欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (2): 299-309.doi: 10.3724/SP.J.1006.2023.24103

• 综述 •    下一篇

植物体细胞胚胎发生的分子机制

韩贝(), 孙思敏, 孙伟男, 杨细燕(), 张献龙   

  1. 华中农业大学作物遗传改良全国重点实验室, 湖北武汉 430070
  • 收稿日期:2022-04-08 接受日期:2022-08-01 出版日期:2022-08-09 网络出版日期:2022-08-09
  • 通讯作者: 杨细燕
  • 作者简介:E-mail: bhan_z@163.com
  • 基金资助:
    国家重点研发计划项目(2018YFD1000907)

Molecular mechanisms of somatic embryogenesis in plants

HAN Bei(), SUN Si-Min, SUN Wei-Nan, YANG Xi-Yan(), ZHANG Xian-Long   

  1. National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
  • Received:2022-04-08 Accepted:2022-08-01 Published:2022-08-09 Published online:2022-08-09
  • Contact: YANG Xi-Yan
  • Supported by:
    National Key Research and Development Program of China(2018YFD1000907)

摘要:

植物细胞的全能性是指每个细胞均具有该植物的全部遗传信息, 其离体组织或细胞在适当培养条件下具有发育成完整植株的潜能。植物体细胞胚胎发生是最能体现植物细胞全能性的一种方式, 其在人工种子、单倍体育种、无性繁殖和种质保存等领域具有广阔的应用前景, 其发生的机制也是基础研究领域的热点。近年来, 随着技术的进步及研究的深入, 植物体细胞胚胎发生的分子调控机制取得了重要进展。植物体细胞胚胎发生是一系列基因在时空顺序上表达调控的结果。本文系统综述了体细胞胚胎发生过程中激素及逆境胁迫信号转导、胚胎发育相关转录因子、胞外蛋白和表观遗传调控的作用, 并对本领域未来的研究重点及方向进行了展望。

关键词: 体细胞胚胎发生, 激素及逆境胁迫信号转导, 转录因子, 表观遗传修饰

Abstract:

Plant cell totipotency refers to that each cell has all the genetic information of the plant, and in vitro tissues or cells has the potential to develop into a whole plant under appropriate culture conditions. Somatic embryogenesis is the most efficient way to reflect the totipotency of plant cells. It has broad application prospects in the fields of artificial seeds, haploid breeding, asexual reproduction, and germplasm preservation, and its mechanism is also a hotspot in basic research. In recent years, with the development of technology and in-depth research, the molecular regulation mechanism of plant somatic embryogenesis has made important progress. Plant somatic embryogenesis is the result of the expression and regulation of a series of genes in spatiotemporal order. In this review, we systematically reviewed the roles of hormones and stress signal transduction, embryonic development related transcription factors, extracellular proteins, and epigenetic regulation in somatic embryogenesis, and prospected future research priorities and directions in this field.

Key words: somatic embryogenesis, hormone and stress signaling transduction pathways, transcription factor, epigenetic regulation

图1

生长素信号传导及体细胞胚胎发生"

图2

机械损伤通过调节因子WINs调控愈伤组织形成"

[1] Yang X Y, Zhang X L, Yuan D J, Jin F Y, Zhang Y C, Xu J. Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC Plant Biol, 2012, 12: 110.
doi: 10.1186/1471-2229-12-110 pmid: 22817809
[2] Lee H W, Kim N Y, Lee D J, Kim J. LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis. Plant Physiol, 2009, 151: 1377-1389.
doi: 10.1104/pp.109.143685
[3] Fan M Z, Xu C Y, Xu K, Hu Y X. LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration. Cell Res, 2012, 22: 1169-1180.
doi: 10.1038/cr.2012.63
[4] Lee K, Park O-S, Seo P J. JMJ30-mediated demethylation of H3K9me3 drives tissue identity changes to promote callus formation in Arabidopsis. Plant J, 2018, 95: 961-975.
doi: 10.1111/tpj.14002
[5] Horstman A, Li M, Heidmann I, Weemen M, Chen B, Muino J M, Angenent G C, Boutilier K. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol, 2017, 175: 848-857.
doi: 10.1104/pp.17.00232 pmid: 28830937
[6] Mendez-Hernandez H A, Ledezma-Rodriguez M, Avilez- Montalvo R N, Juarez-Gomez Y L, Skeete A, Avilez-Montalvo J, De-la-Pena C, Loyola-Vargas V M. Signaling overview of plant somatic embryogenesis. Front Plant Sci, 2019, 10: 77.
doi: 10.3389/fpls.2019.00077
[7] Skoog F, Miller C O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol, 1957, 11: 118-130.
pmid: 13486467
[8] Sakai H, Honma T, Aoyama T, Sato S, Kato T, Tabata S, Oka A. ARR1, a transcription factor for genes immediately responsive to cytokinins. Science, 2001, 294: 1519-1521.
pmid: 11691951
[9] Su Y H, Liu Y B, Bai B, Zhang X S. Establishment of embryonic shoot-root axis is involved in auxin and cytokinin response during Arabidopsis somatic embryogenesis. Front Plant Sci, 2015, 5: 792.
[10] Neves M, Correia S, Cavaleiro C, Canhoto J. Modulation of organogenesis and somatic embryogenesis by ethylene: an overview. Plants (Basel), 2021, 10: 1208.
[11] Chatfield S P, Raizada M N. Ethylene and shoot regeneration: hookless1 modulates de novo shoot organogenesis in Arabidopsis thaliana. Plant Cell Rep, 2008, 27: 655-666.
doi: 10.1007/s00299-007-0496-3 pmid: 18084766
[12] Zheng Q L, Zheng Y M, Perry S E. AGAMOUS-like15 promotes somatic embryogenesis in Arabidopsis and soybean in part by the control of ethylene biosynthesis and response. Plant Physiol, 2013, 161: 2113-2127.
doi: 10.1104/pp.113.216275
[13] Wang L C, Liu N, Wang T Y, Li J Y, Wen T W, Yang X Y, Lindsey K, Zhang X L. The GhmiR157a-GhSPL10 regulatory module controls initial cellular dedifferentiation and callus proliferation in cotton by modulating ethylene-mediated flavonoid biosynthesis. J Exp Bot, 2018, 69: 1081-1093.
doi: 10.1093/jxb/erx475
[14] Langhansova L, Konradova H, Vanek T. Polyethylene glycol and abscisic acid improve maturation and regeneration of Panax ginseng somatic embryos. Plant Cell Rep, 2004, 22: 725-730.
doi: 10.1007/s00299-003-0750-2
[15] Stasolla C, Yeung E C. Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tiss Organ Cult, 2003, 74: 15-35.
doi: 10.1023/A:1023345803336
[16] Marhava P, Hoermayer L, Yoshida S, Marhavy P, Benkova E, Friml J. Re-activation of stem cell pathways for pattern restoration in plant wound healing. Cell, 2019, 177: 957-969.
doi: S0092-8674(19)30401-5 pmid: 31051107
[17] Iwase A, Harashima H, Ikeuchi M, Rymen B, Ohnuma M, Komaki S, Morohashi K, Kurata T, Nakata M, Ohme-Takagi M, Grotewold E, Sugimoto K. WIND1 promotes shoot regeneration through transcriptional activation of enhancer of SHOOT REGENERATION1 in Arabidopsis. Plant Cell, 2017, 29: 54-69.
doi: 10.1105/tpc.16.00623
[18] Ikeuchi M, Favero D S, Sakamoto Y, Iwase A, Coleman D, Rymen B, Sugimoto K. Molecular mechanisms of plant regeneration. Annu Rev Plant Biol, 2019, 70: 377-406.
doi: 10.1146/annurev-arplant-050718-100434 pmid: 30786238
[19] Ikeuchi M, Iwase A, Rymen B, Lambolez A, Kojima M, Takebayashi Y, Heyman J, Watanabe S, Seo M, de Veylder L, Sakakibara H, Sugimoto K. Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiol, 2017, 175: 1158-1174.
doi: 10.1104/pp.17.01035 pmid: 28904073
[20] Bucher P, Trifonov E N. CCAAT box revisited: bidirectionality, location and context. J Biomol Struct Dyn, 1988, 5: 1231-1236.
pmid: 3271510
[21] Pelletier J M, Kwong R W, Park S, Le B H, Baden R, Cagliari A, Hashimoto M, Munoz M D, Fischer R L, Goldberg R B, Harada J J. LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development. Proc Natl Acad Sci USA, 2017, 114: E6710-E6719.
[22] Kwong R W, Bui A Q, Lee H, Kwong L W, Fischer R L, Goldberg R B, Harada J J. LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell, 2003, 15: 5-18.
pmid: 12509518
[23] Lotan T, Ohto M, Yee K M, West M A L, Lo R, Kwong R W, Yamagishi K, Fischer R L, Goldberg R B, Harada J J. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell, 1998, 93: 1195-1205.
pmid: 9657152
[24] Orlowska A, Igielski R, Lagowska K, Kepczynska E. Identification of LEC1, L1L and Polycomb Repressive Complex 2 genes and their expression during the induction phase of Medicago truncatula Gaertn. somatic embryogenesis. Plant Cell Tissue Organ Cult, 2017, 129: 119-132.
doi: 10.1007/s11240-016-1161-8
[25] Zhu S P, Wang J, Ye J L, Zhu A D, Guo W W, Deng X X. Isolation and characterization of LEAFY COTYLEDON 1-LIKE gene related to embryogenic competence in Citrus sinensis. Plant Cell Tissue Organ Cult, 2014, 119: 1-13.
doi: 10.1007/s11240-014-0509-1
[26] Le B H, Cheng C, Bui A Q, Wagmaister J A, Henry K F, Pelletier J, Kwong L, Belmonte M, Kirkbride R, Horvath S, Drews G N, Fischer R L, Okamuro J K, Harada J J, Goldberg R B. Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Natl Acad Sci USA, 2010, 107: 8063-8070.
doi: 10.1073/pnas.1003530107
[27] Gazzarrini S, Tsuchiya Y, Lumba S, Okamoto M, McCourt P. The transcription factor FUSCA3 controls developmental timing in Arabidopsis through the hormones gibberellin and abscisic acid. Dev Cell, 2004, 7: 373-385.
pmid: 15363412
[28] Brand A, Quimbaya M, Tohme J, Chavarriaga-Aguirre P. Arabidopsis LEC1 and LEC2 orthologous genes are key regulators of somatic embryogenesis in cassava. Front Plant Sci, 2019, 10: 673.
doi: 10.3389/fpls.2019.00673
[29] Stone S L, Braybrook S A, Paula S L, Kwong L W, Meuser J, Pelletier J, Hsieh T F, Fischer R L, Goldberg R B, Harada J J. Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity: implications for somatic embryogenesis. Proc Natl Acad Sci USA, 2008, 105: 3151-3156.
doi: 10.1073/pnas.0712364105
[30] Zhang Z Y, Zhao H, Li W, Wu J M, Zhou Z H, Zhou F, Chen H, Lin Y J. Genome-wide association study of callus induction variation to explore the callus formation mechanism of rice. J Integr Plant Biol, 2019, 61: 1134-1150.
doi: 10.1111/jipb.12759
[31] Horstman A, Li M, Heidmann I, Weemen M, Chen B, Muino J M, Angenent G C, Boutilier K. The BABY BOOM transcription factor activates the LEC1-ABI3-FUS3-LEC2 network to induce somatic embryogenesis. Plant Physiol, 2017, 175: 848-857.
doi: 10.1104/pp.17.00232 pmid: 28830937
