欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (12): 3029-3044.doi: 10.3724/SP.J.1006.2022.14237

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

割手密萜烯合成酶(TPS)基因家族分析及其在生物胁迫下的表达分析

林焕泰(), 张天杰, 史梦婷, 郭燕芳, 高三基, 王锦达()   

  1. 福建农林大学国家甘蔗工程技术研究中心, 福建福州 350002
  • 收稿日期:2021-12-15 接受日期:2022-03-25 出版日期:2022-12-12 网络出版日期:2022-04-19
  • 通讯作者: 王锦达
  • 作者简介:E-mail: 471250594@qq.com
  • 基金资助:
    国家重点研发计划项目(2018YFD201100);财政部和农业农村部国家现代农业产业技术体系建设专项(糖料, CARS-170302);福建省大学生创新训练计划项目(S202110389051);福建农林大学科技创新专项(CXZX2020084A)

Genome-wide analysis of terpene synthase (TPS) gene family and its expression under biological stress in Saccharum spontaneum

LIN Huan-Tai(), ZHANG Tian-Jie, SHI Meng-Ting, GUO Yan-Fang, GAO San-Ji, WANG Jin-Da()   

  1. National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2021-12-15 Accepted:2022-03-25 Published:2022-12-12 Published online:2022-04-19
  • Contact: WANG Jin-Da
  • Supported by:
    National Key Research and Development Program of China(2018YFD201100);China Agricultural Systrm of MOF and MARA(Sugar, CARS-170302);Innovation Training Program for College Students of Fujian Province(S202110389051);Special Fund for Science and Technology Innovation of Fujian Agriculture and Forestry University(CXZX2020084A)

摘要:

由萜烯合酶(TPS)合成的萜类化合物在植物生物和非生物胁迫中起重要作用。作为现代甘蔗栽培种的重要亲本材料, 割手密(Saccharum spontaneum)含有大量的抗逆基因。为调查割手密TPS基因家族的特征和功能, 通过使用HMMER搜索在割手密基因组中鉴定出39个TPS基因, 该基因含有2个保守域(PF01397和PF03936)的蛋白质, 系统进化树分析显示SsTPS蛋白可以分为TPS-a、b、e/f和g四个分支。SsTPS基因家族主要通过片段复制进行扩展, 共有12个SsTPS基因参与了片段复制事件。定量实时PCR显示, 在草地贪夜蛾(Spodoptera frugiperda)胁迫和甘蔗白条黄单胞菌(Xanthomonas albilineans)感染的割手密植株中, SsTPS基因的表达模式不同, 其中7个SsTPS基因的表达受到强烈的调节。值得注意的是, SsTPS15在草地贪夜蛾的胁迫中显著上调, 但被甘蔗白条黄单胞菌感染时表达下调, 而SsTPS26SsTPS37SsTPS39显示相反的结果。研究结果对于进一步了解萜烯合酶的生物学作用和基于割手密的甘蔗抗逆育种具有重要意义。

关键词: 割手密, 萜烯合酶基因, 生物胁迫, 表达分析, 抗性育种

Abstract:

Terpenoids produced by the action of terpene synthase (TPS) enzymes play important roles in plant biotic and abiotic stress. Saccharum spontaneum, an important parent material of modern sugarcane cultivars, contains a large number of stress resistance genes. To investigate the characteristics and functions of the TPS gene family in S. spontaneum, 39 SsTPS genes were identified in S. spontaneum genome that encoded proteins with two conserved domains (PF01397 and PF03936) by using an HMMER search. The SsTPS proteins were divided into TPS-a, b, e/f, and g subfamilies. The SsTPS gene family had mainly expanded through segmental duplications, and a total of 12 SsTPS genes involved in segmental duplication events. In addition, qRT-PCR showed that the expression patterns of some SsTPS genes differed in S. spontaneum between Spodoptera frugiperda-stressed and Xanthomonas albilineans-infected plants, whereas the relative expression levels of seven SsTPS genes were strongly up-regulated. Notably, SsTPS15 were up-regulated in response to Spodoptera frugiperda-stressed but were down-regulated by X. albilineans infection, while SsTPS26, SsTPS37, and SsTPS39 had the opposite results. These results will be of great significance to further understanding the biological roles of terpene synthases and to develop resistant breeding in S. spontaneum.

