欢迎访问作物学报,今天是

作物学报 ›› 2022, Vol. 48 ›› Issue (12): 3018-3028.doi: 10.3724/SP.J.1006.2022.13074

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米苗期根汞胁迫响应中miRNA的鉴定及初步验证

秦永田1,2(), 陈黎霞3, 汤继华1, 陈建辉1, 马拴红1, 张雪海1, 丁冬1(), 付志远1()   

  1. 1河南农业大学农学院 / 省部共建小麦玉米作物学国家重点实验室 / 河南粮食作物协同创新中心, 河南郑州 450046
    2鹤壁市农业科学院, 河南鹤壁458030
    3华北水利水电大学物理与电子学院, 河南郑州450000
  • 收稿日期:2021-12-14 接受日期:2022-03-25 出版日期:2022-12-12 网络出版日期:2022-04-20
  • 通讯作者: 丁冬,付志远
  • 作者简介:秦永田, E-mail: 442869057@qq.com第一联系人:

    **同等贡献

  • 基金资助:
    河南省重点研发与推广专项(科技攻关)(212102110061);国家转基因生物新品种培育重大专项(2018ZX0800908B);省部共建作物逆境适应与改良国家重点实验室(河南大学) 2021年度开放课题(2021KF07)

Identification and validation of miRNA involved in mercury stress response in maize seedling roots

QIN Yong-Tian1,2(), CHEN Li-Xia3, TANG Ji-Hua1, CHEN Jian-Hui1, MA Shuan-Hong1, ZHANG Xue-Hai1, DING Dong1(), FU Zhi-Yuan1()   

  1. 1College of Agronomy, Henan Agricultural University / National Key Laboratory of Wheat and Maize Crop Science / Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, Henan, China
    2Hebi Academy of Agricultural Sciences, Hebi 458030, Henan, China
    3School of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou 450000, Henan, China
  • Received:2021-12-14 Accepted:2022-03-25 Published:2022-12-12 Published online:2022-04-20
  • Contact: DING Dong,FU Zhi-Yuan
  • About author:First author contact:

    **Contributed equally to this work

  • Supported by:
    Key Technologies Research & Development Program of Henan Province(212102110061);National Major Project for Developing New GM Crops(2018ZX0800908B);Open Project Funding of the State Key Laboratory of Crop Stress Adaptation and Improvement(2021KF07)

摘要:

汞污染已成为威胁全球作物生产的主要重金属污染源之一。microRNA (miRNA)是调控植物生长发育和非生物胁迫响应的重要因子, 但其在单子叶植物汞胁迫响应中的作用尚不明确。为挖掘响应汞胁迫的关键miRNA, 本研究对B73和郑58 (Zheng 58, Z58)自交系幼苗在HgCl2处理后的表型和差异表达的miRNA进行了分析。结果表明, B73对汞胁迫较郑58更敏感, miRNA166l是B73和Z58中共同鉴定到的下调表达的miRNA。为进一步验证miRNA166在汞胁迫中的作用, 利用STTM (short tandem target mimic)技术获得了STTM165/166拟南芥转基因稳定株系。STTM166稳定系在HgCl2处理后的表型与玉米幼苗在汞胁迫处理后的表型类似, 叶片失绿萎蔫、根长变短。本研究证明miRNA166在玉米汞胁迫响应中有重要调控作用, 对其作用机制进行更深入的研究有重要意义。

关键词: 玉米, 汞胁迫, microRNA, 短的串联重复靶标模拟(STTM)

Abstract:

Mercury is one of the most important sources of heavy mental pollution to crop production in the worldwide. MicroRNA (miRNA) is a critical regulator in plant development and abiotic stress responses. However, its function on mercury stress response is still unknown in monocots. To identify the critical miRNA in response to mercury, we analyzed phenotype changes and differentially expressed miRNA in seedlings of two maize inbred lines B73 and Zheng 58 (Z58) under HgCl2 stress. The results showed that B73 was more sensitive to mercury than Z58 and miRNA166l was down-regulated in both B73 and Z58 under HgCl2 stress. miRNA165/166 knock-out stable lines of Arabidopsis were created using STTM technology to validate its role in mercury stress response. These lines showed wilted and etiolated leaf and shorten root, which were similar with maize seedlings after mercury treatment. This study verified that miRNA166 was important for mercury stress modulation, which promoted us to explore the molecular mechanism of miRNA166 in heavy metal response in the following experiments.

Key words: maize, mercury stress, microRNA, STTM

图1

HgCl2胁迫处理后的表型变化 A: B73对照和HgCl2处理6 d的苗与根; B: Z58对照和HgCl2处理6 d的苗与根。"

图2

HgCl2胁迫处理后B73和Z58苗期表型的差异分析"

表1

不同组织汞含量的统计分析"

组织
Tissue
含量Content (mean±SD) P
P-value
CK (μg L-1) Hg (μg L-1)
B73地下部分Part below the ground of B73 26.79±0.21 28.41±0.09 1.07E-08**
B73地上部分Part above the ground of B73 20.577±0.48 26.64±0.54 1.88E-06**
郑58地下部分Part below the ground of Z58 20.29±0.82 28.25±0.04 1.86E-06**
郑58地上部分Part above the ground of Z58 14.45±0.81 24.77±0.87 8.09E-06**

表2

HgCl2胁迫处理后B73和Z58中的差异表达miRNA"

B73 郑58 Zheng 58
基因序列号
Gene ID
log2 (Fold Change) Padj-value 基因序列号
Gene ID
log2 (Fold Change) Padj-value
zma-miRNA156b 2.1 1.65E-09 zma-miRNA156b 2.1 5.24E-05
zma-miRNA156i 2.8 3.09E-11 zma-miRNA156i -2.3 6.64E-03
zma-miRNA156l 2.4 7.91E-05 zma-miRNA156l -2.2 3.29E-04
zma-miRNA159a -3.9 3.09E-33 zma-miRNA159a 1.6 3.23E-16
zma-miRNA159b -4.0 1.27E-27 zma-miRNA159b 1.6 3.39E-16
zma-miRNA159c -1.4 8.17E-04 zma-miRNA159c 3.8 1.19E-45
zma-miRNA159d -1.4 3.35E-03 zma-miRNA159d 3.9 3.94E-44
zma-miRNA159f -3.6 2.38E-30 zma-miRNA159f 1.8 6.23E-20
zma-miRNA159j -4.2 8.07E-40 zma-miRNA159j 1.6 2.07E-16
zma-miRNA159k -4.0 2.70E-31 zma-miRNA159k 1.6 6.04E-17
zma-miRNA166j -2.5 5.90E-06 zma-miRNA166j 1.1 2.65E-02
zma-miRNA166k -3.5 3.84E-12 zma-miRNA166k 1.0 2.91E-02
zma-miRNA166l -2.8 1.07E-05 zma-miRNA166l -1.4 4.30E-05
zma-miRNA167b 3.1 1.14E-07 zma-miRNA167b -2.1 3.79E-10
zma-miRNA167c 2.4 2.38E-03 zma-miRNA167c -1.1 2.00E-02
zma-miRNA167g 1.2 1.68E-03 zma-miRNA167g -1.6 1.90E-04
zma-miRNA169g 10.8 3.70E-05 zma-miRNA169g -4.3 2.80E-02
zma-miRNA171d 8.9 4.04E-02 zma-miRNA171d -7.4 3.19E-02
zma-miRNA171g 1.9 4.27E-02 zma-miRNA171g 2.2 4.80E-02
zma-miRNA171l 8.9 4.04E-02 zma-miRNA171l -8.9 1.00E-04
zma-miRNA171n 10.3 6.35E-04 zma-miRNA171n -8.1 3.70E-03
zma-miRNA393b 12.4 4.92E-11 zma-miRNA393b -4.1 4.03E-02
zma-miRNA396c 2.7 1.73E-12 zma-miRNA396c -1.9 1.57E-14
zma-miRNA396d 2.2 1.84E-10 zma-miRNA396d -1.9 1.03E-16
zma-miRNA398a -1.9 6.31E-04 zma-miRNA398a 1.2 7.49E-04
zma-miRNA398b -1.3 1.30E-03 zma-miRNA398b 1.1 2.59E-04
zma-miRNA408a -2.0 1.01E-03 zma-miRNA408a 3.9 1.02E-80
zma-miRNA408b -2.2 6.31E-04 zma-miRNA408b 3.9 5.01E-74
zma-miRNA2118a -24.4 1.65E-06 zma-miRNA397b -4.7 2.33E-94
zma-miRNA159e -23.9 2.77E-06 zma-miRNA319d 2.8 1.86E-39
zma-miRNA399a -23.9 2.77E-06 zma-miRNA319b 2.8 1.27E-35
zma-miRNA169a -4.1 8.97E-06 zma-miRNA319a 2.2 5.98E-20
zma-miRNA166n -3.3 5.31E-09 zma-miRNA319c 2.2 1.70E-16
zma-miRNA2118b -2.5 1.72E-02 zma-miRNA390b -3.9 7.90E-14
zma-miRNA166h -2.5 1.46E-18 zma-miRNA171f -10.0 1.12E-07
zma-miRNA166m -2.4 4.24E-03 zma-miRNA169b -2.7 1.34E-06
zma-miRNA166b -2.4 1.35E-23 zma-miRNA390a -3.3 1.43E-05
zma-miRNA166g -2.3 3.18E-21 zma-miRNA1432 -3.1 1.68E-05
zma-miRNA166i -2.2 4.79E-15 zma-miRNA164b 2.5 5.24E-05
zma-miRNA166d -2.2 7.66E-14 zma-miRNA164c 2.6 5.42E-05
zma-miRNA166f -2.1 2.65E-13 zma-miRNA164g 2.6 9.17E-04
zma-miRNA166a -2.1 2.27E-13 zma-miRNA172d -8.4 1.26E-03
zma-miRNA166c -2.0 2.95E-15 zma-miRNA164a 2.3 3.02E-03
zma-miRNA166e -1.9 9.86E-14 zma-miRNA167d -1.7 3.19E-03
zma-miRNA528b -1.7 1.40E-02 zma-miRNA397a -4.9 3.70E-03
zma-miRNA528a -1.5 1.49E-03 zma-miRNA164h 2.4 2.04E-02
zma-miRNA167i 1.1 2.66E-03 zma-miRNA399h -7.4 3.13E-02
zma-miRNA167j 1.3 3.96E-02 zma-miRNA164d 2.1 3.55E-02
zma-miRNA167h 1.4 4.27E-02 zma-miRNA171m -7.4 4.00E-02
zma-miRNA827 1.5 1.63E-03
zma-miRNA171h 1.5 2.78E-02
zma-miRNA167f 1.5 8.83E-03
zma-miRNA171k 1.6 2.07E-02
zma-miRNA156d 1.7 1.36E-03
zma-miRNA168a 1.7 1.07E-05
zma-miRNA156g 1.8 1.51E-12
zma-miRNA168b 1.8 7.65E-05
zma-miRNA396f 2.0 2.41E-02
zma-miRNA162 2.0 3.46E-03
zma-miRNA156e 2.1 1.46E-18
zma-miRNA156f 2.1 3.52E-04
zma-miRNA164e 2.3 1.57E-05
zma-miRNA156a 2.3 1.55E-10
zma-miRNA396g 2.3 1.34E-02
zma-miRNA156k 2.5 4.12E-09
zma-miRNA156h 2.7 9.32E-08
zma-miRNA156h 2.7 9.32E-08
zma-miRNA169r 9.2 2.47E-02
zma-miRNA395b 9.2 2.47E-02
zma-miRNA395p 9.2 2.07E-02
zma-miRNA171b 9.4 1.11E-02
zma-miRNA171e 9.8 3.46E-03
zma-miRNA399j 10.0 1.63E-03
zma-miRNA169k 10.2 8.17E-04
zma-miRNA171i 10.6 1.20E-04
zma-miRNA169m 11.0 8.17E-06
zma-miRNA172b 22.2 1.30E-05
zma-miRNA395o 22.2 1.30E-05

图3

miRNA基因的表达验证"

图4

STTM165/166的拟南芥表型 对照Col和STTM165/166转基因稳定系经0、25、50、75、100 mg L-1的HgCl2处理3 d后的表型。"

[1] Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella L, Xu G, Chao D Y, Li J, Wang P Y, Qin F, Li J, Ding Y, Shi Y, Wang Y, Yang Y, Guo Y, Zhu J K. Plant abiotic stress response and nutrient use efficiency. Sci China Life Sci, 2020, 63: 635-674.
doi: 10.1007/s11427-020-1683-x pmid: 32246404
[2] Gnamuš A, Byrne A R, Horvat M. Mercury in the soil-plant-deer- predator food chain of a temperate forest in Slovenia. Environ Sci Technol, 2000, 34: 3337-3345.
doi: 10.1021/es991419w
[3] Yin R, Feng X, Wang J, Bao Z, Yu B, Chen J. Mercury isotope variations between bioavailable mercury fractions and total mercury in mercury contaminated soil in Wanshan Mercury Mine, SW China. Chem Geol, 2013, 336: 80-86.
doi: 10.1016/j.chemgeo.2012.04.017
[4] Natasha, Shahid M, Khalid S, Bibi I, Bundschuh J, Khan Niazi N K, Dumat C. A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: ecotoxicology and health risk assessment. Sci Total Environ, 2020, 711: 134749.
[5] Patra M, Sharma A. Mercury toxicity in plants. Bot Rev, 2000, 66: 379-422.
doi: 10.1007/BF02868923
[6] Larssen T. Mercury in Chinese reservoirs. Environ Pollut, 2010, 158: 24-25.
doi: 10.1016/j.envpol.2009.07.026 pmid: 19665271
[7] Wang Y, Greger M. Clonal differences in mercury tolerance, accumulation, and distribution in willow. J Environ Qual, 2004, 33: 1779-1785.
pmid: 15356238
[8] Gupta D K, Nicoloso F T, Schetinger M R, Rossato L V, Pereira L B, Castro G Y, Srivastava S, Tripathi R D. Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater, 2009, 172: 479-484.
doi: 10.1016/j.jhazmat.2009.06.141 pmid: 19625122
[9] Natasha Shahid M Niazi N K Khalid S Murtaza B Bibi I Rashid M I. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ Poll, 2018, 234: 915-934.
doi: 10.1016/j.envpol.2017.12.019
[10] Shahid M, Dumat C, Pourrut B, Silvestre J, Laplanche C, Pinelli E. Influence of EDTA and citric acid on lead-induced oxidative stress to Vicia faba roots. J Soil Sediment, 2014, 14: 835-843.
doi: 10.1007/s11368-013-0724-0
[11] Shahid M, Ferrand E, Schreck E, Dumat C. Behavior and impact of zirconium in the soil-plant system: plant uptake and phytotoxicity. Rev Environ Contam Toxicol, 2013, 221: 107-127.
doi: 10.1007/978-1-4614-4448-0_2 pmid: 23090631
[12] Meng d, Chen J, Yang Z M. Enhancement of tolerance of Indian mustard (Brassica juncea) to mercury by carbon monoxide. J Hazard Mater, 2011, 186: 1823-1829.
doi: 10.1016/j.jhazmat.2010.12.062 pmid: 21227573
[13] Priya M, Balakrishnan V, Kiruthika Lakshmi A, Aruna R, Ravindran K C. Mercury induced oxidative stress of antioxidants in Clitoria ternatea L. Int Lett Nat Sci, 2014, 23: 1-8.
[14] Pirzadah T B, Malik B, Tahir I, Irfan Q M, Rehman R U. Characterization of mercury-induced stress biomarkers in Fagopyrumtataricum plants. Int J Phytoremed, 2018, 20: 225-236.
doi: 10.1080/15226514.2017.1374332
[15] Asgher M, Per T S, Anjum S, Khan M I R, Masood A, Verma S, Khan N A. Contribution of glutathione in heavy metal stress tolerance in plants. In: Khan M, Khan N, eds. Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress. Springer, Singapore, 2017.
[16] Gratão P L, Polle A, Lea P J, Azevedo R A. Making the life of heavy metal-stressed plants a little easier. Func Plant Biol, 2005, 32: 481-494.
doi: 10.1071/FP05016
[17] Huang Y, Chen H, Reinfelder J R, Liang X, Sun C, Liu C, Li F, Yi J. A transcriptomic (RNA-seq) analysis of genes responsive to both cadmium and arsenic stress in rice root. Sci Total Environ, 2019, 666: 445-460.
doi: 10.1016/j.scitotenv.2019.02.281
[18] Kostecka-Gugała A, Latowski D. Arsenic-induced oxidative stress in plants. In: Hasanuzzaman M, Nahar K, Fujita M, eds. Mechanisms of Arsenic Toxicity and Tolerance in Plants. Springer, Singapore, 2018.
[19] Zhao L, Meng B, Feng X. Mercury methylation in rice paddy and accumulation in rice plant: a review. Ecotox Environ Safe, 2020, 195: 110462.
[20] Cho U, Park J. Mercury-induced oxidative stress in tomato seedlings. Plant Sci, 2000, 156: 1-9.
pmid: 10908800
[21] Ansari M K A, Ahmad A, Umar S, Iqbal M. Mercury-induced changes in growth variables and antioxidative enzyme activities in Indian mustard. J Plant Interact, 2009, 4: 131-136.
doi: 10.1080/17429140802716713
[22] Tamás L, Mistrík I, Huttová J, Halusková L, Valentovicová K, Zelinová V. Role of reactive oxygen species-generating enzymes and hydrogen peroxide during cadmium, mercury and osmotic stresses in barley root tip. Planta, 2010, 231: 221-231.
doi: 10.1007/s00425-009-1042-z pmid: 19898864
[23] Tazawa M, Ohkuma E, Shibasaka M, Nakashima S. Mercurial-sensitive water transport in barley roots. J Plant Res, 1997, 110: 435-442.
doi: 10.1007/BF02506803
[24] Zhou Z S, Huang S Q, Guo K, Mehta S K, Zhang P C, Yang Z M. Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem, 2007, 101: 1-9.
doi: 10.1016/j.jinorgbio.2006.05.011
[25] Boening D W. Ecological effects, transport, and fate of mercury: a general review. Chemosphere, 2000, 40: 1335-1351.
pmid: 10789973
[26] Zhang W H, Tyerman S D. Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol, 1999, 120: 849-858.
pmid: 10398721
[27] Xylander M, Hagen C, Braune W. Mercury increases light susceptibility in the green alga Haematococcus lacustris. Bot Acta, 1996, 109: 222-228.
doi: 10.1111/j.1438-8677.1996.tb00567.x
[28] Gupta P, Jain M, Sarangthem J, Gadre R. Inhibition of 5-aminolevulinic acid dehydratase by mercury in excised greening maize leaf segments. Plant Physiol Biochem, 2013, 62: 63-69.
doi: 10.1016/j.plaphy.2012.10.008
[29] Gao J, Luo M, Peng H, Chen F, Li W. Characterization of cadmium-responsive microRNAs and their target genes in maize (Zea mays) roots. BMC Mol Biol, 2019, 20: 14.
doi: 10.1186/s12867-019-0131-1 pmid: 31046674
[30] Yu Y, Hu H, Wang C, Yang L. QTL analysis of mercury tolerance and accumulation at the seedling stage in rice (Oryza sativa L.). J Food Agric Environ, 2011, 9: 748-752.
[31] Wang C, Wang T, Wu P, Li Z, Yang L. Quantitative trait loci for mercury tolerance in rice seedlings. Rice Sci, 2013, 20: 238-242.
doi: 10.1016/S1672-6308(13)60124-9
[32] Rugh C L, Wilde H D, Stack N M, Thompson D M, Summers A O, Meagher R B. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA, 1996, 93: 3182-3187.
doi: 10.1073/pnas.93.8.3182
[33] Li R, Wu H, Ding J, Li N, Fu W, Gan L, Li Y. Transgenic merA and merB expression reduces mercury contamination in vegetables and grains grown in mercury-contaminated soil. Plant Cell Rep, 2020, 39: 1369-1380.
doi: 10.1007/s00299-020-02570-8
[34] Heaton A C, Rugh C L, Kim T, Wang N J, Meagher R B. Toward detoxifying mercury-polluted aquatic sediments with rice genetically engineered for mercury resistance. Environ Toxicol Chem, 2003, 22: 2940-2947.
pmid: 14713034
[35] Sone Y, Uraguchi S, Takanezawa Y, Nakamura R, Pan-Hou H, Kiyono M. A novel role of MerC in methylmercury transport and phytoremediation of methylmercury contamination. Biol Pharm Bull, 2017, 40: 1125-1128.
doi: 10.1248/bpb.b17-00213
[36] Chen Z, Pan Y, Wang S, Ding Y, Yang W, Zhu C. Overexpression of a protein disulfide isomerase-like protein from Methanothermobacter thermoautotrophicum enhances mercury tolerance in transgenic rice. Plant Sci, 2012, 197: 10-20.
doi: 10.1016/j.plantsci.2012.08.005
[37] Nagata T, Kiyono M, Pan-Hou H. Engineering expression of bacterial polyphosphate kinase in tobacco for mercury remediation. Appl Microb Biotechnol, 2006, 72: 777-782.
doi: 10.1007/s00253-006-0336-3
[38] Ruiz O N, Alvarez D, Torres C, Roman L, Daniell H. Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability. Plant Biotechnol J, 2011, 9: 609-617.
doi: 10.1111/j.1467-7652.2011.00616.x pmid: 21518240
[39] Wang Z Q, Li G Z, Gong Q Q, Li G X, Zheng S J. OsTCTP, encoding a translationally controlled tumor protein, plays an important role in mercury tolerance in rice. BMC Plant Biol, 2015, 15: 123.
doi: 10.1186/s12870-015-0500-y pmid: 25990386
[40] Zhao Z, Fu Z, Lin Y, Chen H, Liu K, Xing X, Liu Z, Li W, Tang J. Genome-wide association analysis identifies loci governing mercury accumulation in maize. Sci Rep, 2017, 7: 247.
doi: 10.1038/s41598-017-00189-6 pmid: 28325924
[41] Fu Z, Li W, Zhang Q, Wang L, Zhang X, Song G, Fu Z, Ding D, Liu Z, Tang J. Quantitative trait loci for mercury accumulation in maize (Zea mays L.) identified using a RIL population. PLoS One, 2014, 9: e107243.
[42] Yan J, Gu Y, Jia X, Kang W, Pan S, Tang X, Chen X, Tang G. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell, 2012, 24: 415-427.
doi: 10.1105/tpc.111.094144
[43] Song X, Li Y, Cao X, Qi Y. MicroRNAs and their regulatory roles in plant-environment interactions. Annu Rev Plant Biol, 2019, 70: 489-525.
doi: 10.1146/annurev-arplant-050718-100334 pmid: 30848930
[44] Ma Z, Axtell M J. Long-range genomic enrichment, sequencing, and assembly to determine unknown sequences flanking a known microRNA. PloS One, 2013, 8: e83721.
[45] Wang T, Gao X, Chen S, Li D, Chen S, Xie M, Xu Z, Yang G. Genome-wide identification and expression analysis of ethylene responsive factor family transcription factors in Juglans regia. Peer J, 2021, 9: e12429.
[46] Yan J, Gu Y, Jia X, Kang W, Pan S, Tang X, Chen X, Tang G. Effective small RNA destruction by the expression of a short tandem target mimic in Arabidopsis. Plant Cell, 2012, 24: 415-427.
doi: 10.1105/tpc.111.094144
[47] Yuan W, Suo J, Shi B, Zhou C, Bai B, Bian H, Zhu M, Han N. The barley miR393 has multiple roles in regulation of seedling growth, stomatal density, and drought stress tolerance. Plant Physiol Biochem, 2019, 142: 303-311.
doi: 10.1016/j.plaphy.2019.07.021
[48] Zhou M, Zheng S, Liu R, Lu L, Zhang C, Zhang L, Yant L, Wu Y. The genome-wide impact of cadmium on microRNA and mRNA expression in contrasting Cd responsive wheat genotypes. BMC Genomics, 2019, 20: 615.
doi: 10.1186/s12864-019-5939-z pmid: 31357934
[49] Gao J, Luo M, Peng H, Chen F, Li W. Characterization of cadmium-responsive microRNAs and their target genes in maize (Zea mays) roots. BMC Mol Biol, 2019, 20: 14.
doi: 10.1186/s12867-019-0131-1 pmid: 31046674
[50] Zhang L, Ding H, Jiang H, Wang H, Chen K, Duan J, Feng S, Wu G. Regulation of cadmium tolerance and accumulation by miR156 in Arabidopsis. Chemosphere, 2020, 242: 125168.
[51] Meng J G, Zhang X D, Tan S K, Zhao K X, Yang Z M. Genome-wide identification of Cd-responsive NRAMP transporter genes and analyzing expression of NRAMP 1 mediated by miR167 in Brassica napus. Biometals, 2017, 30: 917-931.
doi: 10.1007/s10534-017-0057-3 pmid: 28993932
[52] Feyissa B A, Arshad M, Gruber M Y, Kohalmi S E, Hannoufa A. The interplay between miR156/SPL13 and DFR/WD40-1 regulate drought tolerance in alfalfa. BMC Plant Biol, 2019, 19: 434.
doi: 10.1186/s12870-019-2059-5 pmid: 31638916
[53] Moradi K, Khalili F. Assessment of pattern expression of miR172 and miR169 in response to drought stress in Echinacea purpurea L. Biocat Agric Biotech, 2018, 16: 507-512.
doi: 10.1016/j.bcab.2018.08.022
[54] Luan M, Xu M, Lu Y, Zhang Q, Zhang L, Zhang C, Fan Y, Lang Z, Wang L. Family-wide survey of miR169s and NF-YAs and their expression profiles response to abiotic stress in maize roots. PLoS One, 2014, 9: e91369.
[55] Cole C, Sobala A, Lu C, Thatcher S R, Bowman A, Brown J W, Green P J, Barton G J, Hutvagner G. Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA (New York), 2009, 15: 2147-2160.
[56] Sakaguchi J, Watanabe Y. miR165/166 and the development of land plants. Dev Growth Differ, 2012, 54: 93-99.
doi: 10.1111/j.1440-169X.2011.01318.x
[57] Ding Y, Gong S, Wang Y, Wang F, Bao H, Sun J, Cai C, Yi K, Chen Z, Zhu C. MicroRNA166 modulates cadmium tolerance and accumulation in rice. Plant Physiol, 2018, 177: 1691-1703.
doi: 10.1104/pp.18.00485 pmid: 29925586
[58] McConnell J R, Emery J, Eshed Y, Bao N, Bowman J, Barton M K. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature, 2001, 411: 709-713.
doi: 10.1038/35079635
[59] Ursache R, Miyashima S, Chen Q, Vatén A, Nakajima K, Carlsbecker A, Zhao Y, Helariutta Y, Dettmer J. Tryptophan-dependent auxin biosynthesis is required for HD-ZIP III-mediated xylem patterning. Development, 2014, 141: 1250-1259.
doi: 10.1242/dev.103473 pmid: 24595288
[60] Singh A, Roy S, Singh S, Das S S, Gautam V, Yadav S, Kumar A, Singh A, Samantha S, Sarkar A K. Phytohormonal crosstalk modulates the expression of miR166/165s, target Class III HD-ZIPs, and KANADI genes during root growth in Arabidopsis thaliana. Sci Rep, 2017, 7: 3408.
doi: 10.1038/s41598-017-03632-w
[61] Hashimoto K, Miyashima S, Sato-Nara K, Yamada T, Nakajima K. Functionally diversified members of the MIR165/6 gene family regulate ovule morphogenesis in Arabidopsis thaliana. Plant Cell Physiol, 2018, 59: 1017-1026.
doi: 10.1093/pcp/pcy042 pmid: 29462472
[62] Ramachandran P, Wang G, Augstein F, de Vries J, Carlsbecker A. Continuous root xylem formation and vascular acclimation to water deficit involves endodermal ABA signalling via miR165. Development, 2018, 145: dev159202.
[63] Tang G, Yan J, Gu Y, Qiao M, Fan R, Mao Y, Tang X. Construction of short tandem target mimic (STTM) to block the functions of plant and animal microRNAs. Methods, 2012, 58: 118-125.
doi: 10.1016/j.ymeth.2012.10.006 pmid: 23098881
[64] Zhang M, An P, Li H, Wang X, Zhou J, Dong P, Zhao Y, Wang Q, Li C. The miRNA-mediated post-transcriptional regulation of maize in response to high temperature. Int J Mol Sci, 2019, 20: 1754.
doi: 10.3390/ijms20071754
[65] Rhoades M W, Reinhart B J, Lim L P, Burge C B, Bartel B, Bartel D P. Prediction of plant microRNA targets. Cell, 2002, 110: 513-520.
pmid: 12202040
[66] Valiollahi E, Farsi M, Kakhki A M. Sly-miR166 and Sly-miR319 are components of the cold stress response in Solanum lycopersicum. Plant Biotech Rep, 2014, 8: 349-356.
doi: 10.1007/s11816-014-0326-3
[67] Kitazumi A, Kawahara Y, Onda T S, De Koeyer D, de los Reyes B G. Implications of miR166 and miR159 induction to the basal response mechanisms of an andigena potato (Solanum tuberosum subsp. andigena) to salinity stress, predicted from network models in Arabidopsis. Genome, 2015, 58: 13-24.
[68] Zhang J, Zhang H, Srivastava A K, Pan Y, Bai J, Fang J, Shi H, Zhu J K. Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant Physiol, 2018, 176: 2082-2094.
doi: 10.1104/pp.17.01432 pmid: 29367235
[69] Peng T, Qiao M, Liu H, Teotia S, Zhang Z, Zhao Y, Wang B, Zhao D, Shi L, Zhang C, Le B, Rogers K, Gunasekara C, Duan H, Gu Y, Tian L, Nie J, Qi J, Meng F, Huang L, Chen Q, Wang Z, Tang J, Tang X, Lan T, Chen X, Wei H, Zhao Q, Tang G. A resource for inactivation of microRNAs using Short Tandem Target Mimic technology in model and crop plants. Mol Plant, 2018, 11: 1400-1417.
doi: S1674-2052(18)30275-2 pmid: 30243763
[70] Kong Y, Elling A A, Chen B, Deng X. Differential expression of microRNAs in maize inbred and hybrid lines during salt and drought stress. Am J Plant Sci, 2010, 1: 69-76.
doi: 10.4236/ajps.2010.12009
[71] Sasaki A, Yamaji N, Ma J F. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J Exp Bot, 2014, 65: 6013-6021.
doi: 10.1093/jxb/eru340 pmid: 25151617
[72] Li X, Ma S, Yi C. Pseudouridine: the fifth RNA nucleotide with renewed interests. Curr Opin Chem Biol, 2016, 33: 108-116.
doi: 10.1016/j.cbpa.2016.06.014 pmid: 27348156
[73] Thieme C J, Rojas-Triana M, Stecyk E, Schudoma C, Zhang W, Yang L, Miñambres M, Walther D, Schulze W X, Paz-Ares J, Scheible W R, Kragler F. Endogenous Arabidopsis messenger RNAs transported to distant tissues. Nat Plants, 2015, 1: 15025.
doi: 10.1038/nplants.2015.25
[1] 孙智超, 张吉旺. 弱光胁迫影响玉米产量形成的生理机制及调控效应[J]. 作物学报, 2023, 49(1): 12-23.
[2] 陈冰洁, 张富粮, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林. 不同形态氮肥下丛枝菌根真菌对玉米灌浆期生理特性及产量和品质的影响[J]. 作物学报, 2023, 49(1): 249-261.
[3] 张静, 王洪章, 任昊, 殷复伟, 吴红燕, 赵斌, 张吉旺, 任佰朝, 戴爱斌, 刘鹏. 夏玉米根系构型与抗根倒性能间的关系[J]. 作物学报, 2023, 49(1): 188-199.
[4] 王锐璞, 董振营, 高悦欣, 鲍建喜, 殷芳冰, 李金萍, 龙艳, 万向元. 玉米籽粒淀粉含量全基因组关联分析和候选基因预测[J]. 作物学报, 2023, 49(1): 140-152.
[5] 商蒙非, 石晓宇, 赵炯超, 李硕, 褚庆全. 气候变化背景下中国不同区域玉米生育期高温胁迫时空变化特征[J]. 作物学报, 2023, 49(1): 167-176.
[6] 段灿星, 崔丽娜, 夏玉生, 董怀玉, 杨知还, 胡清玉, 孙素丽, 李晓, 朱振东, 王晓鸣. 玉米种质资源对拟轮枝镰孢与禾谷镰孢穗腐病的抗性精准鉴定与分析[J]. 作物学报, 2022, 48(9): 2155-2167.
[7] 张振博, 屈馨月, 于宁宁, 任佰朝, 刘鹏, 赵斌, 张吉旺. 施氮量对夏玉米籽粒灌浆特性和内源激素作用的影响[J]. 作物学报, 2022, 48(9): 2366-2376.
[8] 郭瑶, 柴强, 殷文, 范虹. 玉米密植光合生理机制及应用途径研究进展[J]. 作物学报, 2022, 48(8): 1871-1883.
[9] 王天波, 赫文学, 张峻铭, 吕伟增, 梁雨欢, 卢洋, 王雨露, 谷丰序, 宋词, 陈军营. 人工老化玉米种胚ROS产生及ATP合成酶亚基mRNA完整性研究[J]. 作物学报, 2022, 48(8): 1996-2006.
[10] 裴丽珍, 陈远学, 张雯雯, 肖华, 张森, 周元, 徐开未. 有机物料还田对夏玉米穗位叶光合性能及氮代谢的影响[J]. 作物学报, 2022, 48(8): 2115-2124.
[11] 杨迎霞, 张冠, 王梦梦, 陆国清, 王倩, 陈锐. 基于高通量测序技术的转基因玉米GM11061分子特征研究[J]. 作物学报, 2022, 48(7): 1843-1850.
[12] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[13] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[14] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[15] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .