Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (01): 48-57.doi: 10.3724/SP.J.1006.2011.00048
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
YANG Jia-Yin1,2,HE Jian-Bo1,**,WANG Jin-She1,GUAN Rong-Zhan1,GAI Jun-Yi1,*
[1]Yu S B, Li J X, Xu C G, Tan Y F, Gao Y T, Li X H, Zhang Q F, Saghai-Maroof M A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 1997, 94: 9226–9231 [2]Lee M, Godshalk E B, Lamkey K R, Woodman W W. Association of restriction fragment length ploymorphisrns among maize inbreds with agronomic performance of their crosses. Crop Sci, 1989, 29: 1067–1071 [3]Smith O S, Smith J S C, Bowen S L, Tenborg R A, Wall S R. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield, heterosis and RFLPs. Theor Appl Genet, 1990, 80: 833–840 [4]Yuan L-X(袁力行), Fu J-H(傅骏骅), Liu X-Z(刘新芝), Peng Z-B(彭泽斌), Zhang S-H(张世煌), Li X-H(李新海), Li L-C(李连成). Study on prediction of heterosis in Maize (Zea mays L.) using the molecular markers. Sci Agric Sin (中国农业科学), 2000, 33(6): 6–12 (in Chinese with English abstract) [5]Cerna F J, Cianzio S R, Rafalski A, Tingey S, Dyer D. Relationship between seed yield heterosis and molecular heterozygosity in soybean. Theor Appl Genet, 1997, 95: 460–467 [6]Bohn M, Utz H F, Melchinger A E. Genetic similarities among winter wheat cultivars determined on the base of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Sci, 1999, 39: 228–237 [7]Zhang Q F, Gao Y J, Yang S H, Saghai-Maroof M A, Yang S H, Li J X. Molecular divergence and hybrid performance in rice. Mol Breed, 1995, 1: 133–142 [8]Wu Y-T(武耀廷), Zhang T-Z(张天真), Zhu X-F(朱协飞), Wang G-M(王广明). Relationship between F1, F2 yield, heterosis and genetic distance measured by molecular markers and parent performance in cotton. Sci Agric Sin (中国农业科学), 2002, 35(1): 22–28 (in Chinese with English abstract) [9]Zhang Q, Zhou Z Q, Yang G P, Xu C G, Liu K D, Saghai-Maroof M A. Molecular marker heterozygosity and hybrid performance in indica and japonica rice. Theor Appl Genet, 1996, 93: 1218–1224 [10]He G-H(何光华), Hou L(侯磊), Li D-M(李德谋), Luo X-Y(罗小英), Liu G-Q(刘国清), Tang M(唐梅), Pei Y(裴炎). Prediction of yield and yield components in hybrid rice by using molecular markers. Acta Genet Sin (遗传学报), 2002, 29 (5): 438–444 (in Chinese with English abstract) [11]Liu X C, Koshun I, Wang W X. Identification of AFLP markers favorable to heterosis in hybrid rice. Breed Sci, 2002, 52: 201–206 [12]Cho Y I, Park C W, Kwon S W, Chin J H, Ji H S, Park K J, McCouch S, Koh H J. Key DNA markers for predicting heterosis in F1 hybrids of japonica rice. Breed Sci, 2004, 54: 389–397 [13]Liu R, Qian W, Meng J. Association of RFLP markers and biomass heterosis in trigenomic hybrids of oilseed rape (Brassica napus × B. campestris). Theor Appl Genet, 2002, 105: 1050–1057 [14]Xu X-F(徐新福), Tang Z-L(唐章林), Li J-N(李加纳), Chai Y-R(柴友荣), Wang R(王瑞), Chen L(谌利). Prediction model of hybrid performance using molecular marker based on additive-dominant effects. Sci Agric Sin (中国农业科学), 2008, 41(10): 2963–2972 (in Chinese with English abstract) [15]Stuber C W, Lincoln S E, Wolff D W, Helentjaris T, Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred using molecular markers. Genetics, 1992, 132: 823–839 [16]Xiao J H, Li J M, Yuan L P, Tanksley S D. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers. Genetics, 1995, 140: 745–754 [17]Hua J P, Xing Y Z, Wu W R, Xu C G, Sun X L, Yu S B, Zhang Q f. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 2003, 100: 2574–2579 [18]Soller M, Brody T, Genizi A. On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor Appl Genet, 1976, 47: 35–39 [19]Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue. Focus, 1990, 12: 13–15 [20]Yang J-Y(杨加银), Gai J-Y(盖钧镒). Heterosis, combining ability and their genetic basis of yield among key parental materials of soybean in Huang-Huai Valleys. Acta Agron Sin (作物学报), 2009, 35(4): 620–630 (in Chinese with English abstract) [21]Mansur L M, Orf J H, Chase K, Jarvik T, Cregan P B, Lark K G. Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci, 1996, 36: 1327–1336 [22]Orf J H, Chase K, Adler F R, Mansur L M, Lark K G. Genetics of soybean agronomic traits: II. Interactions between yield quantitative trait loci in soybean. Crop Sci, 1999, 39: 1652–1657 [23]Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water: a QTL analysis of drought tolerance. Crop Sci, 2001, 41: 493–509 [24]Kabelka E A, Diers B W, Fehr W R, LeRoy A R, Baianu I C, You T, Neece D J, Nelson R L. Putative alleles for increased yield from soybean plant introductions. Crop Sci, 2004, 44: 784–791 [25]Wang D, Graef G L, Procopiuk A M, Diers B W. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor Appl Genet, 2004, 108: 458–467 [26]Zhang X-Y(张学勇), Tong Y-P(童依平), You G-X(游光霞), Hao C-Y(郝晨阳), Ge H-M(盖红梅), Wang L-F(王兰芬), Li B(李滨), Dong Y-C(董玉琛), Li Z-S(李振声). Hitchhiking effect mapping: a new approach for discovering agronomic important genes. Sci Agric Sin (中国农业科学), 2006, 39(8): 1526–1535 (in Chinese with English abstract) [27]Yang J-Y(杨加银), Gai J-Y(盖钧镒). Studies on hybrid heterosis and parental combining ability of yield and quality traits in early generations of soybean. Sci Agric Sin (中国农业科学), 2009, 42(7): 2280–2290 (in Chinese with English abstract) [28]Orf J H, Diers B W, Boerna H R. Genetic Improvement: Conventional and Molecular Based Strategies. In: Boerna H R, Specht J E, eds. Soybean: Improvement, Production and Uses. 3rd edn. Agronomy Monograph. Vo1.16. ASA and CSSA, Madison, WI, USA. 2004. pp 417–450 [29]Pathan M S, Sleper D A. Advances in Soybean Breeding. In: Stacey G ed. Genetics and Genomics of Soybean. Springer Science + Business Media, LLC. 2008. pp 117–122 [30]Yang J-Y(杨加银), He J-B(贺建波), Guan R-Z(管荣展), Yang S-P(杨守萍), Gai J-Y(盖钧镒). Genetic analysis in terms of major-minor locus group constitutions of yield in hybrid soybean. Acta Agron Sin (作物学报), 2010, 36(9): 1468–1475 (in Chinese with English abstract) [31]Zhang J(张军), Zhao T-J(赵团结), Gai J-Y(盖钧镒). Inheritance of elite alleles of yield and quality traits in the pedigrees of major cultivar families released in Huanghuai Valleys and Southern China. Acta Agron Sin (作物学报), 2009, 35(2): 191–202 (in Chinese with English abstract) |
[1] | CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345. |
[2] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[3] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[4] | LI A-Li, FENG Ya-Nan, LI Ping, ZHANG Dong-Sheng, ZONG Yu-Zheng, LIN Wen, HAO Xing-Yu. Transcriptome analysis of leaves responses to elevated CO2 concentration, drought and interaction conditions in soybean [Glycine max (Linn.) Merr.] [J]. Acta Agronomica Sinica, 2022, 48(5): 1103-1118. |
[5] | PENG Xi-Hong, CHEN Ping, DU Qing, YANG Xue-Li, REN Jun-Bo, ZHENG Ben-Chuan, LUO Kai, XIE Chen, LEI Lu, YONG Tai-Wen, YANG Wen-Yu. Effects of reduced nitrogen application on soil aeration and root nodule growth of relay strip intercropping soybean [J]. Acta Agronomica Sinica, 2022, 48(5): 1199-1209. |
[6] | WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800. |
[7] | LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951. |
[8] | DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571. |
[9] | ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596. |
[10] | WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643. |
[11] | ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537. |
[12] | SONG Li-Jun, NIE Xiao-Yu, HE Lei-Lei, KUAI Jie, YANG Hua, GUO An-Guo, HUANG Jun-Sheng, FU Ting-Dong, WANG Bo, ZHOU Guang-Sheng. Screening and comprehensive evaluation of shade tolerance of forage soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1741-1752. |
[13] | CAO Liang, DU Xin, YU Gao-Bo, JIN Xi-Jun, ZHANG Ming-Cong, REN Chun-Yuan, WANG Meng-Xue, ZHANG Yu-Xian. Regulation of carbon and nitrogen metabolism in leaf of soybean cultivar Suinong 26 at seed-filling stage under drought stress by exogenous melatonin [J]. Acta Agronomica Sinica, 2021, 47(9): 1779-1790. |
[14] | ZHANG Ming-Cong, HE Song-Yu, QIN Bin, WANG Meng-Xue, JIN Xi-Jun, REN Chun-Yuan, WU Yao-Kun, ZHANG Yu-Xian. Effects of exogenous melatonin on morphology, photosynthetic physiology, and yield of spring soybean variety Suinong 26 under drought stress [J]. Acta Agronomica Sinica, 2021, 47(9): 1791-1805. |
[15] | YU Tao-Bing, SHI Qi-Han, NIAN-Hai , LIAN Teng-Xiang. Effects of waterlogging on rhizosphere microorganisms communities of different soybean varieties [J]. Acta Agronomica Sinica, 2021, 47(9): 1690-1702. |
|