Key words: Saccharum spontaneum, terpene synthase gene, biotic stresses, expression analysis, resistance breeding

表1

用于检测SsTPS基因表达水平的引物序列"

基因名称
Gene name
正向引物
Forward primer (5'-3')
反向引物
Reverse primer (5'-3')
SsTPS5 AGTACCGCATGCCCTACCTA CACCGCTTCTTGCTGAAACC
SsTPS6 AGTACCGCATGCCCTACCTA CGCTGCAAGTGTTCCTCAAC
SsTPS8 ATGATGTTCAGGGGCTGCAA CATGTATGCACGCTTGGGTG
SsTPS10 AGGGGAAAGTGCGTCAGATG AGTGTGGATACGGCTTAGCG
SsTPS15 AAAAGACCGGACCTTCCACC CATGTATGCACGCTTGGGTG
SsTPS18 ACCAAGGAGGCATTCGAGTG CGCGTTCTTCCTCCCTTTCT
SsTPS26 GTCCCATGCACTCCATCACA GAGGTGGCAACGGTTCCTAA
SsTPS27 AATGGGCTCTCACCTTTCCG AAGCTTGTTCACGCTCATGC
SsTPS35 TGTTCCTAGGCCATGCAAGG TTTTGGACTCCGAGTGGCTC
SsTPS36 TGCTGCTGCGCAATGATTTT GGTCGCTCTTCTGACGTTGA
SsTPS37 GAGCCAAGCCTTGCAGAGTA ATGGGCAGGCTCTGTAGGTA
SsTPS39 GAAATACCTGTGGTGCGGGA CCACAACATAGACAAGCGCG
GAPDH CACGGCCACTGGAAGCA TCCTCAGGGTTCCTGATGCC

表2

割手密SsTPS家族成员基本信息和理化性质"

