作物学报 ›› 2022, Vol. 48 ›› Issue (12): 2967-2977.doi: 10.3724/SP.J.1006.2022.14210
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
梁曦彤1,2(), 高先原1, 周琳1, 穆春1, 杜明伟1, 李芳军1(), 田晓莉1(), 李召虎1
LIANG Xi-Tong1,2(), GAO Xian-Yuan1, ZHOU Lin1, MU Chun1, DU Ming-Wei1, LI Fang-Jun1(), TIAN Xiao-Li1(), LI Zhao-Hu1
摘要:
为快速、高通量研究棉花功能基因, 本研究以陆地棉欣试17为材料, 棉花GhCLA1为标记基因, 利用棉花病毒诱导的基因沉默(virus induced gene silencing, VIGS) cDNA文库对幼苗生长和盐胁迫应答相关基因进行筛选和鉴定。VIGS转化7~14 d观察植株长势和盐胁迫应答表型, 共获得8个与幼苗生长相关以及4个与盐胁迫应答相关的基因。水培条件下, VIGS沉默GhANT17、GhSTP14、GhUSPA、GhFES1、GhS15-4、GhRBL8基因对植株地上部生长较对照植株有明显的抑制作用; VIGS沉默GhOIDO基因促进了植株生长; VIGS沉默GhRBCSC1基因抑制叶片中叶绿素的合成。盐胁迫处理条件下, 与对照植株相比VIGS沉默GhATCYP1、GhSAC52基因提高了植株的耐盐性, VIGS沉默GhPSBW、GhRBCSC2的植株对盐胁迫更敏感。本研究建立了高通量筛选棉花功能基因的技术体系, 为快速挖掘、研究棉花功能基因提供了可行技术手段。
[1] | 孙巨龙, 刘帅, 胡启星, 白志刚, 崔爱花. 不同种植密度对棉花空间成铃分布的影响. 棉花科学, 2021, 43(1): 31-36. |
Sun J L, Liu S, Hu Q S, Bai Z G, Cui A H. The influence of different planting density on the spatial distribution of cotton boll. Cotton Sci, 2021, 43(1): 31-36 (in Chinese with English abstract). | |
[2] | 宋丽, 刘喜平, 仲杰, 李成奇. 棉花耐盐机理与盐害防御研究进展. 江苏农业科学, 2020, 48(16): 48-51. |
Song L, Liu X P, Zhong J, Li C Q. Research progress on salt tolerance mechanism and salt damage prevention of cotton. Jiangsu Agric Sci, 2020, 48(16): 48-51. (in Chinese) | |
[3] |
Gao X, Wheeler T, Li Z, Kenerley C M, Shan L. Silencing GhNDR1 and GhMKK2 compromises cotton resistance to verticillium wilt. Plant J, 2011, 66: 293-305.
doi: 10.1111/j.1365-313X.2011.04491.x |
[4] |
Baulcombe D. RNA silencing in plants. Nature, 2004, 431: 356-363.
doi: 10.1038/nature02874 |
[5] |
Llave C. Virus-derived small interfering RNAs at the core of plant-virus interactions. Trends Plant Sci, 2010, 15: 701-707.
doi: 10.1016/j.tplants.2010.09.001 pmid: 20926332 |
[6] |
Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto Y Y, Sieburth L, Voinnet O. Widespread translational inhibition by plant miRNAs and siRNAs. Science, 2008, 320: 1185-1190.
doi: 10.1126/science.1159151 pmid: 18483398 |
[7] | 宋震, 李中安, 周常勇. 病毒诱导的基因沉默(VIGS)研究进展. 园艺学报, 2014, 41: 1885-1894. |
Song Z, Li Z A, Zhou C Y. Research advances of virus-induced gene silencing (VIGS). Acta Hortic Sin, 2014, 41: 1885-1894. (in Chinese with English abstract) | |
[8] |
Becker A, Lange M. VIGS—genomics goes functional. Trends Plant Sci, 2010, 15: 1-4.
doi: 10.1016/j.tplants.2009.09.002 |
[9] | 吴磊, 姜朋, 张瑜, 马鸿翔, 张旭. 苏麦3号小麦穗部病毒诱导的基因沉默(VIGS)体系的建立及验证. 江苏农业学报, 2017, 33: 248-252. |
Wu L, Jiang P, Zhang Y, Ma H X, Zhang X. Construction and validation of virus-induced gene silencing (VIGS) systemin spike of wheat variety Sumai 3. Jiangsu J Agric Sci, 2017, 33: 248-252. (in Chinese with English abstract) | |
[10] |
李聪聪, 安晓晖, 张中起, 刘康, 孙敬. 玉米TRV-VIGS的优化与顶腐病抗病基因的鉴定. 核农学报, 2019, 33: 2111-2118.
doi: 10.11869/j.issn.100-8551.2019.11.2111 |
Li C C, An X H, Zhang Z Q, Liu K, Sun J. Optimization of TRV-VIGS system and identification of top rot resistance genes in maize. Acta Agric Nucl Sin, 2019, 33: 2111-2118. (in Chinese with English abstract) | |
[11] | 李亚军, 田振东, 柳俊, 谢从华. 利用病毒诱导的基因沉默(VIGS)技术快速鉴定两个马铃薯晚疫病抗性相关Est片段El732276和El732318的功能. 农业生物技术学报, 2012, 20: 16-22. |
Li Y J, Tian Z D, Liu J, Xie C H. Function of two potato ESTs EL732276 and EL732318 related to late blight resistance using virus-induced gene silencing (VIGS). J Agric Biotechnol, 2012, 20: 16-22. (in Chinese with English abstract) | |
[12] | 刘天波, 蔡海林, 滕凯, 曾维爱, 毛辉, 魏润洁, 周志成, 周向平, 戴良英, 唐前君. 病毒诱导的基因沉默防控烟草马铃薯Y病毒病研究. 中国烟草学报, 2020, 26(5): 82-89. |
Liu T B, Cai H L, Teng K, Zeng W A, Mao H, Wei R J, Zhou X P, Dai L L, Tang Q J. Control of tobacco potato Y by virus-induced gene silencing. Acta Tab Sin, 2020, 26(5): 82-89. (in Chinese with English abstract) | |
[13] |
杨波, 刘海霞, 牛铁泉, 张鹏飞, 梁长梅, 赵旗峰, 温鹏飞. TRV介导的葡萄叶片VvANR基因瞬时表达分析. 核农学报, 2021, 35: 826-836.
doi: 10.11869/j.issn.100-8551.2021.04.0826 |
Yang B, Liu H X, Niu T Q, Zhang P F, Liang C M, Zhao Q F, Wen P F. Transient expression of VvANR gene in grape leaves mediated by TRV. Acta Agric Nucl Sin, 2021, 35: 826-836. (in Chinese with English abstract) | |
[14] | 张蕊, 李博, 李旭, 尚文静, 韩迎春, 程琨, 刘娜, 郑文明. TaSPX3基因VIGS沉默表达降低小麦对叶锈病(Puccinia recondite f. sp. tritici)的抗性. 中国农业大学学报, 2021, 26(1): 26-32. |
Zhang R, Li B, Li X, Shang W J, Han Y C, Cheng K, Liu N, Zheng W M. Silencing the expression of TaSPX3 by VIGS decreased the resistance of leaf rust. J China Agric Univ, 2021, 26(1): 26-32. (in Chinese with English abstract) | |
[15] | 左琦. 利用病毒诱导的基因沉默技术探讨番茄PG与乙烯关系. 天津大学硕士学位论文, 天津, 2010. |
Zuo Q. Relationship between PG and Ethylene of Tomato by Virus-induced Gene Silence Technology. MS Thesis of Tianjin University, Tianjin, China, 2010 (in Chinese with English abstract). | |
[16] | Yang D D, An J, Li F J, Agrinya E A, Tian X L, Li Z H. The GhREV transcription factor regulate the development of shoot apical meristem in cotton (Gossypium hirsutum). J Cotton Sci, 2020, 3: 46-53. |
[17] |
Ramegowda V, Senthil-Kumar M, Udayakumar M, Mysore K S. A high-throughput virus-induced gene silencing protocol identifies genes involved in multi-stress tolerance. BMC Plant Biol, 2013, 13: 193.
doi: 10.1186/1471-2229-13-193 pmid: 24289810 |
[18] |
孙威, 许奕, 许桂莺, 孙佩光, 宋顺, 常胜合. 病毒诱导的基因沉默及其在植物研究中的应用. 生物技术通报, 2015, 31(10): 105-110.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.018 |
Sun W, Xu Y, Xu G Y, Sun P G, Song S, Chang S H. Virus-induced gene silencing and its application in plant research. Biotechnol Bull, 2015, 31(10): 105-110. (in Chinese with English abstract)
doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.018 |
|
[19] | 王秋莹, 王伟巧, 张艳, 王国宁, 吴立强, 张桂寅, 马峙英, 杨君, 王省芬. 棉花CRVW的克隆与抗黄萎病功能分析. 中国农业科学, 2019, 52: 1858-1869. |
Wang Q Y, Wang Wi Q, Zhang Y, Wang G N, Wu L Q, Zhang G Y, Ma Z Y, Yang J, Wang X F. Cloning and functional characterization of gene CRVW involved in cotton resistance to Verticillium wilt. Sci Agric Sin, 2019, 52: 1858-1869. (in Chinese with English abstract) | |
[20] | 王慧飞, 刘琳琳, 甄军波, 刘迪, 欧阳艳飞, 迟吉娜, 冯雪, 张一名, 孙艳香, 陈光. 病毒诱导的精氨琥珀酸合成酶基因沉默对棉花氮代谢的影响. 东北林业大学学报, 2020, 48(5): 72-78. |
Wang H F, Liu L L, Zhen J B, Liu D, Ou-yang Y F, Chi J N, Feng X, Zhang Y M, Sun Y X, Chen G. Effects of virus-induced gene silencing (VIGS) of argininosuccinate synthase gene on cotton nitrogen metabolism. J Northeast For Univ, 2020, 48(5): 72-78. (in Chinese with English abstract) | |
[21] |
Moreno J I, Raquel M, Castresana C. Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J, 2005, 41: 451-463.
doi: 10.1111/j.1365-313X.2004.02311.x |
[22] |
穆春, 周琳, 李茂营, 杜明伟, 张明才, 田晓莉, 李召虎. 水培条件下病毒诱导棉花基因沉默体系的建立及优化. 作物学报, 2016, 42: 844-849.
doi: 10.3724/SP.J.1006.2016.00844 |
Mu C, Zhou L, Li M Y, Du M W, Zhang M C, Tian X L, Li Z H. Establishment and optimisation of virus-induced gene silencing in system hydroponic cotton. Acta Agron Sin, 2016, 42: 844-849. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.00844 |
|
[23] |
Li M Y, Li F J, He P. Construction of a cotton VIGS library for functional genomics study. Methods Mol Biol, 2015, 1287: 267-279.
doi: 10.1007/978-1-4939-2453-0_20 pmid: 25740372 |
[24] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[25] | 刘东让, 侯喜林, 肖栋. 普通白菜1,5-二磷酸核酮糖羧化/加氧酶小亚基基因BcrbcS的克隆及表达分析. 中国蔬菜, 2019, (1): 20-25. |
Liu D R, Hou X L, Xiao D. Cloning and expression analysis of small subunit gene BcrbcS of ribulose 1,5-diphosphate carboxylation/oxygenase in Chinese cabbage. China Veget, 2019, (1): 20-25. (in Chinese) | |
[26] | Hedden P, Thomas S G. Gibberellin biosynthesis and its regulation. Biochem Eng J, 2012, 444: 11-25. |
[27] | 胡有贞, 王雅欣. 2-氧化戊二酸依赖的双加氧酶基因F6’H1促进拟南芥叶片衰老. 植物生理学报, 2015, 51: 1873-1879. |
Hu Y Z, Wang Y X. 2-oxoglutarate dependent dioxygenase gene F6’H1 of Arabidopsis thaliana promote leaf senescence. Acta Phytophysiol Sin, 2015, 51: 1873-1879. (in Chinese with English abstract) | |
[28] | 袁进成, 刘颖慧. 植物糖转运蛋白研究进展. 中国农学通报, 2013, 29(36): 287-294. |
Yuan J C, Liu Y H. Genetics and functional properties of sugar transporters in plants. Chin Agric Sci Bull, 2013, 29(36): 287-294. (in Chinese with English abstract) | |
[29] |
Jun J H, Xiao X, Rao X, Dixon R A. Proanthocyanidin subunit composition determined by functionally diverged dioxygenases. Nat Plants, 2018, 4: 1034-1043.
doi: 10.1038/s41477-018-0292-9 pmid: 30478357 |
[30] | 张宇斌, 潘蓉蓉, 彭贵, 陈婷, 申欢, 云利锋, 孙威. 日本蛇根草无色花青素双加氧酶基因的克隆及其序列分析. 基因组学与应用生物学, 2018, 37: 2477-2482. |
Zhang Y B, Pan R R, Peng G, Chen T, Shen H, Yun L F, Sun W. Cloning and sequence analysis of LDOX gene in Ophiorrhiza japonica. Genom Appl Biol, 2018, 37: 2477-2482. (in Chinese with English abstract) | |
[31] |
Brown D E, Rashotte A M, Murphy A S, Normanly J, Tague B W, Peer W A, Taiz L, Muday G K. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol, 2001, 126: 524-535.
pmid: 11402184 |
[32] |
Qian D, Xiong S, Li M, Tian L, Le Q Q. OsFes1C, a potential nucleotide exchange factor for OsBiP1, is involved in the ER and salt stress responses. Plant Physiol, 2021, 187: 396-408.
doi: 10.1093/plphys/kiab263 pmid: 34618140 |
[33] | 张景霞. 拟南芥AtFes1A与植物耐热性. 山东师范大学博士学位论文, 山东济南, 2011. |
Zhang J X. The involvement of Arabidopsis AtFest1A in Thermotolerance. PhD Dissertation of Shandong Normal University, Jinan, Shandong, China, 2011. (in Chinese with English abstract) | |
[34] | 王淑智, 李利, 张道勇, 潘响亮. NaCl与Cd对小球藻光系统II (PSII)活性的影响. 应用与环境生物学报, 2011, 17: 839-846. |
Wang S Z, Li L, Zhang D Y, Pan X L. Effects of NaCl and Cd on photosystem II (PSII) activity of Chlorella pyrenoidosa. Chin J Appl Environ Biol, 2011, 17: 839-846. (in Chinese with English abstract) | |
[35] |
Sánchez de Jiménez E, Medrano L, Martínez E B. Rubisco activase, a possible new number of the molecular chaperon family. Biochemistry, 1995, 34: 2826-2831.
pmid: 7893695 |
[36] |
Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S. Mechanisms of plant salt response: insights from proteomics. J Proteome Res, 2012, 11: 49-67.
doi: 10.1021/pr200861w pmid: 22017755 |
[37] |
Jurczyk B, Pociecha E, Grzesiak M, Kalita K, Rapacz M. Enhanced expression of rubisco activase splicing variants differ-entially affects rubisco activity during low temperature treatment in Lolium perenne. J Plant Physiol, 2016, 198: 49-55.
doi: 10.1016/j.jplph.2016.03.021 |
[38] | 陈候鸣, 陈跃, 王盾, 蒋德安. 核酮糖-1,5-二磷酸羧化酶/加氧酶活化酶在植物抗逆性中的作用. 植物生理学报, 2016, 52: 1637-1648. |
Chen H M, Chen Y, Wang D, Jiang D A. The role of ribulose-1,5-diphosphate carboxylase/oxygenase in resistance of plant to abiotic stresses. Acta Phytophysiol Sin, 2016, 52: 1637-1648. (in Chinese with English abstract) | |
[39] |
Law R D, Crafts-Brandner S J. High temperature stress increases the expression of wheat leaf ribulose-1,5-bisphosphate carboxylase/oxygenase activase protein. Arch Biochem Biophys, 2001, 386: 261-267.
pmid: 11368350 |
[40] | 柯学, 李军营, 徐超华, 龚明. 不同光质对烟草叶片组织结构及Rubisco羧化酶活性和rbc、rca基因表达的影响. 植物生理学报, 2012, 48: 251-259. |
Ke X, Li J Y, Xu C H, Gong M. Effects of different light quality on anatomical structure, carboxylase activity of ribulose 1,5-biphosphate carboxylase/oxygenase and expression of rbc and rca genes in tobacco (Nicotiana tabacum L.) leaves. Acta Phytophysiol Sin, 2012, 48: 251-259. (in Chinese with English abstract) | |
[41] | 熊大斌, 曹玲珑, 李冬兵, 邓利, 尹钧, 牛洪斌. 脯氨酸对盐胁迫条件下大麦叶片Rubisco酶活性的影响. 河南农业大学学报, 2015, 49: 443-449. |
Xiong D B, Cao L L, Li D B, Deng L, Yin J, Niu H B. Effect of proline on Rubisco activity in barley leaves during salinity stress. J Henan Agric Univ, 2015, 49: 443-449. (in Chinese with English abstract) |
[1] | 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179. |
[2] | 李名江, 雷建峰, 祖丽皮耶•托合尼亚孜, 代培红, 刘超, 刘晓东. 棉花GhIQM1基因克隆及抗黄萎病功能分析[J]. 作物学报, 2022, 48(9): 2265-2273. |
[3] | 郭家鑫, 鲁晓宇, 陶一凡, 郭慧娟, 闵伟. 棉花在盐碱胁迫下代谢产物及通路的分析[J]. 作物学报, 2022, 48(8): 2100-2114. |
[4] | 祝令晓, 宋世佳, 李浩然, 孙红春, 张永江, 白志英, 张科, 李安昌, 刘连涛, 李存东. 基于耐低氮综合指数的棉花苗期耐低氮品种筛选[J]. 作物学报, 2022, 48(7): 1800-1812. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058. |
[7] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[8] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[9] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[10] | 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552. |
[11] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[12] | 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409. |
[13] | 悦曼芳, 张春, 郑登俞, 邹华文, 吴忠义. 玉米转录因子ZmbHLH91对非生物逆境胁迫的应答[J]. 作物学报, 2022, 48(12): 3004-3017. |
[14] | 张潇文, 李世姣, 张晓军, 李欣, 杨足君, 张树伟, 陈芳, 常利芳, 郭慧娟, 畅志坚, 乔麟轶. 小麦品系CH7034中耐盐QTL定位[J]. 作物学报, 2022, 48(10): 2654-2662. |
[15] | 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689. |
|