[32] Mathew M M, Prasad K. Model systems for regeneration: Arabidopsis. Development, 2021, 148: dev195347.
doi: 10.1242/dev.195347
[33] Tsuwamoto R, Yokoi S, Takahata Y. Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase. Plant Mol Biol, 2010, 73: 481-492.
doi: 10.1007/s11103-010-9634-3 pmid: 20405311
[34] Schoof H, Lenhard M, Haecker A, Mayer K F X, Jurgens G, Laux T. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 2000, 100: 635-644.
doi: 10.1016/s0092-8674(00)80700-x pmid: 10761929
[35] Zuo J R, Niu Q W, Frugis G, Chua N H. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J, 2002, 30: 349-359.
doi: 10.1046/j.1365-313X.2002.01289.x
[36] Zhang T Q, Lian H, Zhou C M, Xu L, Jiao Y, Wang J W. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. Plant Cell, 2017, 29: 1073-1087.
doi: 10.1105/tpc.16.00863
[37] Gordon S P, Chickarmane V S, Ohno C, Meyerowitz E M. Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci USA, 2009, 106: 16529-16534.
doi: 10.1073/pnas.0908122106
[38] Zhang Z, Tucker E, Hermann M, Laux T. A molecular framework for the embryonic initiation of shoot meristem stem cells. Dev Cell, 2017, 40: 264-277.
doi: S1534-5807(17)30002-3 pmid: 28171749
[39] Hassani S B, Trontin J F, Raschke J, Zoglauer K, Rupps A. Constitutive overexpression of a conifer WOX2 homolog affects somatic embryo development in pinus pinaster and promotes somatic embryogenesis and organogenesis in Arabidopsis seedlings. Front Plant Sci, 2022, 13: 838421.
doi: 10.3389/fpls.2022.838421
[40] Su Y H, Zhou C, Li Y J, Yu Y, Tang L P, Zhang W J, Yao W J, Huang R, Laux T, Zhang X S. Integration of pluripotency pathways regulates stem cell maintenance in the Arabidopsis shoot meristem. Proc Natl Acad Sci USA, 2020, 117: 22561-22571.
doi: 10.1073/pnas.2015248117
[41] Elhiti M, Tahir M, Gulden R H, Khamiss K, Stasolla C. Modulation of embryo-forming capacity in culture through the expression of Brassica genes involved in the regulation of the shoot apical meristem. J Exp Bot, 2010, 61: 4069-4085.
doi: 10.1093/jxb/erq222
[42] Schmidt E D L, Guzzo F, Toonen M A J, de Vries S C. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development, 1997, 124: 2049-2062.
doi: 10.1242/dev.124.10.2049 pmid: 9169851
[43] Li H Q, Cai Z P, Wang X J, Li M Z, Cui Y W, Cui N, Yang F, Zhu M S, Zhao J X, Du W B, He K, Yi J, Tax F E, Hou S W, Li J, Gou X P. SERK receptor-like kinases control division patterns of vascular precursors and ground tissue stem cells during embryo development in Arabidopsis. Mol Plant, 2019, 12: 984-1002.
doi: S1674-2052(19)30161-3 pmid: 31059824
[44] Hecht V, Vielle-Calzada J P, Hartog M V, Schmidt E D L, Boutilier K, Grossniklaus U, de Vries S C. The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol, 2001, 127: 803-816.
pmid: 11706164
[45] Singh A, Khurana P. Ectopic expression of Triticum aestivum SERK genes (TaSERKs) control plant growth and development in Arabidopsis. Sci Rep, 2017, 7: 12368.
doi: 10.1038/s41598-017-10038-1
[46] Borisjuk N, Sitailo L, Adler K, Malysheva L, Tewes A, Borisjuk L, Manteuffel R. Calreticulin expression in plant cells: developmental regulation, tissue specificity and intracellular distribution. Planta, 1998, 206: 504-514.
pmid: 9821685
[47] Yang X, Zhang X. Regulation of somatic embryogenesis in higher plants. Crit Rev Plant Sci, 2010, 29: 36-57.
doi: 10.1080/07352680903436291
