作物学报 ›› 2022, Vol. 48 ›› Issue (12): 3029-3044.doi: 10.3724/SP.J.1006.2022.14237
林焕泰(), 张天杰, 史梦婷, 郭燕芳, 高三基, 王锦达()
LIN Huan-Tai(), ZHANG Tian-Jie, SHI Meng-Ting, GUO Yan-Fang, GAO San-Ji, WANG Jin-Da()
摘要:
由萜烯合酶(TPS)合成的萜类化合物在植物生物和非生物胁迫中起重要作用。作为现代甘蔗栽培种的重要亲本材料, 割手密(Saccharum spontaneum)含有大量的抗逆基因。为调查割手密TPS基因家族的特征和功能, 通过使用HMMER搜索在割手密基因组中鉴定出39个TPS基因, 该基因含有2个保守域(PF01397和PF03936)的蛋白质, 系统进化树分析显示SsTPS蛋白可以分为TPS-a、b、e/f和g四个分支。SsTPS基因家族主要通过片段复制进行扩展, 共有12个SsTPS基因参与了片段复制事件。定量实时PCR显示, 在草地贪夜蛾(Spodoptera frugiperda)胁迫和甘蔗白条黄单胞菌(Xanthomonas albilineans)感染的割手密植株中, SsTPS基因的表达模式不同, 其中7个SsTPS基因的表达受到强烈的调节。值得注意的是, SsTPS15在草地贪夜蛾的胁迫中显著上调, 但被甘蔗白条黄单胞菌感染时表达下调, 而SsTPS26、SsTPS37和SsTPS39显示相反的结果。研究结果对于进一步了解萜烯合酶的生物学作用和基于割手密的甘蔗抗逆育种具有重要意义。
[1] | Tholl D. Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biotechnol, 2015, 148: 63-106. |
[2] | 韩娟娟, 李喜旺, 刘丰静, 辛肇军, 张瑾, 张新, 孙晓玲. 茶丽纹象甲对茶树品种的取食选择及其诱导的4种萜烯类化合物. 茶叶科学, 2017, 37: 220-227. |
Han J J, Li X W, Liu F J, Xin Z J, Zhang J, Zhang X, Sun X L. Feeding selection of tea cultivars by the tea weevil and the four induced terpenoids. J Tea Sci, 2017, 37: 220-227. (in Chinese with English abstract) | |
[3] | Hunsigi G, Yekkeli N R, Perumal L, Thippannavar M B. Antibiosis in sugarcane genotypes against woolly aphid Ceratavacuna lanigera Zehntner. Curr Sci India, 2006, 90: 771-772. |
[4] | 赵善欢, 曹毅, 彭中健, 黄家总. 应用天然植物产品川楝素防治菜青虫试验. 植物保护学报, 1985, 12: 125-132. |
Zhao S H, Cao Y, Peng Z J, Huang J Z. Experiments on the control of Pieris rapae with Toosendanin. J Plant Prot, 1985, 12: 125-132. (in Chinese) | |
[5] |
Irmisch S, Jiang Y, Chen F, Gershenzon J, Köllner T G. Terpene synthases and their contribution to herbivore-induced volatile emission in western balsam poplar (Populus trichocarpa). BMC Plant Biol, 2014, 14: 270.
doi: 10.1186/s12870-014-0270-y pmid: 25303804 |
[6] |
De Moraes C M, Mescher M C, Tumlinson J H. Caterpillar- induced nocturnal plant volatiles repel conspecific females. Nature, 2001, 410: 577-580.
doi: 10.1038/35069058 |
[7] |
Cheniclet C. Effects of wounding and fungus inoculation on terpene producing systems of maritime pine. J Exp Bot, 1987, 38: 1557-1572.