基因名称
Gene name
基因编号
Gene ID
氨基酸数
Number of amino acids
等电点
pI
分子量
Molecular weight (kD)
负电荷残基
Asp+Glu
正电荷残基Arg+Lys 不稳定系数Coefficient of instability 平均疏水性 GRAVY 脂肪系数 AI α-螺旋
α-helix(%)
延伸链
Extended chain (%)
无规则卷曲
Random curl (%)
SsTPS1 Sspon.01G0009730-1A 514 5.90 59,392.66 72 62 36.28 -0.306 88.29 57.39 11.67 30.93
SsTPS2 Sspon.01G0010010-1A 496 5.29 57,214.41 78 57 37.65 -0.288 94.92 54.03 14.72 31.25
SsTPS3 Sspon.01G0044880-1B 497 5.75 56,761.45 69 54 40.04 -0.312 83.84 49.90 17.51 32.60
SsTPS4 Sspon.04G0011840-1A 735 9.77 81,962.81 74 104 60.66 -0.460 75.17 43.67 8.03 48.30
SsTPS5 Sspon.04G0011840-2B 353 5.78 41,253.51 51 43 47.03 -0.333 87.00 64.31 3.68 32.01
SsTPS6 Sspon.04G0011840-3C 501 6.43 57,711.12 62 58 45.18 -0.311 87.96 55.09 6.99 37.92
SsTPS7 Sspon.05G0015000-1A 581 5.53 66,604.19 78 61 39.07 -0.216 91.02 51.29 12.22 36.49
SsTPS8 Sspon.06G0010490-1P 528 5.33 61,308.56 76 59 39.80 -0.173 98.26 52.65 12.12 35.23
SsTPS9 Sspon.06G0010500-1A 376 5.10 43,465.54 59 41 52.71 -0.328 87.95 52.39 11.17 36.44
SsTPS10 Sspon.06G0011520-1A 433 5.84 49,561.84 62 51 40.69 -0.242 83.44 55.43 9.70 34.87
SsTPS11 Sspon.06G0011680-1A 468 5.32 53,911.93 71 58 49.94 -0.247 97.67 60.47 7.69 31.84
SsTPS12 Sspon.06G0010490-1A 538 5.34 62,470.81 78 61 40.28 -0.201 96.43 50.74 12.64 36.62
SsTPS13 Sspon.06G0021690-1B 325 5.52 37,701.75 51 39 46.74 -0.380 89.14 55.38 12.62 32.00
SsTPS14 Sspon.06G0023410-1B 397 5.47 46,236.32 64 52 38.72 -0.254 96.93 50.13 12.85 37.03
SsTPS15 Sspon.06G0010490-2B 538 5.34 62,468.83 78 61 40.74 -0.192 97.16 50.93 12.64 36.43
SsTPS16 Sspon.06G0011680-2B 607 5.96 70,631.16 81 70 49.39 -0.222 94.23 50.74 13.67 35.58
SsTPS17 Sspon.06G0024130-1B 606 5.97 70,317.44 86 74 53.41 -0.363 83.83 55.61 13.53 30.86
SsTPS18 Sspon.06G0015570-2B 533 5.29 61,439.38 76 57 45.23 -0.220 83.49 50.66 14.82 34.52
SsTPS19 Sspon.06G0023520-2C 491 5.08 57,333.63 76 54 49.64 -0.302 84.83 46.84 13.65 39.51
SsTPS20 Sspon.06G0011660-2C 482 5.04 55,885.74 75 53 48.91 -0.274 86.72 47.51 18.67 33.82
SsTPS21 Sspon.06G0011680-1P 414 5.47 47,542.37 62 48 48.39 -0.301 93.16 53.86 10.63 35.51
SsTPS22 Sspon.06G0030650-1C 358 9.40 41,189.25 38 51 38.63 -0.391 79.55 46.37 13.69 39.94
SsTPS23 Sspon.06G0011680-3C 468 5.15 53,761.70 72 55 51.78 -0.219 98.93 58.55 9.83 31.62
SsTPS24 Sspon.06G0034360-1D 317 4.93 36,898.43 50 32 39.19 -0.134 91.29 48.26 17.98 33.75
SsTPS25 Sspon.06G0011680-2P 333 8.65 38,083.58 38 42 35.22 -0.328 83.75 38.44 21.32 40.24
SsTPS26 Sspon.06G0024130-2D 545 5.56 63,780.15 81 68 48.69 -0.286 90.11 53.39 13.58 33.03
SsTPS27 Sspon.06G0024130-1P 497 5.71 57,610.39 75 65 43.03 -0.181 93.00 51.71 17.30 30.99
SsTPS28 Sspon.06G0011680-4D 328 8.47 37,598.00 37 40 33.44 -0.324 82.65 42.38 17.38 40.24
SsTPS29 Sspon.07G0027750-1B 509 5.55 59,706.37 75 59 55.08 -0.414 90.84 52.65 9.23 38.11
SsTPS30 Sspon.08G0029890-1D 629 5.83 71,361.82 80 67 49.40 -0.160 86.38 46.26 13.67 40.06
SsTPS31 Sspon.01G0039100-1B 348 5.62 39,581.24 49 39 48.50 -0.288 84.74 47.14 12.93 39.66
SsTPS32 Sspon.01G0039100-2C 550 8.25 62,827.75 67 70 54.38 -0.376 82.91 50.36 9.45 40.18
SsTPS33 Sspon.04G0000830-1A 388 5.42 44,015.32 47 38 54.09 -0.088 93.84 55.41 7.47 37.11
SsTPS34 Sspon.05G0030980-1C 545 6.04 62,692.00 73 67 49.04 -0.309 84.02 41.47 12.29 46.24
SsTPS35 Sspon.05G0002480-3D 783 6.03 87,936.45 90 18 46.73 -0.168 89.13 47.51 11.11 41.38
SsTPS36 Sspon.04G0020000-1A 550 5.33 62,580.79 74 53 52.94 -0.116 92.62 49.27 16.55 34.18
SsTPS37 Sspon.04G0019960-2C 515 5.28 59,084.06 71 52 47.41 -0.090 96.37 53.59 14.17 32.23
SsTPS38 Sspon.04G0020000-4P 563 6.13 63,167.56 68 58 50.45 -0.145 89.68 52.75 11.90 35.35
SsTPS39 Sspon.04G0020000-3D 552 5.25 63,021.29 78 56 51.02 -0.123 95.27 54.53 11.78 33.70

图1

割手密(Ss)、高粱(Sb)、水稻(Os)中萜烯合酶基因家族系统进化树 TPS-a、b、e/f、g分别表示萜烯合酶基因家族不同分支。"

图2

割手密基因家族成员基因结构 A: SsTPS系统进化树。B: SsTPS内含子-外显子结构预测。C: SsTPS motif预测。D: Motif基序结构。"

图3

甘蔗萜烯合酶基因家族的染色体定位"

图4

甘蔗萜烯合酶基因家族的共线性分析"

图5

割手密TPS基因家族各成员启动子区顺式作用元件种类和数量 1~39分别表示割手密萜烯合酶基因家族SsTPS1~SsTPS39成员。"

图6

割手密萜烯合酶基因在不同组织中的表达热图"

图7

割手密中12个候选SsTPS基因在草地贪夜蛾胁迫下的相对表达水平 *、**、***分别表示在0.05、0.01和0.001水平差异显著。"

图8

割手密中12个SsTPS基因在X. albilinans感染下的表达分析 柱上不同小写字母表示处理间在0.05水平差异显著。"

[1] Tholl D. Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biotechnol, 2015, 148: 63-106.
[2] 韩娟娟, 李喜旺, 刘丰静, 辛肇军, 张瑾, 张新, 孙晓玲. 茶丽纹象甲对茶树品种的取食选择及其诱导的4种萜烯类化合物. 茶叶科学, 2017, 37: 220-227.
Han J J, Li X W, Liu F J, Xin Z J, Zhang J, Zhang X, Sun X L. Feeding selection of tea cultivars by the tea weevil and the four induced terpenoids. J Tea Sci, 2017, 37: 220-227. (in Chinese with English abstract)
[3] Hunsigi G, Yekkeli N R, Perumal L, Thippannavar M B. Antibiosis in sugarcane genotypes against woolly aphid Ceratavacuna lanigera Zehntner. Curr Sci India, 2006, 90: 771-772.
[4] 赵善欢, 曹毅, 彭中健, 黄家总. 应用天然植物产品川楝素防治菜青虫试验. 植物保护学报, 1985, 12: 125-132.
Zhao S H, Cao Y, Peng Z J, Huang J Z. Experiments on the control of Pieris rapae with Toosendanin. J Plant Prot, 1985, 12: 125-132. (in Chinese)
[5] Irmisch S, Jiang Y, Chen F, Gershenzon J, Köllner T G. Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam poplar (Populus trichocarpa). BMC Plant Biol, 2014, 14: 270.
doi: 10.1186/s12870-014-0270-y pmid: 25303804
[6] De Moraes C M, Mescher M C, Tumlinson J H. Caterpillar- induced nocturnal plant volatiles repel conspecific females. Nature, 2001, 410: 577-580.
doi: 10.1038/35069058
[7] Cheniclet C. Effects of wounding and fungus inoculation on terpene producing systems of maritime pine. J Exp Bot, 1987, 38: 1557-1572.
doi: 10.1093/jxb/38.9.1557
[8] 孟雪, 王志英, 吕慧. 绿萝和常春藤主要挥发性成分及其对5种真菌的抑制活性. 园艺学报. 2010, 37: 971-976.
Meng X, Wang Z Y, Lyu H. The volatile constituents analysis of Scindapsus aureum and Hedera nepalensis var. sinensis and their inhibition against five fungi. Acta Hortic Sin, 2010, 37: 971-976. (in Chinese with English abstract)
[9] Cui J, Liang J. Research progress of antibacterial effects of citrus peel essential oils. Sci Technol Cereals, 2018, 26: 35-39.
[10] Lu K, Li X, Zhou J, Xie X, Qi S, Zhou Q. Influence of the herbivore-induced rice volatiles on fungal disease. Chin Sci Bull, 2010, 55: 47-52.
[11] Liu F, Zuo Z J, Xu G P, Wu X B, Zheng J, Gao R F, Zhang R M, Gao Y. Physiological responses to drought stress and the emission of induced volatile organic compounds in Rosmarinus officinalis. J Plant Ecol, 2013, 37: 454-463.
[12] Blanch J S, Peñuelas J, Llusià J. Sensitivity of terpene emissions to drought and fertilization in terpene-storing Pinus halepensis and non-storing Quercus ilex. Physiol Plant, 2007, 131: 211-225.
[13] Kainulainen P, Oksanen J, Palomäki V, Holopainen J K, Holopainen T. Effect of drought and waterlogging stress on needle monoterpenes of Picea abies. Can J Bot, 1992, 70: 1613-1616.
doi: 10.1139/b92-203
[14] Finn R D, Coggill P, Eberhardt R Y, Eddy S R, Mistry J, Mitchell A L, Potter S C, Punta M, Quewshi M, Sangrador-Vegas A, Salazar G A, John Tate S, Bereman A. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res, 2015, 44: D279-D285.
[15] Starks C M, Back K, Chappell J, Novel J P. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science, 1997, 277: 1815-1820.
pmid: 9295271
[16] Falara V, Akhtar T A, Nguyen T H, Spyropoulou E A, Bleeker P M, Schauvinhold I, Matsuba Y, Bonini M E, Schilmiller A L, Last R L. The tomato terpene synthase gene family. Plant Physiol, 2011, 157: 770-789.
doi: 10.1104/pp.111.179648 pmid: 21813655