[48] Anil V S, Rao K S. Calcium-mediated signaling during sandalwood somatic embryogenesis. Role for exogenous calcium as second messenger. Plant Physiol, 2000, 123: 1301-1311.
pmid: 10938349
[49] Pandey G K, Grant J J, Cheong Y H, Kim B G, Li L G, Luan S. Calcineurin-B-like protein CBL9 interacts with target kinase CIPK3 in the regulation of ABA response in seed germination. Mol Plant, 2008, 1: 238-248.
doi: 10.1093/mp/ssn003 pmid: 19825536
[50] Letarte J, Simion E, Miner M, Kasha K J. Arabinogalactans and arabinogalactan-proteins induce embryogenesis in wheat (Triticum aestivum L.) microspore culture. Plant Cell Rep, 2006, 25: 877-877.
doi: 10.1007/s00299-006-0180-z
[51] Perez-Perez Y, Carneros E, Berenguer E, Solis M T, Barany I, Pintos B, Gomez-Garay A, Risueno M C, Testillano P S. Pectin de-methylesterification and AGP increase promote cell wall remodeling and are required during somatic embryogenesis of Quercus suber. Front Plant Sci, 2019, 9: 1915.
doi: 10.3389/fpls.2018.01915
[52] Kreuger M, Vanholst G J. Arabinogalactan-protein epitopes in somatic embryogenesis of Daucus carota L. Planta, 1995, 197: 135-141.
doi: 10.1007/BF00239949
[53] Makowska K, Kaluzniak M, Oleszczuk S, Zimny J, Czaplicki A, Konieczny R. Arabinogalactan proteins improve plant regeneration in barley (Hordeum vulgare L.) anther culture. Plant Cell Tissue Organ Cult, 2017, 131: 247-257.
doi: 10.1007/s11240-017-1280-x
[54] Serpe M D, Nothnagel E A. Effects of yariv phenylglycosides on Rosa cell suspensions: evidence for the involvement of arabinogalactan-proteins in cell proliferation. Planta, 1994, 193: 542-550.
doi: 10.1007/BF02411560
[55] van Hengel A J, Tadesse Z, Immerzeel P, Schols H, van Kammen A, de Vries S C. N-acetylglucosamine and glucosamine- containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol, 2001, 125: 1880-1890.
pmid: 11299367
[56] Cheng C S, Chen M N, Lai Y T, Chen T, Lin K F, Liu Y J, Lyu P C. Mutagenesis study of rice nonspecific lipid transfer protein 2 reveals residues that contribute to structure and ligand binding. Proteins, 2008, 70: 695-706.
doi: 10.1002/prot.21520
[57] Sterk P, Booij H, Schellekens G A, Vankammen A, Devries S C. Cell-specific expression of the carrot EP2 lipid transfer protein gene. Plant Cell, 1991, 3: 907-921.
pmid: 1822991
[58] Dodeman V L, Ducreux G, Kreis M. Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot, 1997, 48: 1493-1509.
[59] Zeng F C, Zhang X K, Zhu L F, Tu L L, Guo X P, Nie Y H. Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol Biol, 2006, 60: 167-183.
doi: 10.1007/s11103-005-3381-x pmid: 16429258
[60] Francois J, Lallemand M, Fleurat-Lessard P, Laquitaine L, Delrot S, Coutos-Thevenot P, Gomes E. Overexpression of the VvLTP1 gene interferes with somatic embryo development in grapevine. Funct Plant Biol, 2008, 35: 394-402.
doi: 10.1071/FP07303
[61] Wojcikowska B, Wojcik A M, Gaj M D. Epigenetic regulation of auxin-induced somatic embryogenesis in plants. Int J Mol Sci, 2020, 21: 7.
doi: 10.3390/ijms21010007
[62] Bravo S, Bertin A, Turner A, Sepulveda F, Jopia P, Jose Parra M, Castillo R, Hasbun R. Differences in DNA methylation, DNA structure and embryogenesis-related gene expression between embryogenic and non embryogenic lines of Pinus radiata D. don. Plant Cell Tiss Organ Cult, 2017, 130: 521-529.
doi: 10.1007/s11240-017-1242-3
[63] Nic-Can G I, Lopez-Torres A, Barredo-Pool F, Wrobel K, Loyola-Vargas V M, Rojas-Herrera R, De-la-Pena C. New insights into somatic embryogenesis: LEAFY COTYLEDON1, BABY BOOM1 and WUSCHEL-RELATED HOMEOBOX4 are epigenetically regulated in Coffea canephora. PLoS One, 2013, 8: e72160.
doi: 10.1371/journal.pone.0072160
[64] Grzybkowska D, Moronczyk J, Wojcikowska B, Gaj M D. Azacitidine (5-AzaC)-treatment and mutations in DNA methylase genes affect embryogenic response and expression of the genes that are involved in somatic embryogenesis in Arabidopsis. Plant Growth Regul, 2018, 85: 243-256.
doi: 10.1007/s10725-018-0389-1
[65] Shibukawa T, Yazawa K, Kikuchi A, Kamada H. Possible involvement of DNA methylation on expression regulation of carrot LEC1 gene in its 5'-upstream region. Gene, 2009, 437: 22-31.
doi: 10.1016/j.gene.2009.02.011 pmid: 19264116
[66] Nakamura M, Batista RA, Kohler C, Hennig L. Polycomb Repressive complex 2-mediated histone modification H3K27me3 is associated with embryogenic potential in Norway spruce. J Exp Bot, 2020, 71: 6366-6378.
doi: 10.1093/jxb/eraa365 pmid: 32894759
[67] Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon Y H, Sung Z R, Goodrich J. Interaction of polycomb-group proteins controlling flowering in Arabidopsis. Development, 2004, 131: 5263-5276.
doi: 10.1242/dev.01400 pmid: 15456723
[68] Mozgova I, Munoz-Viana R, Hennig L. PRC2 represses hormone-induced somatic embryogenesis in vegetative tissue of Arabidopsis thaliana. PLoS Genet, 2017, 13: e1006562.
doi: 10.1371/journal.pgen.1006562
[69] Liu J, Deng S, Wang H, Ye J, Wu H W, Sun H X, Chua N H. CURLY LEAF regulates gene sets coordinating seed size and lipid biosynthesis. Plant Physiol, 2016, 171: 424-436.
[70] Ishihara H, Sugimoto K, Tarr P T, Temman H, Kadokura S, Inui Y, Sakamoto T, Sasaki T, Aida M, Suzuki T. Primed histone demethylation regulates shoot regenerative competency. Nat Commun, 2019, 10: 1786.
doi: 10.1038/s41467-019-09386-5 pmid: 30992430
[71] Kumar V, Thakur J K, Prasad M. Histone acetylation dynamics regulating plant development and stress responses. Cell Mol Life Sci, 2021, 78: 4467-4486.
doi: 10.1007/s00018-021-03794-x
[72] Bie X M, Dong L, Li X H, Wang H, Gao X Q, Li X G. Trichostatin a and sodium butyrate promotes plant regeneration in common wheat. Plant Signal Behav, 2020, 15: 12.
[73] Tanaka M, Kikuchi A, Kamada H. The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol, 2008, 146: 149-161.
[74] Wojcikowska B, Botor M, Moronczyk J, Wojcik A M, Nodzynski T, Karcz J, Gaj M D. Trichostatin a triggers an embryogenic transition in Arabidopsis explants via an auxin-related pathway. Front Plant Sci, 2018, 9: 1353.
doi: 10.3389/fpls.2018.01353
[75] Moronczyk J, Braszewska A, Wojcikowska B, Chwialkowska K, Nowak K, Wojcik A M, Kwasniewski M, Gaj M D. Insights into the histone acetylation-mediated regulation of the transcription factor genes that control the embryogenic transition in the somatic cells of Arabidopsis. Cells, 2022, 11: 863.
doi: 10.3390/cells11050863
[76] Zhou Y, Tan B, Luo M, Li Y, Liu C, Chen C, Yu C W, Yang S G, Dong S, Ruan J X, Yuan L B, Zhang Z, Zhao L M, Li C L, Chen H H, Cui Y H, Wu K Q, Huang S Z. HISTONE DEACETYLASE19 interacts with HSL1 and participates in the repression of seed maturation genes in Arabidopsis seedlings. Plant Cell, 2013, 25: 134-148.
doi: 10.1105/tpc.112.096313
[77] Furuta K, Kubo M, Sano K, Demura T, Fukuda H, Liu Y G, Shibata D, Kakimoto T. The CKH2/PKL chromatin remodeling factor negatively regulates cytokinin responses in Arabidopsis calli. Plant Cell Physiol, 2011, 52: 618-628.
doi: 10.1093/pcp/pcr022 pmid: 21357580
[78] Yang X, Wang L, Yuan D, Lindsey K, Zhang X. Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. J Exp Bot, 2013, 64: 1521-1536.
doi: 10.1093/jxb/ert013 pmid: 23382553
[79] Luo Y C, Zhou H, Li Y, Chen J Y, Yang J H, Chen Y Q, Qu L H. Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett, 2006, 580: 5111-5116.
doi: 10.1016/j.febslet.2006.08.046
[80] Long J, Liu C, Feng M, Liu Y, Wu X, Guo W. miR156-SPL modules regulate induction of somatic embryogenesis in citrus callus. J Exp Bot, 2018, 69: 2979-2993.
doi: 10.1093/jxb/ery132
[81] Liu Z, Ge X, Qiu W, Long J, Jia H, Yang W, Dutt M, Wu X, Guo W. Overexpression of the CsFUS3 gene encoding a B3 transcription factor promotes somatic embryogenesis in Citrus. Plant Sci, 2018, 277: 121-131.
doi: 10.1016/j.plantsci.2018.10.015
[82] Gordon-Kamm B, Sardesai N, Arling M, Lowe K, Hoerster G, Betts S, Jones T. Using morphogenic genes to improve recovery and regeneration of transgenic plants. Plants (Basel), 2019, 8: 38.
[83] Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho M J, Scelonge C, Lenderts B, Chamberlin M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer P M, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco C, Register J, Zhao Z Y, Xu D, Jones T, Gordon-Kamm W. Morphogenic regulators baby boom and wuschel improve monocot transformation. Plant Cell, 2016, 28: 1998-2015.
doi: 10.1105/tpc.16.00124
[84] Heidmann I, de Lange B, Lambalk J, Angenent G C, Boutilier K. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Rep, 2011, 30: 1107-1115.
doi: 10.1007/s00299-011-1018-x pmid: 21305301
[85] Maher M F, Nasti R A, Vollbrecht M, Starker C G, Clark M D, Voytas D F. Plant gene editing through de novo induction of meristems. Nat Biotechnol, 2020, 38: 84-89.
doi: 10.1038/s41587-019-0337-2 pmid: 31844292
[86] Loyola-Vargas V M. The history of somatic embryogenesis. In: Loyola-VargasV M, Ochoa-AlejoN,eds. Somatic Embryogenesis:Fundamental Aspects and Applications. Cham: Springer International Publishing, 2016. pp 11-22.
[1] 王恒波, 张畅, 吴明星, 李湘, 蒋钟莉, 林容潇, 郭晋隆, 阙友雄. 甘蔗割手密种NAC转录因子ATAF亚家族鉴定及栽培品种ScNAC2基因的功能分析[J]. 作物学报, 2023, 49(1): 46-61.
[2] 李佩婷, 赵振丽, 黄潮华, 黄国强, 徐良年, 邓祖湖, 张玉, 赵新旺. 基于转录组及WGCNA的甘蔗干旱响应调控网络分析[J]. 作物学报, 2022, 48(7): 1583-1600.
[3] 韩尚玲, 霍轶琼, 李辉, 韩华蕊, 侯思宇, 孙朝霞, 韩渊怀, 李红英. 基于WGCNA发掘谷子穗部类黄酮合成途径调控关键基因[J]. 作物学报, 2022, 48(7): 1645-1657.
[4] 柯丹霞, 霍娅娅, 刘怡, 李锦颖, 刘晓雪. 大豆TGA转录因子基因GmTGA26在盐胁迫中的功能分析[J]. 作物学报, 2022, 48(7): 1697-1708.
[5] 郭楠楠, 刘天策, 史硕, 胡心亭, 牛亚丹, 李亮. 长链非编码RNA (LncRNA)在印度梨形孢促进大麦根部生长发育中的调控作用[J]. 作物学报, 2022, 48(7): 1625-1634.
[6] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[7] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[8] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[9] 葛敏, 王元琮, 宁丽华, 胡梦梅, 石习, 赵涵. 氮响应转录因子ZmNLP5影响玉米根系生长的功能研究[J]. 作物学报, 2021, 47(5): 807-813.
[10] 杨梦婷, 张春, 王作平, 邹华文, 吴忠义. 玉米ZmbHLH161基因的克隆及功能研究[J]. 作物学报, 2020, 46(12): 2008-2016.
[11] 张欢, 杨乃科, 商丽丽, 高晓茹, 刘庆昌, 翟红, 高少培, 何绍贞. 甘薯抗旱相关基因IbNAC72的克隆与功能分析[J]. 作物学报, 2020, 46(11): 1649-1658.
[12] 殷龙飞,王朝阳,吴忠义,张中保,于荣. 玉米ZmGRAS31基因的克隆及功能研究[J]. 作物学报, 2019, 45(7): 1029-1037.
[13] 时丕彪,何冰,费月跃,王军,王伟义,魏福友,吕远大,顾闽峰. 藜麦GRF转录因子家族的鉴定及表达分析[J]. 作物学报, 2019, 45(12): 1841-1850.
[14] 张宏娟,李玉莹,苗丽丽,王景一,李超男,杨德龙,毛新国,景蕊莲. 小麦转录因子基因TaNAC67参与调控穗长和每穗小穗数[J]. 作物学报, 2019, 45(11): 1615-1627.
[15] 王玲,刘峰,戴明剑,孙婷婷,苏炜华,王春风,张旭,毛花英,苏亚春,阙友雄. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!