doi: 10.1093/jxb/38.9.1557 |
[8] | 孟雪, 王志英, 吕慧. 绿萝和常春藤主要挥发性成分及其对5种真菌的抑制活性. 园艺学报. 2010, 37: 971-976. |
Meng X, Wang Z Y, Lyu H. The volatile constituents analysis of Scindapsus aureum and Hedera nepalensis var. sinensis and their inhibition against five fungi. Acta Hortic Sin, 2010, 37: 971-976. (in Chinese with English abstract) | |
[9] | Cui J, Liang J. Research progress of antibacterial effects of citrus peel essential oils. Sci Technol Cereals, 2018, 26: 35-39. |
[10] | Lu K, Li X, Zhou J, Xie X, Qi S, Zhou Q. Influence of the herbivore-induced rice volatiles on fungal disease. Chin Sci Bull, 2010, 55: 47-52. |
[11] | Liu F, Zuo Z J, Xu G P, Wu X B, Zheng J, Gao R F, Zhang R M, Gao Y. Physiological responses to drought stress and the emission of induced volatile organic compounds in Rosmarinus officinalis. J Plant Ecol, 2013, 37: 454-463. |
[12] | Blanch J S, Peñuelas J, Llusià J. Sensitivity of terpene emissions to drought and fertilization in terpene-storing Pinus halepensis and non-storing Quercus ilex. Physiol Plant, 2007, 131: 211-225. |
[13] |
Kainulainen P, Oksanen J, Palomäki V, Holopainen J K, Holopainen T. Effect of drought and waterlogging stress on needle monoterpenes of Picea abies. Can J Bot, 1992, 70: 1613-1616.
doi: 10.1139/b92-203 |
[14] | Finn R D, Coggill P, Eberhardt R Y, Eddy S R, Mistry J, Mitchell A L, Potter S C, Punta M, Quewshi M, Sangrador-Vegas A, Salazar G A, John Tate S, Bereman A. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res, 2015, 44: D279-D285. |
[15] |
Starks C M, Back K, Chappell J, Novel J P. Structural basis for cyclic terpene biosynthesis by tobacco 5-epi-aristolochene synthase. Science, 1997, 277: 1815-1820.
pmid: 9295271 |
[16] |
Falara V, Akhtar T A, Nguyen T H, Spyropoulou E A, Bleeker P M, Schauvinhold I, Matsuba Y, Bonini M E, Schilmiller A L, Last R L. The tomato terpene synthase gene family. Plant Physiol, 2011, 157: 770-789.
doi: 10.1104/pp.111.179648 pmid: 21813655 |
[17] |
Jiang S Y, Jin J, Sarojam R, Ramachandran S. A comprehensive survey on the terpene synthase gene family provides new insight into its evolutionary patterns. Genome Biol Evol, 2019, 11: 2078-2098.
doi: 10.1093/gbe/evz142 |
[18] |
Chen F, Tholl D, Bohlmann J R, Pichersky E. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J, 2011, 66: 212-229.
doi: 10.1111/j.1365-313X.2011.04520.x |
[19] |
Nieuwenhuizen N J, Green S A, Chen X, Bailleul E J D, Matich A J, Wang M Y, Atkinson R G. Functional genomics reveals that a compact terpene synthase gene family can account for terpene volatile production in apple. Plant Physiol, 2013, 161: 787-804.
doi: 10.1104/pp.112.208249 pmid: 23256150 |
[20] |
Tuskan G A, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 2006, 313: 1596-1604.
pmid: 16973872 |
[21] |
Li G, Koellner T G, Yin Y, Jiang Y, Chen H, Xu Y, Gershenzon J, Pichersky E, Chen F. Nonseed plant Selaginella moellendorfii has both seed plant and microbial types of terpene synthases. Proc Natl Acad Sci USA, 2012, 109: 14711-14715.
doi: 10.1073/pnas.1204300109 |
[22] |
Bohlmann J, Meyer-Gauen G, Croteau R. Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA, 1998, 95: 4126-4133.
doi: 10.1073/pnas.95.8.4126 |
[23] |
Degenhardt J, Kllner T G, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry, 2009, 70: 1621-1637.
doi: 10.1016/j.phytochem.2009.07.030 pmid: 19793600 |
[24] |
Külheim C, Padovan A, Hefer C, Krause S T, Köllner T G, Myburg A A, Degenhardt J, Foley W J. The eucalyptus terpene synthase gene family. BMC Genomics, 2015, 16: 450.