[17] Jiang S Y, Jin J, Sarojam R, Ramachandran S. A comprehensive survey on the terpene synthase gene family provides new insight into its evolutionary patterns. Genome Biol Evol, 2019, 11: 2078-2098.
doi: 10.1093/gbe/evz142
[18] Chen F, Tholl D, Bohlmann J R, Pichersky E. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J, 2011, 66: 212-229.
doi: 10.1111/j.1365-313X.2011.04520.x
[19] Nieuwenhuizen N J, Green S A, Chen X, Bailleul E J D, Matich A J, Wang M Y, Atkinson R G. Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple. Plant Physiol, 2013, 161: 787-804.
doi: 10.1104/pp.112.208249 pmid: 23256150
[20] Tuskan G A, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313: 1596-1604.
pmid: 16973872
[21] Li G, Koellner T G, Yin Y, Jiang Y, Chen H, Xu Y, Gershenzon J, Pichersky E, Chen F. Nonseed plant Selaginella moellendorfii has both seed plant and microbial types of terpene synthases. Proc Natl Acad Sci USA, 2012, 109: 14711-14715.
doi: 10.1073/pnas.1204300109
[22] Bohlmann J, Meyer-Gauen G, Croteau R. Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA, 1998, 95: 4126-4133.
doi: 10.1073/pnas.95.8.4126
[23] Degenhardt J, Kllner T G, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry, 2009, 70: 1621-1637.
doi: 10.1016/j.phytochem.2009.07.030 pmid: 19793600
[24] Külheim C, Padovan A, Hefer C, Krause S T, Köllner T G, Myburg A A, Degenhardt J, Foley W J. The eucalyptus terpene synthase gene family. BMC Genomics, 2015, 16: 450.
doi: 10.1186/s12864-015-1598-x pmid: 26062733
[25] Whittington D A, Wise M L, Urbansky M, Coates R M, Croteau R B, Christianson D W. Bornyl diphosphate synthase: structure and strategy for carbocation manipulation by a terpenoid cyclase. Proc Natl Acad Sci USA, 2002, 99: 15375-15380.
doi: 10.1073/pnas.232591099
[26] Christianson D W. Structural and chemical biology of terpenoid cyclases. Chem Rev, 2017, 117: 11570-11648.
doi: 10.1021/acs.chemrev.7b00287 pmid: 28841019
[27] Ali A, Khan M, Sharif R, Mujtaba M, Gao S J. Sugarcane omics: an update on the current status of research and crop improvement. Plants (Basel), 2019, 8: 344.
[28] Diniz A L, Ferreira S S, Ten-Caten F, Margarido G R A, Santos J M, S Barbosa G V, Carneiro M S, Souza G M. Genomic resources for energy cane breeding in the post genomics era. Comput Struct Biotechnol, 2019, 17: 1404-1414.
[29] Olivier G, Gaetan D, Rudie A, Jane G, Bernard P, Karen A, Jerry J, Guillaume M, Carine C, Catherine H. A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun, 2018, 9: 2638.
doi: 10.1038/s41467-018-05051-5 pmid: 29980662
[30] Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai C, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson D, Huang L, Li Z, Ming R. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet, 2018, 50: 1565-1573.
doi: 10.1038/s41588-018-0237-2
[31] Xu F, He L, Gao S, Su Y C, Li F, Xu L. Comparative analysis of two sugarcane ancestors Saccharum officinarum and S. spontaneum based on complete chloroplast genome sequences and photosynthetic ability in cold stress. Int J Mol Sci, 2019, 20: 3828.
doi: 10.3390/ijms20153828
[32] Souza G, Van Sluys M A, Lembke C G, Lee H, Margarido G R A, Hotta C, Gaiarsa J, Lima Diniz A, Oliveira M M, Ferreira S S, Nishiyama Jr M Y, Caten F, Ragagnin G T, Andrade P M, De Souza R F, Nicastro G, Pandya R, Kim C, Guo H, Durham A M, Carnerio M S, Zhang J S, Zhang X T, Zhang Q, Ming R, Schatz M C, Davidson B, Paterson M C, Heckerman D. Assembly of the 373k gene space of the polyploid sugarcane genome reveals reservoirs of functional diversity in the world's leading biomass crop. Gigascience, 2019, 8: giz129.
