欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (1): 24-35.doi: 10.3724/SP.J.1006.2023.14233

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

大豆GmPIN2家族基因调控根系发育功能初探

梁政1,3(), 柯美玉1,3, 陈志威2, 陈栩3,*(), 高震3,*()   

  1. 1福建农林大学生命科学学院, 福建福州 350002
    2福建农林大学资源与环境学院, 福建福州 350002
    3福建农林大学海峡联合研究院园艺植物生物学及代谢组学研究中心, 福建福州 350002
  • 收稿日期:2021-12-08 接受日期:2022-05-05 出版日期:2023-01-12 网络出版日期:2022-05-13
  • 通讯作者: 陈栩,高震
  • 作者简介:E-mail: 1879949813@qq.com
  • 基金资助:
    福建农林大学校杰青项目(XJQ201921)

Function of GmPIN2 family gene in regulating root development in soybean

LIANG Zheng1,3(), KE Mei-Yu1,3, CHEN Zhi-Wei2, CHEN Xu3,*(), GAO Zhen3,*()   

  1. 1College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    2College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
    3Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
  • Received:2021-12-08 Accepted:2022-05-05 Published:2023-01-12 Published online:2022-05-13
  • Contact: CHEN Xu,GAO Zhen
  • Supported by:
    Distinguished Young Scholar Program of Fujian Agriculture and Forestry University(XJQ201921)

摘要:

生长素作为重要的植物激素之一。生长素的转运参与了植物各组织器官发育调控。在拟南芥中, 生长素转运调控主要由PIN家族蛋白所介导, 其中拟南芥AtPIN2主要通过介导生长素向基运输调控根的向重力性。大豆中PIN2家族蛋白及其功能研究尚未有报道。本研究通过构建系统进化树和蛋白质结构域分析发现, 大豆GmPIN2aGmPIN2bAtPIN2的同源基因。组织表达分析研究发现, GmPIN2aGmPIN2b在根、根瘤原基和根瘤等组织中高表达。GmPIN2aGmPIN2b在根部主要表达在根尖表皮和外部皮层细胞, 在根瘤中GmPIN2aGmPIN2b均定位于根瘤基部维管束区, 此外, GmPIN2a定位在根瘤顶部表皮及外皮层。利用基因编辑技术CRISPR/Cas9 (Clustered Regularly Interspersed Short Palindromic Repeats/CRISPR associated 9)同时敲除GmPIN2aGmPIN2b后发现, Gmpin2ab突变体根具有明显的重力缺失表型。与野生型相比, Gmpin2ab35S::GmPIN2b的根面积和侧根长度显著降低, Gmpin2ab侧根夹角显著上升, 而35S::GmPIN2b侧根夹角不变。综上所述, GmPIN2aGmPIN2b通过介导生长素向基运输对大豆根型调控具有重要作用。本研究为深入探究大豆PIN蛋白介导生长素极性运输在根形态建成的作用机制奠定了一定研究基础。

关键词: 大豆, 生长素, PIN蛋白,

Abstract:

Auxin is one of the important plant hormones. Auxin transport is involved in the regulation of plant tissue and organ development. In Arabidopsis thaliana, auxin transport is mainly regulated by PIN family proteins, among which AtPIN2 controls auxin basipetal transport and regulates root gravitation in Arabidopsis. However, GmPIN2 family proteins and their functions are still largely unknown in soybean. In this study, we identified two AtPIN2 homologous genes of GmPIN2a and GmPIN2b through phylogenetic and protein domain analysis. The relative expression level showed that GmPIN2a and GmPIN2b were highly expressed in root and nodule. Both genes were highly expressed in root epidermis and cortex, and the vascular bundles of the root nodule. Only GmPIN2a expressed in the epidermis and outer cortex at the tip of the root nodule. Furthermore, Gmpin2ab mutants were generated by CRISPR/Cas9 (Clustered Regularly Interspersed Short Palindromic Repeats/CRISPR Associated 9) gene editing technology. Gmpin2ab mutants had a significant loss of root gravitropism. Moreover, the loss of Gmpin2 resulted in a significant decrease of root area and lateral root length, while the lateral root angle of Gmpin2ab significantly increased. Overexpression of GmPIN2b also resulted in a decrease in root area and lateral root length, but the lateral root angle unchanged. In conclusion, GmPIN2a and GmPIN2b play important roles in regulation of soybean root development via mediating auxin basipetal transport. This study laid a foundation for further analysis of the function and mechanism of GmPIN proteins in soybean root morphogenesis.

Key words: Glycine max (soybean), auxin, PIN protein, root

表1

引物序列"

引物用途
Purpose of primers
引物名称
Primer name
引物序列
Primer sequence (5°-3°)
启动子序列扩增引物
Promoter amplification primers
pGmPIN2a-F AGATGGTTAGAGAGGCATGAGCCACAATGGAAC
pGmPIN2a-R AGCTCTTATACTCGACATGGTTCATGCGGG
pGmPIN2b-F AGATGGTTAGAGAGGTGATGTTCTTGGCCACTG
pGmPIN2b-R AGCTCTTATACTCGAGATCATGGTTAATGCAGGG
定量PCR引物序列
RT-PCR primers
GmPIN2a-F CCACACGAAACTGTTGCCTC
GmPIN2a-R AAGCTCCCTCTGATCTCCGT
GmPIN2b-F GGGAATTTGAGGCATGCAGT
GmPIN2b-R CAGGCTCCCTCTCTCCACTC
GmActin-11-F GAGCTATGAATTGCCTGATGG
GmActin-11-R CGTTTCATGAATTCCAGTAGC
sgRNA序列 sgRNA sequence sgRNA-GmPIN2ab TGGAACACCTTCACAAAACATGG
验证编辑载体的引物序列
Primer sequence for verifying the gene editing vectors
pCas9-F GCCAAGAGCGAGCAGGAAAT
pCas9-R GGTGGATGATATTCTCGGCCT

图1

大豆GmPIN和拟南芥AtPIN蛋白家族系统进化树 红色框表示大豆GmPIN2和拟南芥AtPIN2。"

图2

拟南芥、大豆、蒺藜苜蓿、百脉根、水稻和玉米PIN2蛋白家族生物信息学分析 A: 拟南芥、大豆、蒺藜苜蓿、百脉根、水稻和玉米PIN2蛋白家族基因结构。B: 拟南芥、大豆、蒺藜苜蓿、百脉根、水稻和玉米PIN2蛋白家族基因启动子区域分析。C: 拟南芥、大豆、蒺藜苜蓿、百脉根、水稻和玉米PIN2蛋白家族蛋白序列比对。AT5G57090: AtPIN2; Glyma.13G101900: GmPIN2a; Glyma.17G057300: GmPIN2b; LOC_Os06g44970: OsPIN2; Medtr4g127100: MtPIN2a; Medtr4g127090: MtPIN2b; Lj4g3v2139970: LjPIN2; Zm00001d046893_P001: ZmPIN2。"

表2

拟南芥、大豆、蒺藜苜蓿、百脉根、水稻和玉米PIN2蛋白家族同源比对"

Seq-> AtPIN2 GmPIN2a GmPIN2b OsPIN2 MtPIN2a MtPIN2b LjPIN2 ZmPIN2
AtPIN2 100.0 76.5 77.2 61.7 75.0 63.7 76.5 61.0
GmPIN2a 76.5 100.0 96.8 63.9 85.1 68.3 90.7 61.9
GmPIN2b 77.2 96.8 100.0 63.5 85.5 68.8 90.8 61.9
OsPIN2 61.7 63.9 63.5 100.0 63.8 53.8 63.4 87.3
MtPIN2a 75.0 85.1 85.5 63.8 100.0 75.4 85.0 63.6
MtPIN2b 63.7 68.3 68.8 53.8 75.4 100.0 68.8 53.4
LjPIN2 76.5 90.7 90.8 63.4 85.0 68.8 100.0 61.7
ZmPIN2 61.0 61.9 61.9 87.3 63.6 53.4 61.7 100.0

图3

GmPIN2a和GmPIN2b基因组织表达模式分析和组织化学定位 A: GmPIN2a和GmPIN2b基因组织表达模式; B: GmPIN2a和GmPIN2b在根和根瘤中的组织化学定位, 标尺为100 μm。"

图4

Gmpin2ab-#1和Gmpin2ab-#2纯合突变体构建 A: GmPIN2a和GmPIN2b基因结构及sgRNA靶向位点示意图。黑色箭头代表sgRNA位置, 黑色框代表外显子, 红色框代表5′UTR和3′UTR, 黑色线条代表内含子。B: Gmpin2ab-L1和Gmpin2ab-L2中基因编辑载体的验证。白色数字从左往右分别表示: 野生型、35S::GmPIN2b、Gmpin2ab-L1和Gmpin2ab-L2。C: 野生型、35S::GmPIN2b、Gmpin2ab-L1和Gmpin2ab-L2中大豆GmPIN2家族表达量检测。P值由假设方差相等的双尾t检验确定, **表示Gmpin2ab-L1、Gmpin2ab-L2与野生型在P < 0.01水平差异显著; ***表示35S::GmPIN2b与野生型在P < 0.001水平差异显著; ****表示Gmpin2ab-L1、Gmpin2ab-L2与野生型在P < 0.0001水平差异显著。ns: 没有显著差异。D: Gmpin2ab-#1和Gmpin2ab-#2纯合突变体序列对比。绿色字母代表sgRNA靶向序列, 红色字母, 红色短线代表增添或缺失的密码子。E: 野生型, Gmpin2ab-L1和Gmpin2ab-L2纯合突变体蛋白序列。AA代表氨基酸(amino acid), 黑色箭头表示移码突变起始位点, 紫色框表示移码突变蛋白序列, 数字代表移码的氨基酸数量。"

图5

野生型、Gmpin2ab-L1、Gmpin2ab-L2和35S::GmPIN2b植株表型 A: Gmpin2ab-L1和Gmpin2ab-L2向重力性缺失表型。红色框表示突变体向地上部分生长的根。B: 生长7 d的野生型、Gmpin2ab-L1、Gmpin2ab-L2和35S::GmPIN2b的扫描图, 比例尺为1 cm。P值由假设方差相等的双尾t检验确定, ****表示P < 0.0001水平差异显著。ns: 没有显著差异, 样本数为7。"

[1] Peer W A, Blakeslee J J, Yang H, Murphy A S. Seven things we think we know about auxin transport. Mol Plant, 2011, 4: 487-504.
doi: 10.1093/mp/ssr034 pmid: 21505044
[2] Friml J, Palme K. Polar auxin transport—old questions and new concepts? Plant Mol Biol, 2002, 49: 273-284.
doi: 10.1023/A:1015248926412
[3] Ljung K, Ostin A, Lioussanne L, Sandberg G. Developmental regulation of indole-3-acetic acid turnover in Scots pine seedlings. Plant Physiol, 2001, 125: 464-475.
pmid: 11154354
[4] Balzan S, Johal G S, Carraro N. The role of auxin transporters in monocots development. Front Plant Sci, 2014, 5: 393.
doi: 10.3389/fpls.2014.00393 pmid: 25177324
[5] Krecek P, Skupa P, Libus J, Naramoto S, Tejos R, Friml J, Zazímalová E. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol, 2009, 10: 249.
doi: 10.1186/gb-2009-10-12-249 pmid: 20053306
[6] Bohn-Courseau I. Auxin: a major regulator of organogenesis. C R Biol, 2010, 333: 290-296.
doi: 10.1016/j.crvi.2010.01.004
[7] Saini S, Sharma I, Kaur N, Pati P K. Auxin: a master regulator in plant root development. Plant Cell Rep, 2013, 32: 741-757.
doi: 10.1007/s00299-013-1430-5 pmid: 23553556
[8] Overvoorde P, Fukaki H, Beeckman T. Auxin control of root development. Cold Spring Harb Perspect Biol, 2010, 2: a001537.
[9] Olatunji D, Geelen D, Verstraeten I. Control of endogenous auxin levels in plant root development. Int J Mol Sci, 2017, 18: 2587.
doi: 10.3390/ijms18122587
[10] Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 2005, 433: 39-44.
doi: 10.1038/nature03184
[11] Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 2003, 115: 591-602.
pmid: 14651850
[12] Wang H Z, Yang K Z, Zou J J, Zhu L L, Xie Z D, Morita M T, Tasaka M, Friml J, Grotewold E, Beeckman T, Vanneste S, Sack F, Le J. Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. Nat Commun, 2015, 6: 8822.
doi: 10.1038/ncomms9822
[13] Gao Z, Chen Z, Cui Y, Ke M, Xu H, Xu Q, Chen J, Li Y, Huang L, Zhao H, Huang D, Mai S, Xu T, Liu X, Li S, Guan Y, Yang W, Friml J, Petrášek J, Zhang J, Chen X. GmPIN-dependent polar auxin transport is involved in soybean nodule development. Plant Cell, 2021, 33: 2981-3003.
doi: 10.1093/plcell/koab183
[14] Sańko-Sawczenko I, Łotocka B, Czarnocka W. Expression analysis of PIN genes in root tips and nodules of Medicago truncatula. Int J Mol Sci, 2016, 17: 1197.
doi: 10.3390/ijms17081197
[15] Kohlen W, Ng J L P, Deinum E E, Mathesius U. Auxin transport, metabolism, and signaling during nodule initiation: indeterminate and determinate nodules. J Exp Bot, 2018, 69: 229-244.
doi: 10.1093/jxb/erx308
[16] Plet J, Wasson A, Ariel F, Le Signor C, Baker D, Mathesius U, Crespi M, Frugier F. MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J, 2011, 65: 622-633.
doi: 10.1111/j.1365-313X.2010.04447.x
[17] Huo X, Schnabel E, Hughes K, Frugoli J. RNAi phenotypes and the localization of a protein::GUS fusion imply a role for Medicago truncatula PIN genes in nodulation. J Plant Growth Regul, 2006, 25: 156-165.
doi: 10.1007/s00344-005-0106-y
[18] Sańko-Sawczenko I, Dmitruk D, Łotocka B, Różańska E, Czarnocka W. Expression analysis of PIN genes in root tips and nodules of Lotus japonicus. Int J Mol Sci, 2019, 20: 235.
doi: 10.3390/ijms20020235
[19] Xu M, Zhu L, Shou H, Wu P. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol, 2005, 46: 1674-1681.
doi: 10.1093/pcp/pci183
[20] Li Y, Zhu J, Wu L, Shao Y, Wu Y, Mao C. Functional divergence of PIN1 paralogous genes in rice. Plant Cell Physiol, 2019, 60: 2720-2732.
doi: 10.1093/pcp/pcz159
[21] Li Z, Zhang X, Zhao Y, Li Y, Zhang G, Peng Z, Zhang J. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height. Plant Biotechnol J, 2018, 16: 86-99.
doi: 10.1111/pbi.12751 pmid: 28499064
[22] 郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统. 遗传, 2007, 29: 1023-1026.
Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas, 2007, 29: 1023-1026. (in Chinese with English abstract)
[23] Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190
[24] Xie X, Ma X, Zhu Q, Zeng D, Li G, Liu Y G. CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Mol Plant, 2017, 10: 1246-1249.
doi: 10.1016/j.molp.2017.06.004
[25] Bai M, Yuan J, Kuang H, Gong P, Li S, Zhang Z, Liu B, Sun J, Yang M, Yang L, Wang D, Song S, Guan Y. Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soya bean. Plant Biotechnol J, 2020, 18: 721-731.
doi: 10.1111/pbi.13239
[26] Luschnig C, Gaxiola R A, Grisafi P, Fink G R. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev, 1998, 12: 2175-2187.
doi: 10.1101/gad.12.14.2175
[27] Motte H, Vanneste S, Beeckman T. Molecular and environmental regulation of root development. Annu Rev Plant Biol, 2019, 70: 465-488.
doi: 10.1146/annurev-arplant-050718-100423 pmid: 30822115
[28] Raven J A, Edwards D. Roots: evolutionary origins and biogeochemical significance. J Exp Bot, 2001, 52: 381-401.
pmid: 11326045
[29] Pires N D, Dolan L. Morphological evolution in land plants: new designs with old genes. Philosoph Trans RSB, 2012, 367: 508-518.
[30] Dubrovsky J G, Sauer M, Napsucialy-Mendivil S, Ivanchenko M G, Friml J, Shishkova S, Celenza J, Benková E. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci USA, 2008, 105: 8790-8794.
doi: 10.1073/pnas.0712307105
[31] Krupinski P, Jönsson H. Modeling auxin-regulated development. Cold Spring Harb Perspect Biol, 2010, 2: a001560.
[32] Qin H, He L, Huang R. The coordination of ethylene and other hormones in primary root development. Front Plant Sci, 2019, 10: 874.
doi: 10.3389/fpls.2019.00874 pmid: 31354757
[33] Du Y, Scheres B. Lateral root formation and the multiple roles of auxin. J Exp Bot, 2018, 69: 155-167.
doi: 10.1093/jxb/erx223 pmid: 28992266
[34] Retzer K, Weckwerth W. The TOR-auxin connection upstream of root hair growth. Plants, 2021, 10: 150.
doi: 10.3390/plants10010150
[35] Konstantinova N, Korbei B, Luschnig C. Auxin and root gravitropism: addressing basic cellular processes by exploiting a defined growth response. Int J Mol Sci, 2021, 22: 2749.
doi: 10.3390/ijms22052749
[36] Ng J L P, Welvaert A, Wen J, Chen R, Mathesius U. The Medicago truncatula PIN2 auxin transporter mediates basipetal auxin transport but is not necessary for nodulation. J Exp Bot, 2020, 71: 1562-1573.
doi: 10.1093/jxb/erz510
[37] Inahashi H, Shelley I J, Yamauchi T, Nishiuchi S, Takahashi- Nosaka M, Matsunami M, Ogawa A, Noda Y, Inukai Y. OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice. Physiol Plant, 2018, 164: 216-225.
doi: 10.1111/ppl.12707 pmid: 29446441
[38] Chen Y, Fan X, Song W, Zhang Y, Xu G. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol J, 2012, 10: 139-149.
doi: 10.1111/j.1467-7652.2011.00637.x
[39] Lin D L, Yao H Y, Jia L H, Tan J F, Xu Z H, Zheng W M, Xue H W. Phospholipase D-derived phosphatidic acid promotes root hair development under phosphorus deficiency by suppressing vacuolar degradation of PIN-FORMED2. New Phytol, 2020, 226: 142-155.
doi: 10.1111/nph.16330
[40] Vega A, Fredes I, O’Brien J, Shen Z, Ötvös K, Abualia R, Benkova E, Briggs S P, Gutiérrez R A. Nitrate triggered phosphoproteome changes and a PIN2 phosphosite modulating root system architecture. EMBO Rep, 2021, 22: e51813.
[41] Chai S, Li E, Zhang Y, Li S. NRT1.1-Mediated nitrate suppression of root coiling relies on PIN2- and AUX1-mediated auxin transport. Front Plant Sci, 2020, 11: 671.
doi: 10.3389/fpls.2020.00671 pmid: 32582237
[42] Zou N, Li B, Chen H, Su Y, Kronzucker H J, Xiong L, Baluška F, Shi W. GSA-1/ARG1 protects root gravitropism in Arabidopsis under ammonium stress. New Phytol, 2013, 200: 97-111.
doi: 10.1111/nph.12365 pmid: 23782229
[1] 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320.
[2] 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569.
[3] 王慧, 吴志医, 张玉娥, 喻德跃. 应用RNA重测序分析低硫条件下大豆基因表达谱[J]. 作物学报, 2023, 49(1): 105-118.
[4] 白智媛, 陈向阳, 郑阿香, 张力, 邹军, 张大同, 陈阜, 尹小刚. 1991—2019年美国大豆区试品种(系)农艺和品质性状时空变化特征[J]. 作物学报, 2023, 49(1): 177-187.
[5] 陈冰洁, 张富粮, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林. 不同形态氮肥下丛枝菌根真菌对玉米灌浆期生理特性及产量和品质的影响[J]. 作物学报, 2023, 49(1): 249-261.
[6] 张静, 王洪章, 任昊, 殷复伟, 吴红燕, 赵斌, 张吉旺, 任佰朝, 戴爱斌, 刘鹏. 夏玉米根系构型与抗根倒性能间的关系[J]. 作物学报, 2023, 49(1): 188-199.
[7] 齐阳阳, 窦汝娜, 赵彩桐, 张帜, 李文滨, 姜振峰. 大豆生长节间响应温度和外源GA诱导的赤霉素途径关键基因分析[J]. 作物学报, 2023, 49(1): 62-72.
[8] 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179.
[9] 林志敏, 秦贤金, 吴红淼, 庞孜钦, 林文雄. 不同太子参品种对连作胁迫差异响应及种内间作效应分析[J]. 作物学报, 2022, 48(9): 2351-2365.
[10] 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因[J]. 作物学报, 2022, 48(8): 1884-1893.
[11] 怀园园, 张晟瑞, 武婷婷, 李静, 孙石, 韩天富, 李斌, 孙君明. 大豆主要营养品质性状相关分子标记的育种应用潜力评价[J]. 作物学报, 2022, 48(8): 1957-1976.
[12] 解黎明, 姜仲禹, 柳洪鹃, 韩俊杰, 刘本奎, 王晓陆, 史春余. 甘薯发根分枝期适宜土壤水分促进块根糖供应和块根形成的研究[J]. 作物学报, 2022, 48(8): 2080-2087.
[13] 柯丹霞, 霍娅娅, 刘怡, 李锦颖, 刘晓雪. 大豆TGA转录因子基因GmTGA26在盐胁迫中的功能分析[J]. 作物学报, 2022, 48(7): 1697-1708.
[14] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[15] 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[2] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[3] 秦恩华;杨兰芳. 烤烟苗期含硒量和根际硒形态的研究[J]. 作物学报, 2008, 34(03): 506 -512 .
[4] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .
[5] 王成章;韩锦峰;史莹华;李振田;李德锋. 不同秋眠类型苜蓿品种的生产性能研究[J]. 作物学报, 2008, 34(01): 133 -141 .
[6] 崔秀辉. 化学杂交剂SQ-1诱导糜子雄性不育效果研究[J]. 作物学报, 2008, 34(01): 106 -110 .
[7] 王春梅;冯祎高;庄丽芳;曹亚萍;亓增军;别同德;曹爱忠;陈佩度. 普通小麦近缘物种黑麦1R、簇毛麦1V及鹅观草1Rk#1染色体特异分子标记的筛选[J]. 作物学报, 2007, 33(11): 1741 -1747 .
[8] 邵瑞鑫;上官周平. 外源一氧化氮供体SNP对受旱小麦光合色素含量和PS II光能利用能力的影响[J]. 作物学报, 2008, 34(05): 818 -822 .
[9] 赵秀琴;朱苓华;徐建龙;黎志康. 灌溉与自然降雨条件下水稻高代回交导入系产量QTL的定位[J]. 作物学报, 2007, 33(09): 1536 -1542 .
[10] 杨文雄;杨芳萍;梁丹;何中虎;尚勋武;夏先春. 中国小麦育成品种和农家种中慢锈基因Lr34/Yr18的分子检测[J]. 作物学报, 2008, 34(07): 1109 -1113 .