doi: 10.1186/s12864-015-1598-x pmid: 26062733 |
[25] |
Whittington D A, Wise M L, Urbansky M, Coates R M, Croteau R B, Christianson D W. Bornyl diphosphate synthase: structure and strategy for carbocation manipulation by a terpenoid cyclase. Proc Natl Acad Sci USA, 2002, 99: 15375-15380.
doi: 10.1073/pnas.232591099 |
[26] |
Christianson D W. Structural and chemical biology of terpenoid cyclases. Chem Rev, 2017, 117: 11570-11648.
doi: 10.1021/acs.chemrev.7b00287 pmid: 28841019 |
[27] | Ali A, Khan M, Sharif R, Mujtaba M, Gao S J. Sugarcane omics: an update on the current status of research and crop improvement. Plants (Basel), 2019, 8: 344. |
[28] | Diniz A L, Ferreira S S, Ten-Caten F, Margarido G R A, Santos J M, S Barbosa G V, Carneiro M S, Souza G M. Genomic resources for energy cane breeding in the post genomics era. Comput Struct Biotechnol, 2019, 17: 1404-1414. |
[29] |
Olivier G, Gaetan D, Rudie A, Jane G, Bernard P, Karen A, Jerry J, Guillaume M, Carine C, Catherine H. A mosaic monoploid reference sequence for the highly complex genome of sugarcane. Nat Commun, 2018, 9: 2638.
doi: 10.1038/s41467-018-05051-5 pmid: 29980662 |
[30] |
Zhang J, Zhang X, Tang H, Zhang Q, Hua X, Ma X, Zhu F, Jones T, Zhu X, Bowers J, Wai C, Zheng C, Shi Y, Chen S, Xu X, Yue J, Nelson D, Huang L, Li Z, Ming R. Allele-defined genome of the autopolyploid sugarcane Saccharum spontaneum L. Nat Genet, 2018, 50: 1565-1573.
doi: 10.1038/s41588-018-0237-2 |
[31] |
Xu F, He L, Gao S, Su Y C, Li F, Xu L. Comparative analysis of two sugarcane ancestors Saccharum officinarum and S. spontaneum based on complete chloroplast genome sequences and photosynthetic ability in cold stress. Int J Mol Sci, 2019, 20: 3828.
doi: 10.3390/ijms20153828 |
[32] |
Souza G, Van Sluys M A, Lembke C G, Lee H, Margarido G R A, Hotta C, Gaiarsa J, Lima Diniz A, Oliveira M M, Ferreira S S, Nishiyama Jr M Y, Caten F, Ragagnin G T, Andrade P M, De Souza R F, Nicastro G, Pandya R, Kim C, Guo H, Durham A M, Carnerio M S, Zhang J S, Zhang X T, Zhang Q, Ming R, Schatz M C, Davidson B, Paterson M C, Heckerman D. Assembly of the 373k gene space of the polyploid sugarcane genome reveals reservoirs of functional diversity in the world's leading biomass crop. Gigascience, 2019, 8: giz129.
doi: 10.1093/gigascience/giz129 |
[33] | Royer M, Pieretti I, Cociancich S, Rott P. Recent progress in understanding three major bacterial diseases of sugarcane: gumming, leaf scald and ratoon stunting. Burleigh Dodds, 2018, 26: 311-336. |
[34] | 李傲梅, 谭宏伟, 魏吉利, 商显坤, 黄东亮, 何为中. 草地贪夜蛾在甘蔗上的发生及防治措施. 植物保护学报, 2020, 47: 735-739. |
Li A M, Tan H W, Wei J L, Shang X K, Huang D L, He W Z. Advances in outbreak and control of fall armyworm Spodoptera frugiperda on sugarcane. J Plant Prot, 2020, 47: 735-739. (in Chinese with English abstract) | |
[35] |
Chen C J, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[36] |
Wang D, Tang H, Debarry J D, Tan X, Li J P, Wang X Y, Lee T H, Jin H Z, Marler B, Guo H, Kissinger J C, Paterson A H. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res, 2010, 40: e49.
doi: 10.1093/nar/gkr1293 |
[37] |
Lin L H, Ntambo M S, Rott P C, Wang Q N, Lin Y H, Fu H Y, Gao S J. Molecular detection and prevalence of Xanthomonas albilineans, the causal agent of sugarcane leaf scald, in China. Crop Prot, 2018, 109: 17-23.