doi: 10.1093/gigascience/giz129
[33] Royer M, Pieretti I, Cociancich S, Rott P. Recent progress in understanding three major bacterial diseases of sugarcane: gumming, leaf scald and ratoon stunting. Burleigh Dodds, 2018, 26: 311-336.
[34] 李傲梅, 谭宏伟, 魏吉利, 商显坤, 黄东亮, 何为中. 草地贪夜蛾在甘蔗上的发生及防治措施. 植物保护学报, 2020, 47: 735-739.
Li A M, Tan H W, Wei J L, Shang X K, Huang D L, He W Z. Advances in outbreak and control of fall armyworm Spodoptera frugiperda on sugarcane. J Plant Prot, 2020, 47: 735-739. (in Chinese with English abstract)
[35] Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[36] Wang D, Tang H, Debarry J D, Tan X, Li J P, Wang X Y, Lee T H, Jin H Z, Marler B, Guo H, Kissinger J C, Paterson A H. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 2010, 40: e49.
doi: 10.1093/nar/gkr1293
[37] Lin L H, Ntambo M S, Rott P C, Wang Q N, Lin Y H, Fu H Y, Gao S J. Molecular detection and prevalence of Xanthomonas albilineans, the causal agent of sugarcane leaf scald, in China. Crop Prot, 2018, 109: 17-23.
doi: 10.1016/j.cropro.2018.02.027
[38] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[39] Dudareva N, Cseke L, Blanc V M, Pichersky E. Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell, 1996, 8: 1137-1148.
pmid: 8768373
[40] Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol, 2004, 4: 10.
doi: 10.1186/1471-2229-4-10
[41] Olsen J L, Rouze P, Verhelst B, Lin Y C, Bayer T, Collen J, Dattolo E, De Paoli E, Dittami S, Maumus F, Michel G, Kersting A, Lauritano C, Lohaus R, Topel M, Tonon T, Vanneste K, Amirebrahimi M, Brakel J, Bostrom C, Chovatia M, Grimwood J, Jenkins J W, Jueterbock A, Mraz A, Stam W T, Tice H, Bornberg-Bauer E, Green P J, Pearson G A, Procaccini G, Duarte C M, Schmutz J, Reusch T B, Van de Peer Y. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature, 2016, 530: 331-335.
doi: 10.1038/nature16548
[42] Jiao Y, Liu X, Jiang H, Chen R. Research advances of plant tissue specific promoters. J Agric Sci Technol (Iran), 2019, 21: 18-28.
[43] Aubourg S, Lecharny A, Bohlmann J. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Genet Genomics, 2002, 267: 730-745.
pmid: 12207221
[44] Martin D M, Aubourg S, Schouwey M B, Daviet L, Schalk M, Toub O, Lund S T, Bohlmann J. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, flcdna cloning, and enzyme assays. BMC Plant Biol, 2012, 10: 226.
doi: 10.1186/1471-2229-10-226
[45] Kumar Y, Khan F, Rastogi S. Genome-wide detection of terpene synthase genes in holy basil (Ocimum sanctum L.). PLoS One, 2018, 13: e0207097.
[46] Liu J Y, Huang F, Wang X. Genome-wide analysis of terpene synthases in soybean: functional characterization of GmTPS3. Gene, 2014, 544: 83-92.
doi: 10.1016/j.gene.2014.04.046
[47] Chen X, Yang W, Zhang L Q. Genome-wide identification, functional and evolutionary analysis of terpene synthases in pineapple. Comp Biol Chem, 2017, 70: 40-48.
doi: 10.1016/j.compbiolchem.2017.05.010
[48] Xiong W D, Wu P Z, Jia Y X. Genome-wide analysis of the terpene synthase gene family in physic nut (Jatropha curcas L.) and functional identification of six terpene synthases. Tree Genet Genom, 2016, 12: 97.
doi: 10.1007/s11295-016-1054-3
[49] Martin H. Herbivore-induced plant volatiles: targets, perception and unanswered questions. New Phytol, 2014, 204: 297-306.
doi: 10.1111/nph.12977
[50] Jiang Z, Jacob J A, Loganathachetti D S. β-elemene: mechanistic studies on cancer cell interaction and its chemosensitization effect. Front Pharmacol, 2017, 8: 105.
doi: 10.3389/fphar.2017.00105 pmid: 28337141
[51] Paddon C J, Keasling J D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol, 2014, 12: 355-367.
doi: 10.1038/nrmicro3240 pmid: 24686413
[52] Cheng A X, Xiang C Y, Li J X. The rice (E)-beta-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry, 2007, 68: 1632-1641.
doi: 10.1016/j.phytochem.2007.04.008
[53] Xiao Y, Wang Q, Erb M. Specific herbivore-induced volatiles defend plants and determine insect community composition in the field. Ecol Lett, 2012, 15: 1130-1139.
doi: 10.1111/j.1461-0248.2012.01835.x pmid: 22804824
[54] Chen X, Chen H, Yuan J S, Köllner T G, Chen Y, Guo Y, Zhuang X, Chen X, Zhang Y, Fu J, Nebenführ A, Guo Z, Chen F. The rice terpene synthase gene OsTPS19 functions as an (S)-limonene synthase in planta and its overexpression leads to enhanced resistance to the blast fungus Magnaporthe oryzae. Plant Biotechnol J, 2018, 16: 1778-1787.
doi: 10.1111/pbi.12914
[55] Rodríguez A, Andrés V S, Cervera M, Redondo A, Leandro P. The monoterpene limonene in orange peels attracts pests and microorganisms. Plant Signal Behav, 2011, 6: 1820-1823.
doi: 10.4161/psb.6.11.16980 pmid: 22212123
[56] Huang M, Sanchez-Moreiras A M, Abel C. Sohrabi R, Lee S, Gershenzon J, Tholl D. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol, 2012, 193: 997-1008.
doi: 10.1111/j.1469-8137.2011.04001.x
[57] Chiriboga M X, Campos-Herrera R, Jaffuel G, RóDer G, Turlings T C J. Diffusion of the maize root signal (E)-β-caryophyllene in soils of different textures and the effects on the migration of the entomopathogenic nematode Heterorhabditis megidis. Rhizosphere, 2017, 3: 53-59.
doi: 10.1016/j.rhisph.2016.12.006
[58] Ding Y, Huffaker A, KöLlner T G, Weckwerth P, Robert C A M, Spencer J L, Lipka A E, Schmelz E A. Selinene volatiles are essential precursors for maize defense promoting fungal pathogen resistance. Plant Physiol, 2017, 175: 1455-1468.
doi: 10.1104/pp.17.00879 pmid: 28931629
[59] 卢凯, 李欣, 周嘉良, 解晓军, 戚舒, 周强. 虫害诱导的水稻挥发物抑制水稻病原菌的生长. 科学通报, 2010, 55: 2927-2932.
Lu K, Li X, Zhou J L, Xie X J, Qi S, Zhou Q. Insect-induced rice volatiles inhibit the growth of rice pathogenic bacteria. Sci Bull, 2010, 55: 2927-2932. (in Chinese with English abstract)
[60] 刘小香, 陈秋波, 王真辉, 谢龙莲, 徐志. 巨尾桉挥发油对真菌和昆虫的化感作用. 生态学杂志, 2007, 26: 835-839.
Liu X X, Chen Q B, Wang Z H, Xie L L, Xu Z. Allelopathy of volatile oil from Eucalyptus grandis on fungi and insects. Chin J Ecol, 2007, 26: 835-839. (in Chinese with English abstract)
[1] 张程, 张展, 杨佳宝, 孟晚秋, 曾令露, 孙黎. 向日葵DGATs基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(1): 73-85.
[2] 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61.
[3] 李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析[J]. 作物学报, 2023, 49(1): 97-104.
[4] 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937.
[5] 陈璐, 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯解偶联蛋白基因家族鉴定与表达分析[J]. 作物学报, 2022, 48(7): 1683-1696.
[6] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[7] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[8] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[9] 马文婧, 刘震, 李志涛, 朱金勇, 李泓阳, 陈丽敏, 史田斌, 张俊莲, 刘玉汇. 马铃薯BBX基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(11): 2797-2812.
[10] 贾小霞, 齐恩芳, 马胜, 黄伟, 郑永伟, 白永杰, 文国宏. 马铃薯PYL基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(10): 2533-2545.
[11] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[12] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[13] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[14] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[15] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .