作物学报 ›› 2023, Vol. 49 ›› Issue (1): 24-35.doi: 10.3724/SP.J.1006.2023.14233
梁政1,3(), 柯美玉1,3, 陈志威2, 陈栩3,*(), 高震3,*()
LIANG Zheng1,3(), KE Mei-Yu1,3, CHEN Zhi-Wei2, CHEN Xu3,*(), GAO Zhen3,*()
摘要:
生长素作为重要的植物激素之一。生长素的转运参与了植物各组织器官发育调控。在拟南芥中, 生长素转运调控主要由PIN家族蛋白所介导, 其中拟南芥AtPIN2主要通过介导生长素向基运输调控根的向重力性。大豆中PIN2家族蛋白及其功能研究尚未有报道。本研究通过构建系统进化树和蛋白质结构域分析发现, 大豆GmPIN2a和GmPIN2b为AtPIN2的同源基因。组织表达分析研究发现, GmPIN2a和GmPIN2b在根、根瘤原基和根瘤等组织中高表达。GmPIN2a和GmPIN2b在根部主要表达在根尖表皮和外部皮层细胞, 在根瘤中GmPIN2a、GmPIN2b均定位于根瘤基部维管束区, 此外, GmPIN2a定位在根瘤顶部表皮及外皮层。利用基因编辑技术CRISPR/Cas9 (Clustered Regularly Interspersed Short Palindromic Repeats/CRISPR associated 9)同时敲除GmPIN2a和GmPIN2b后发现, Gmpin2ab突变体根具有明显的重力缺失表型。与野生型相比, Gmpin2ab和35S::GmPIN2b的根面积和侧根长度显著降低, Gmpin2ab侧根夹角显著上升, 而35S::GmPIN2b侧根夹角不变。综上所述, GmPIN2a和GmPIN2b通过介导生长素向基运输对大豆根型调控具有重要作用。本研究为深入探究大豆PIN蛋白介导生长素极性运输在根形态建成的作用机制奠定了一定研究基础。
[1] |
Peer W A, Blakeslee J J, Yang H, Murphy A S. Seven things we think we know about auxin transport. Mol Plant, 2011, 4: 487-504.
doi: 10.1093/mp/ssr034 pmid: 21505044 |
[2] |
Friml J, Palme K. Polar auxin transport—old questions and new concepts? Plant Mol Biol, 2002, 49: 273-284.
doi: 10.1023/A:1015248926412 |
[3] |
Ljung K, Ostin A, Lioussanne L, Sandberg G. Developmental regulation of indole-3-acetic acid turnover in Scots pine seedlings. Plant Physiol, 2001, 125: 464-475.
pmid: 11154354 |
[4] |
Balzan S, Johal G S, Carraro N. The role of auxin transporters in monocots development. Front Plant Sci, 2014, 5: 393.
doi: 10.3389/fpls.2014.00393 pmid: 25177324 |
[5] |
Krecek P, Skupa P, Libus J, Naramoto S, Tejos R, Friml J, Zazímalová E. The PIN-FORMED (PIN) protein family of auxin transporters. Genome Biol, 2009, 10: 249.
doi: 10.1186/gb-2009-10-12-249 pmid: 20053306 |
[6] |
Bohn-Courseau I. Auxin: a major regulator of organogenesis. C R Biol, 2010, 333: 290-296.
doi: 10.1016/j.crvi.2010.01.004 |
[7] |
Saini S, Sharma I, Kaur N, Pati P K. Auxin: a master regulator in plant root development. Plant Cell Rep, 2013, 32: 741-757.
doi: 10.1007/s00299-013-1430-5 pmid: 23553556 |
[8] | Overvoorde P, Fukaki H, Beeckman T. Auxin control of root development. Cold Spring Harb Perspect Biol, 2010, 2: a001537. |
[9] |
Olatunji D, Geelen D, Verstraeten I. Control of endogenous auxin levels in plant root development. Int J Mol Sci, 2017, 18: 2587.
doi: 10.3390/ijms18122587 |
[10] |
Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature, 2005, 433: 39-44.
doi: 10.1038/nature03184 |
[11] |
Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell, 2003, 115: 591-602.
pmid: 14651850 |
[12] |
Wang H Z, Yang K Z, Zou J J, Zhu L L, Xie Z D, Morita M T, Tasaka M, Friml J, Grotewold E, Beeckman T, Vanneste S, Sack F, Le J. Transcriptional regulation of PIN genes by FOUR LIPS and MYB88 during Arabidopsis root gravitropism. Nat Commun, 2015, 6: 8822.
doi: 10.1038/ncomms9822 |
[13] |
Gao Z, Chen Z, Cui Y, Ke M, Xu H, Xu Q, Chen J, Li Y, Huang L, Zhao H, Huang D, Mai S, Xu T, Liu X, Li S, Guan Y, Yang W, Friml J, Petrášek J, Zhang J, Chen X. GmPIN-dependent polar auxin transport is involved in soybean nodule development. Plant Cell, 2021, 33: 2981-3003.
doi: 10.1093/plcell/koab183 |
[14] |
Sańko-Sawczenko I, Łotocka B, Czarnocka W. Expression analysis of PIN genes in root tips and nodules of Medicago truncatula. Int J Mol Sci, 2016, 17: 1197.
doi: 10.3390/ijms17081197 |
[15] |
Kohlen W, Ng J L P, Deinum E E, Mathesius U. Auxin transport, metabolism, and signaling during nodule initiation: indeterminate and determinate nodules. J Exp Bot, 2018, 69: 229-244.
doi: 10.1093/jxb/erx308 |
[16] |
Plet J, Wasson A, Ariel F, Le Signor C, Baker D, Mathesius U, Crespi M, Frugier F. MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J, 2011, 65: 622-633.
doi: 10.1111/j.1365-313X.2010.04447.x |
[17] |
Huo X, Schnabel E, Hughes K, Frugoli J. RNAi phenotypes and the localization of a protein::GUS fusion imply a role for Medicago truncatula PIN genes in nodulation. J Plant Growth Regul, 2006, 25: 156-165.
doi: 10.1007/s00344-005-0106-y |
[18] |
Sańko-Sawczenko I, Dmitruk D, Łotocka B, Różańska E, Czarnocka W. Expression analysis of PIN genes in root tips and nodules of Lotus japonicus. Int J Mol Sci, 2019, 20: 235.
doi: 10.3390/ijms20020235 |
[19] |
Xu M, Zhu L, Shou H, Wu P. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice. Plant Cell Physiol, 2005, 46: 1674-1681.
doi: 10.1093/pcp/pci183 |
[20] |
Li Y, Zhu J, Wu L, Shao Y, Wu Y, Mao C. Functional divergence of PIN1 paralogous genes in rice. Plant Cell Physiol, 2019, 60: 2720-2732.
doi: 10.1093/pcp/pcz159 |
[21] |
Li Z, Zhang X, Zhao Y, Li Y, Zhang G, Peng Z, Zhang J. Enhancing auxin accumulation in maize root tips improves root growth and dwarfs plant height. Plant Biotechnol J, 2018, 16: 86-99.
doi: 10.1111/pbi.12751 pmid: 28499064 |
[22] | 郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统. 遗传, 2007, 29: 1023-1026. |
Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas, 2007, 29: 1023-1026. (in Chinese with English abstract) | |
[23] |
Chen C, Chen H, Zhang Y, Thomas H R, Frank M H, He Y, Xia R. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 2020, 13: 1194-1202.
doi: S1674-2052(20)30187-8 pmid: 32585190 |
[24] |
Xie X, Ma X, Zhu Q, Zeng D, Li G, Liu Y G. CRISPR-GE: a convenient software toolkit for CRISPR-based genome editing. Mol Plant, 2017, 10: 1246-1249.
doi: 10.1016/j.molp.2017.06.004 |
[25] |
Bai M, Yuan J, Kuang H, Gong P, Li S, Zhang Z, Liu B, Sun J, Yang M, Yang L, Wang D, Song S, Guan Y. Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soya bean. Plant Biotechnol J, 2020, 18: 721-731.
doi: 10.1111/pbi.13239 |
[26] |
Luschnig C, Gaxiola R A, Grisafi P, Fink G R. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev, 1998, 12: 2175-2187.
doi: 10.1101/gad.12.14.2175 |
[27] |
Motte H, Vanneste S, Beeckman T. Molecular and environmental regulation of root development. Annu Rev Plant Biol, 2019, 70: 465-488.
doi: 10.1146/annurev-arplant-050718-100423 pmid: 30822115 |
[28] |
Raven J A, Edwards D. Roots: evolutionary origins and biogeochemical significance. J Exp Bot, 2001, 52: 381-401.
pmid: 11326045 |
[29] | Pires N D, Dolan L. Morphological evolution in land plants: new designs with old genes. Philosoph Trans RSB, 2012, 367: 508-518. |
[30] |
Dubrovsky J G, Sauer M, Napsucialy-Mendivil S, Ivanchenko M G, Friml J, Shishkova S, Celenza J, Benková E. Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci USA, 2008, 105: 8790-8794.
doi: 10.1073/pnas.0712307105 |
[31] | Krupinski P, Jönsson H. Modeling auxin-regulated development. Cold Spring Harb Perspect Biol, 2010, 2: a001560. |
[32] |
Qin H, He L, Huang R. The coordination of ethylene and other hormones in primary root development. Front Plant Sci, 2019, 10: 874.
doi: 10.3389/fpls.2019.00874 pmid: 31354757 |
[33] |
Du Y, Scheres B. Lateral root formation and the multiple roles of auxin. J Exp Bot, 2018, 69: 155-167.
doi: 10.1093/jxb/erx223 pmid: 28992266 |
[34] |
Retzer K, Weckwerth W. The TOR-auxin connection upstream of root hair growth. Plants, 2021, 10: 150.
doi: 10.3390/plants10010150 |
[35] |
Konstantinova N, Korbei B, Luschnig C. Auxin and root gravitropism: addressing basic cellular processes by exploiting a defined growth response. Int J Mol Sci, 2021, 22: 2749.
doi: 10.3390/ijms22052749 |
[36] |
Ng J L P, Welvaert A, Wen J, Chen R, Mathesius U. The Medicago truncatula PIN2 auxin transporter mediates basipetal auxin transport but is not necessary for nodulation. J Exp Bot, 2020, 71: 1562-1573.
doi: 10.1093/jxb/erz510 |
[37] |
Inahashi H, Shelley I J, Yamauchi T, Nishiuchi S, Takahashi- Nosaka M, Matsunami M, Ogawa A, Noda Y, Inukai Y. OsPIN2, which encodes a member of the auxin efflux carrier proteins, is involved in root elongation growth and lateral root formation patterns via the regulation of auxin distribution in rice. Physiol Plant, 2018, 164: 216-225.
doi: 10.1111/ppl.12707 pmid: 29446441 |
[38] |
Chen Y, Fan X, Song W, Zhang Y, Xu G. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol J, 2012, 10: 139-149.
doi: 10.1111/j.1467-7652.2011.00637.x |
[39] |
Lin D L, Yao H Y, Jia L H, Tan J F, Xu Z H, Zheng W M, Xue H W. Phospholipase D-derived phosphatidic acid promotes root hair development under phosphorus deficiency by suppressing vacuolar degradation of PIN-FORMED2. New Phytol, 2020, 226: 142-155.
doi: 10.1111/nph.16330 |
[40] | Vega A, Fredes I, O’Brien J, Shen Z, Ötvös K, Abualia R, Benkova E, Briggs S P, Gutiérrez R A. Nitrate triggered phosphoproteome changes and a PIN2 phosphosite modulating root system architecture. EMBO Rep, 2021, 22: e51813. |
[41] |
Chai S, Li E, Zhang Y, Li S. NRT1.1-Mediated nitrate suppression of root coiling relies on PIN2- and AUX1-mediated auxin transport. Front Plant Sci, 2020, 11: 671.
doi: 10.3389/fpls.2020.00671 pmid: 32582237 |
[42] |
Zou N, Li B, Chen H, Su Y, Kronzucker H J, Xiong L, Baluška F, Shi W. GSA-1/ARG1 protects root gravitropism in Arabidopsis under ammonium stress. New Phytol, 2013, 200: 97-111.
doi: 10.1111/nph.12365 pmid: 23782229 |
[1] | 杨硕, 武阳春, 刘鑫磊, 唐晓飞, 薛永国, 曹旦, 王婉, 刘亭萱, 祁航, 栾晓燕邱丽娟. 大豆蛋白含量主效位点qPRO-20-1的精细定位[J]. 作物学报, 2023, 49(2): 310-320. |
[2] | 才晓溪, 胡冰霜, 沈阳, 王研, 陈悦, 孙明哲, 贾博为, 孙晓丽. GsERF6基因过表达对水稻耐盐碱性的影响[J]. 作物学报, 2023, 49(2): 561-569. |
[3] | 王慧, 吴志医, 张玉娥, 喻德跃. 应用RNA重测序分析低硫条件下大豆基因表达谱[J]. 作物学报, 2023, 49(1): 105-118. |
[4] | 白智媛, 陈向阳, 郑阿香, 张力, 邹军, 张大同, 陈阜, 尹小刚. 1991—2019年美国大豆区试品种(系)农艺和品质性状时空变化特征[J]. 作物学报, 2023, 49(1): 177-187. |
[5] | 陈冰洁, 张富粮, 杨硕, 李晓立, 何堂庆, 张晨曦, 田明慧, 吴梅, 郝晓峰, 张学林. 不同形态氮肥下丛枝菌根真菌对玉米灌浆期生理特性及产量和品质的影响[J]. 作物学报, 2023, 49(1): 249-261. |
[6] | 张静, 王洪章, 任昊, 殷复伟, 吴红燕, 赵斌, 张吉旺, 任佰朝, 戴爱斌, 刘鹏. 夏玉米根系构型与抗根倒性能间的关系[J]. 作物学报, 2023, 49(1): 188-199. |
[7] | 齐阳阳, 窦汝娜, 赵彩桐, 张帜, 李文滨, 姜振峰. 大豆生长节间响应温度和外源GA诱导的赤霉素途径关键基因分析[J]. 作物学报, 2023, 49(1): 62-72. |
[8] | 柯会锋, 张震, 谷淇深, 赵艳, 李培育, 张冬梅, 崔彦茹, 王省芬, 吴立强, 张桂寅, 马峙英, 孙正文. 低磷胁迫下陆地棉苗期根生物量相关性状全基因组关联分析[J]. 作物学报, 2022, 48(9): 2168-2179. |
[9] | 林志敏, 秦贤金, 吴红淼, 庞孜钦, 林文雄. 不同太子参品种对连作胁迫差异响应及种内间作效应分析[J]. 作物学报, 2022, 48(9): 2351-2365. |
[10] | 刘成, 张雅轩, 陈先连, 韩伟, 邢光南, 贺建波, 张焦平, 张逢凯, 孙磊, 李宁, 王吴彬, 盖钧镒. 野生大豆染色体片段代换系群体中与百粒重关联的野生片段及其候选基因[J]. 作物学报, 2022, 48(8): 1884-1893. |
[11] | 怀园园, 张晟瑞, 武婷婷, 李静, 孙石, 韩天富, 李斌, 孙君明. 大豆主要营养品质性状相关分子标记的育种应用潜力评价[J]. 作物学报, 2022, 48(8): 1957-1976. |
[12] | 解黎明, 姜仲禹, 柳洪鹃, 韩俊杰, 刘本奎, 王晓陆, 史春余. 甘薯发根分枝期适宜土壤水分促进块根糖供应和块根形成的研究[J]. 作物学报, 2022, 48(8): 2080-2087. |
[13] | 柯丹霞, 霍娅娅, 刘怡, 李锦颖, 刘晓雪. 大豆TGA转录因子基因GmTGA26在盐胁迫中的功能分析[J]. 作物学报, 2022, 48(7): 1697-1708. |
[14] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[15] | 王炫栋, 杨孙玉悦, 高润杰, 余俊杰, 郑丹沛, 倪峰, 蒋冬花. 拮抗大豆斑疹病菌放线菌菌株的筛选和促生作用及防效研究[J]. 作物学报, 2022, 48(6): 1546-1557. |
|