doi: 10.1016/j.cropro.2018.02.027 |
[38] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[39] |
Dudareva N, Cseke L, Blanc V M, Pichersky E. Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell, 1996, 8: 1137-1148.
pmid: 8768373 |
[40] |
Cannon S B, Mitra A, Baumgarten A, Young N D, May G. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol, 2004, 4: 10.
doi: 10.1186/1471-2229-4-10 |
[41] |
Olsen J L, Rouze P, Verhelst B, Lin Y C, Bayer T, Collen J, Dattolo E, De Paoli E, Dittami S, Maumus F, Michel G, Kersting A, Lauritano C, Lohaus R, Topel M, Tonon T, Vanneste K, Amirebrahimi M, Brakel J, Bostrom C, Chovatia M, Grimwood J, Jenkins J W, Jueterbock A, Mraz A, Stam W T, Tice H, Bornberg-Bauer E, Green P J, Pearson G A, Procaccini G, Duarte C M, Schmutz J, Reusch T B, Van de Peer Y. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature, 2016, 530: 331-335.
doi: 10.1038/nature16548 |
[42] | Jiao Y, Liu X, Jiang H, Chen R. Research advances of plant tissue specific promoters. J Agric Sci Technol (Iran), 2019, 21: 18-28. |
[43] |
Aubourg S, Lecharny A, Bohlmann J. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Genet Genomics, 2002, 267: 730-745.
pmid: 12207221 |
[44] |
Martin D M, Aubourg S, Schouwey M B, Daviet L, Schalk M, Toub O, Lund S T, Bohlmann J. Functional annotation, genome organization and phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based on genome assembly, flcdna cloning, and enzyme assays. BMC Plant Biol, 2012, 10: 226.
doi: 10.1186/1471-2229-10-226 |
[45] | Kumar Y, Khan F, Rastogi S. Genome-wide detection of terpene synthase genes in holy basil (Ocimum sanctum L.). PLoS One, 2018, 13: e0207097. |
[46] |
Liu J Y, Huang F, Wang X. Genome-wide analysis of terpene synthases in soybean: functional characterization of GmTPS3. Gene, 2014, 544: 83-92.
doi: 10.1016/j.gene.2014.04.046 |
[47] |
Chen X, Yang W, Zhang L Q. Genome-wide identification, functional and evolutionary analysis of terpene synthases in pineapple. Comp Biol Chem, 2017, 70: 40-48.
doi: 10.1016/j.compbiolchem.2017.05.010 |
[48] |
Xiong W D, Wu P Z, Jia Y X. Genome-wide analysis of the terpene synthase gene family in physic nut (Jatropha curcas L.) and functional identification of six terpene synthases. Tree Genet Genom, 2016, 12: 97.
doi: 10.1007/s11295-016-1054-3 |
[49] |
Martin H. Herbivore-induced plant volatiles: targets, perception and unanswered questions. New Phytol, 2014, 204: 297-306.
doi: 10.1111/nph.12977 |
[50] |
Jiang Z, Jacob J A, Loganathachetti D S. β-elemene: mechanistic studies on cancer cell interaction and its chemosensitization effect. Front Pharmacol, 2017, 8: 105.
doi: 10.3389/fphar.2017.00105 pmid: 28337141 |
[51] |
Paddon C J, Keasling J D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol, 2014, 12: 355-367.
doi: 10.1038/nrmicro3240 pmid: 24686413 |
[52] |
Cheng A X, Xiang C Y, Li J X. The rice (E)-beta-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry, 2007, 68: 1632-1641.
doi: 10.1016/j.phytochem.2007.04.008 |
[53] |
Xiao Y, Wang Q, Erb M. Specific herbivore-induced volatiles defend plants and determine insect community composition in the field. Ecol Lett, 2012, 15: 1130-1139.
doi: 10.1111/j.1461-0248.2012.01835.x pmid: 22804824 |
[54] |
Chen X, Chen H, Yuan J S, Köllner T G, Chen Y, Guo Y, Zhuang X, Chen X, Zhang Y, Fu J, Nebenführ A, Guo Z, Chen F. The rice terpene synthase gene OsTPS19 functions as an (S)-limonene synthase in planta and its overexpression leads to enhanced resistance to the blast fungus Magnaporthe oryzae. Plant Biotechnol J, 2018, 16: 1778-1787.
doi: 10.1111/pbi.12914 |
[55] |
Rodríguez A, Andrés V S, Cervera M, Redondo A, Leandro P. The monoterpene limonene in orange peels attracts pests and microorganisms. Plant Signal Behav, 2011, 6: 1820-1823.
doi: 10.4161/psb.6.11.16980 pmid: 22212123 |
[56] |
Huang M, Sanchez-Moreiras A M, Abel C. Sohrabi R, Lee S, Gershenzon J, Tholl D. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol, 2012, 193: 997-1008.
doi: 10.1111/j.1469-8137.2011.04001.x |
[57] |
Chiriboga M X, Campos-Herrera R, Jaffuel G, RóDer G, Turlings T C J. Diffusion of the maize root signal (E)-β-caryophyllene in soils of different textures and the effects on the migration of the entomopathogenic nematode Heterorhabditis megidis. Rhizosphere, 2017, 3: 53-59.
doi: 10.1016/j.rhisph.2016.12.006 |
[58] |
Ding Y, Huffaker A, KöLlner T G, Weckwerth P, Robert C A M, Spencer J L, Lipka A E, Schmelz E A. Selinene volatiles are essential precursors for maize defense promoting fungal pathogen resistance. Plant Physiol, 2017, 175: 1455-1468.
doi: 10.1104/pp.17.00879 pmid: 28931629 |
[59] | 卢凯, 李欣, 周嘉良, 解晓军, 戚舒, 周强. 虫害诱导的水稻挥发物抑制水稻病原菌的生长. 科学通报, 2010, 55: 2927-2932. |
Lu K, Li X, Zhou J L, Xie X J, Qi S, Zhou Q. Insect-induced rice volatiles inhibit the growth of rice pathogenic bacteria. Sci Bull, 2010, 55: 2927-2932. (in Chinese with English abstract) | |
[60] | 刘小香, 陈秋波, 王真辉, 谢龙莲, 徐志. 巨尾桉挥发油对真菌和昆虫的化感作用. 生态学杂志, 2007, 26: 835-839. |
Liu X X, Chen Q B, Wang Z H, Xie L L, Xu Z. Allelopathy of volatile oil from Eucalyptus grandis on fungi and insects. Chin J Ecol, 2007, 26: 835-839. (in Chinese with English abstract) |
[1] | 张程, 张展, 杨佳宝, 孟晚秋, 曾令露, 孙黎. 向日葵DGATs基因家族的鉴定及表达分析[J]. 作物学报, 2023, 49(1): 73-85. |
[2] | 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61. |
[3] | 李娟, 周敬如, 储娜, 孙会东, 黄美婷, 傅华英, 高三基. 甘蔗ScPR10基因的克隆及其响应赤条病菌侵染的表达特征分析[J]. 作物学报, 2023, 49(1): 97-104. |
[4] | 王沙沙, 黄超, 汪庆昌, 晁岳恩, 陈锋, 孙建国, 宋晓. 小麦籽粒大小相关基因TaGS2克隆及功能分析[J]. 作物学报, 2022, 48(8): 1926-1937. |
[5] | 陈璐, 周淑倩, 李永新, 陈刚, 陆国权, 杨虎清. 甘薯解偶联蛋白基因家族鉴定与表达分析[J]. 作物学报, 2022, 48(7): 1683-1696. |
[6] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[7] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[8] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[9] | 马文婧, 刘震, 李志涛, 朱金勇, 李泓阳, 陈丽敏, 史田斌, 张俊莲, 刘玉汇. 马铃薯BBX基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(11): 2797-2812. |
[10] | 贾小霞, 齐恩芳, 马胜, 黄伟, 郑永伟, 白永杰, 文国宏. 马铃薯PYL基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2022, 48(10): 2533-2545. |
[11] | 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120. |
[12] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
[13] | 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069. |
[14] | 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137. |
[15] | 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649. |
|