琳, 李茂营, 杜明伟, 张明才, 田晓莉, 李召虎. 水培条件下病毒诱导棉花基因沉默体系的建立及优化. 作物学报, 2016, 42: 844-849.
doi: 10.3724/SP.J.1006.2016.00844
Mu C, Zhou L, Li M Y, Du M W, Zhang M C, Tian X L, Li Z H. Establishment and optimisation of virus-induced gene silencing in system hydroponic cotton. Acta Agron Sin, 2016, 42: 844-849. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00844
[23] Li M Y, Li F J, He P. Construction of a cotton VIGS library for functional genomics study. Methods Mol Biol, 2015, 1287: 267-279.
doi: 10.1007/978-1-4939-2453-0_20 pmid: 25740372
[24] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[25] 刘东让, 侯喜林, 肖栋. 普通白菜1,5-二磷酸核酮糖羧化/加氧酶小亚基基因BcrbcS的克隆及表达分析. 中国蔬菜, 2019, (1): 20-25.
Liu D R, Hou X L, Xiao D. Cloning and expression analysis of small subunit gene BcrbcS of ribulose 1,5-diphosphate carboxylation/oxygenase in Chinese cabbage. China Veget, 2019, (1): 20-25. (in Chinese)
[26] Hedden P, Thomas S G. Gibberellin biosynthesis and its regulation. Biochem Eng J, 2012, 444: 11-25.
[27] 胡有贞, 王雅欣. 2-氧化戊二酸依赖的双加氧酶基因F6’H1促进拟南芥叶片衰老. 植物生理学报, 2015, 51: 1873-1879.
Hu Y Z, Wang Y X. 2-oxoglutarate dependent dioxygenase gene F6’H1 of Arabidopsis thaliana promote leaf senescence. Acta Phytophysiol Sin, 2015, 51: 1873-1879. (in Chinese with English abstract)
[28] 袁进成, 刘颖慧. 植物糖转运蛋白研究进展. 中国农学通报, 2013, 29(36): 287-294.
Yuan J C, Liu Y H. Genetics and functional properties of sugar transporters in plants. Chin Agric Sci Bull, 2013, 29(36): 287-294. (in Chinese with English abstract)
[29] Jun J H, Xiao X, Rao X, Dixon R A. Proanthocyanidin subunit composition determined by functionally diverged dioxygenases. Nat Plants, 2018, 4: 1034-1043.
doi: 10.1038/s41477-018-0292-9 pmid: 30478357
[30] 张宇斌, 潘蓉蓉, 彭贵, 陈婷, 申欢, 云利锋, 孙威. 日本蛇根草无色花青素双加氧酶基因的克隆及其序列分析. 基因组学与应用生物学, 2018, 37: 2477-2482.
Zhang Y B, Pan R R, Peng G, Chen T, Shen H, Yun L F, Sun W. Cloning and sequence analysis of LDOX gene in Ophiorrhiza japonica. Genom Appl Biol, 2018, 37: 2477-2482. (in Chinese with English abstract)
[31] Brown D E, Rashotte A M, Murphy A S, Normanly J, Tague B W, Peer W A, Taiz L, Muday G K. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol, 2001, 126: 524-535.
pmid: 11402184
[32] Qian D, Xiong S, Li M, Tian L, Le Q Q. OsFes1C, a potential nucleotide exchange factor for OsBiP1, is involved in the ER and salt stress responses. Plant Physiol, 2021, 187: 396-408.
doi: 10.1093/plphys/kiab263 pmid: 34618140
[33] 张景霞. 拟南芥AtFes1A与植物耐热性. 山东师范大学博士学位论文, 山东济南, 2011.
Zhang J X. The involvement of Arabidopsis AtFest1A in Thermotolerance. PhD Dissertation of Shandong Normal University, Jinan, Shandong, China, 2011. (in Chinese with English abstract)
[34] 王淑智, 李利, 张道勇, 潘响亮. NaCl与Cd对小球藻光系统II (PSII)活性的影响. 应用与环境生物学报, 2011, 17: 839-846.
Wang S Z, Li L, Zhang D Y, Pan X L. Effects of NaCl and Cd on photosystem II (PSII) activity of Chlorella pyrenoidosa. Chin J Appl Environ Biol, 2011, 17: 839-846. (in Chinese with English abstract)
[35] Sánchez de Jiménez E, Medrano L, Martínez E B. Rubisco activase, a possible new number of the molecular chaperon family. Biochemistry, 1995, 34: 2826-2831.
pmid: 7893695
[36] Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S. Mechanisms of plant salt response: insights from proteomics. J Proteome Res, 2012, 11: 49-67.
doi: 10.1021/pr200861w pmid: 22017755
[37] Jurczyk B, Pociecha E, Grzesiak M, Kalita K, Rapacz M. Enhanced expression of rubisco activase splicing variants differ-entially affects rubisco activity during low temperature treatment in Lolium perenne. J Plant Physiol, 2016, 198: 49-55.
doi: 10.1016/j.jplph.2016.03.021
[38] 陈候鸣, 陈跃, 王盾, 蒋德安. 核酮糖-1,5-二磷酸羧化酶/加氧酶活化酶在植物抗逆性中的作用. 植物生理学报, 2016, 52: 1637-1648.
Chen H M, Chen Y, Wang D, Jiang D A. The role of ribulose-1,5-diphosphate carboxylase/oxygenase in resistance of plant to abiotic stresses. Acta Phytophysiol Sin, 2016, 52: 1637-1648. (in Chinese with English abstract)
[39] Law R D, Crafts-Brandner S J. High temperature stress increases the expression of wheat leaf ribulose-1,5-bisphosphate carboxylase/oxygenase activase protein. Arch Biochem Biophys, 2001, 386: 261-267.
pmid: 11368350
[40] 柯学, 李军营, 徐超华, 龚明. 不同光质对烟草叶片组织结构及Rubisco羧化酶活性和rbc、rca基因表达的影响. 植物生理学报, 2012, 48: 251-259.
Ke X, Li J Y, Xu C H, Gong M. Effects of different light quality on anatomical structure, carboxylase activity of ribulose 1,5-biphosphate carboxylase/oxygenase and expression of rbc and rca genes in tobacco (Nicotiana tabacum L.) leaves. Acta Phytophysiol Sin, 2012, 48: 251-259. (in Chinese with English abstract)
[41] 熊大斌, 曹玲珑, 李冬兵, 邓利, 尹钧, 牛洪斌. 脯氨酸对盐胁迫条件下大麦叶片Rubisco酶活性的影响. 河南农业大学学报, 2015, 49: 443-449.
Xiong D B, Cao L L, Li D B, Deng L, Yin J, Niu H B. Effect of proline on Rubisco activity in barley leaves during salinity stress. J Henan Agric Univ, 2015, 49: 443-449. (in Chinese with English abstract)
[1] 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179.
[2] 李名江, 雷建峰, 祖丽皮耶•托合尼亚孜, 代培红, 刘超, 刘晓东. 棉花GhIQM1基因克隆及抗黄萎病功能分析[J]. 作物学报, 2022, 48(9): 2265-2273.
[3] 郭家鑫, 鲁晓宇, 陶一凡, 郭慧娟, 闵伟. 棉花在盐碱胁迫下代谢产物及通路的分析[J]. 作物学报, 2022, 48(8): 2100-2114.
[4] 祝令晓, 宋世佳, 李浩然, 孙红春, 张永江, 白志英, 张科, 李安昌, 刘连涛, 李存东. 基于耐低氮综合指数的棉花苗期耐低氮品种筛选[J]. 作物学报, 2022, 48(7): 1800-1812.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[7] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[8] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[11] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[12] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[13] 悦曼芳, 张春, 郑登俞, 邹华文, 吴忠义. 玉米转录因子ZmbHLH91对非生物逆境胁迫的应答[J]. 作物学报, 2022, 48(12): 3004-3017.
[14] 张潇文, 李世姣, 张晓军, 李欣, 杨足君, 张树伟, 陈芳, 常利芳, 郭慧娟, 畅志坚, 乔麟轶. 小麦品系CH7034中耐盐QTL定位[J]. 作物学报, 2022, 48(10): 2654-2662.
[15] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[2] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[3] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[4] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[5] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[6] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[7] 郑永美;丁艳锋;王强盛;李刚华;王惠芝;王绍华. 起身肥对水稻分蘖和氮素吸收利用的影响[J]. 作物学报, 2008, 34(03): 513 -519 .
[8] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[9] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[10] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .