Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (01): 40-47.doi: 10.3724/SP.J.1006.2011.00040
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
DONG Jia,CAI Cai-Ping,WANG Li-Ke,ZHAO Liang,ZHANG Tian-Zhen,GUO Wang-Zhen*
[1]Won G Y, Fincher G B, Maclachlan G A. Cellulases can enhance beta-glucansynthesis. Science, 1977, 195: 679–681 [2]Hayashi T, Wong Y S, Maclachlan G. Pea Xyloglucan and cellulose: II. hydrolysis by pea endo-1,4-β-glucanases. Plant Physiol, 1984, 75: 605–610 [3]Lashbroo K C C, Bennet T A B. Two divergent endo-beta-1,4-glucanase genes exhibit overlapping expression in ripening fruit and abscising flowers. Plant Cell, 1994, 6: 1485–1493 [4]Catalac C, Rose J K C, Bennett A B. Auxin regulation and spatial localization of an endo-1,4-beta-D-glucanase and a xyloglucan endo-transglycosylase in expanding tomato hypocotyls. Plant J, 1997, 12: 417–426 [5]Chang M M, Culley D E, Hadwiger L A. Nucleotidesequence of a pea (Pisum sativum L.) β-1,3-glucanase gene. Plant Physiol, 1993, 101: 1121–1122 [6]Abeles F B, Bosshart R P, Forrence L E. Preparation and purification of glucanase and chitinase from bean leaves. Plant Physiol, 1971, 47: 129–134 [7]Basra A S, Malik C P. Development of cotton fiber. Int Rev Cytol, 1984, 89: 65–113 [8]Turley R B, Ferguson D L. Changes of ovule proteins during early fiber developing in a normal and a fiberless line of cotton (Gossypium hirsutum L.). J Plant Physiol, 1996, 149: 695–702 [9]Orford S J, Timmis J N. Abundant mRNAs specific to the developing cotton fiber. Theor Appl Genet, 1997, 94: 909–918 [10]Kim H J, Triplett B A. Cotton fiber growth in planta and in vitro models for plant cell elongation and cell wall biogenesis. Plant Physiol, 2001, 127: 1361–1366 [11]Shimizu Y, Aotsuka S, Hasegawa O, Kawada T, Sakuno T, Sakai F, Hayashi T. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells. Plant Cell Physiol, 1997, 38: 375–378 [12]McFadden H G, Chapple R, Feyter D E, Dennis E. Expression of pathogenesis-related genes in cotton stem in response to infection by Verticillium dahliae. Physiol Mol Plant Pathol, 2001, 58: 119–131 [13]Gao Y-L(高玉龙), Guo W-Z(郭旺珍), Wang L(王磊), Zhang T-Z(张天真). Cloning and characterization of oneβ-1,3-glucanase gene cDNA in cotton (Gossypium barbadense L.). Acta Agron Sin (作物学报), 2007, 33(8): 1310–1315 (in Chinese with English abstract) [14]Cronn R C, Small R L, Haselkorn T, Wendel J F. Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast gene. Am J Bot, 2002, 89: 707–725 [15]Van Ooijen J W, Voorrips R E. JoinMapR Version 3.0: Software for the calculation of genetic linkage maps. 2001, CPRO-DLO, Wageningen [16]Guo W Z, Cai C P, Wang C B, Han Z G, Song X L, Wang K, Niu X W, Wang C, Lu K Y, Shi B, Zhang T Z. A microsatellite-based, gene-rich linkage map in tetraploid cotton reveals genome structure, function and evolution in Gossypium. Genetics, 2007, 176: 527–541 [17]Wu Y-Y(武耀廷), Liu J-Y(刘进元). A modified hot borate method for efficient isolation of total RNA from different cotton tissues. Cotton Sci (棉花学报), 2004, 16(2): 67–71 (in Chinese with English abstract) [18]Jiang J-X(蒋建雄), Zhang T-Z(张天真). Tissues with CTAB-acidic phenolic method. Cotton Sci (棉花学报), 2003, 15(3): 166–167 (in Chinese with English abstract) [19]Paterson A H, Brubaker C L, Jonathan F. Rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep, 1993, 11: 122–127 [20]Livak K J, Schmittgen T D. Analysis of relative gene expression data using Realtime quantitatve PCR and the 2(delta delta C(T)) method. Methods, 2001, 25: 402–408 [21]Brummell D A, Catala C. A membrane-anchored E-type endo-1,4-beta-glucanase is localized on Golgi and plasma membranes of higher plants. Proc Natl Acad Sci USA, 1997, 94: 4794–4799 [22]Shani Z, Dekel M. Cloning and characterization of elongation specific endo-1,4-beta-glucanase (cel1) from Arabidopsis thaliana. Plant Mol Biol, 1997, 34: 837–842 [23]Palomer X, Llop T I, Vendrell M. Antisense down-regulation of strawberry endo-β-(1,4)-glucanase genes does not prevent fruit softening during ripening. Plant Sci, 2006, 5: 640–646 [24]Harpster M H, Dawson D M, Nevins D J, Dunsmuir P, Brummell D A. Constitutive over-expression of a ripening-related pepper endo-1,4-β-glucanase in transgenic tomato fruit does not increase xyloglucan depolymerization or fruit softening. Plant Mol Biol, 2002, 50: 35–369 [25]Morohashi Y, Matsushima H. Development of β-1,3-glucanase activity in germinated tomato seeds. J Exp Bot, 2000, 51: 1381–1387 [26]Buchner P, Rochat C, Wuillème S. Characterization of a tissue-specific and developmentally regulated-1,3-glucanase gene in pea (Pisum sativum). Plant Mol Biol, 2002, 49: 171–186 [27]Akiyama T, Pillai M A, Sentoku N. Cloning, characterization and expression of OsGLN2, a rice endo-1,3-β-glucanase gene regulated developmentally in flowers and hormonally in germinating seeds. Planta, 2004, 220: 129–139 [28]Ruan Y L, Xu S M, White R, Furbank R T. Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover. Plant Physiol, 2004, 136: 4104–4113 [29]McFadden H G, Chapple R, Feyter D E. Expression of pathogenesis-related genes in cotton stem in response to infection by Verticillium dahliae. Physiol Mol Plant Pathol, 2001, 58: 119–131 [30]Jongedijk E, Tigelaar H. Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica, 1995, 85: 173–180 |
[1] | XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311. |
[2] | CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371. |
[3] | XU Tian-Jun, ZHANG Yong, ZHAO Jiu-Ran, WANG Rong-Huan, LYU Tian-Fang, LIU Yue-E, CAI Wan-Tao, LIU Hong-Wei, CHEN Chuan-Yong, WANG Yuan-Dong. Canopy structure, photosynthesis, grain filling, and dehydration characteristics of maize varieties suitable for grain mechanical harvesting [J]. Acta Agronomica Sinica, 2022, 48(6): 1526-1536. |
[4] | LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565. |
[5] | YAO Xiao-Hua, WANG Yue, YAO You-Hua, AN Li-Kun, WANG Yan, WU Kun-Lun. Isolation and expression of a new gene HvMEL1 AGO in Tibetan hulless barley under leaf stripe stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1181-1190. |
[6] | ZHOU Hui-Wen, QIU Li-Hang, HUANG Xing, LI Qiang, CHEN Rong-Fa, FAN Ye-Geng, LUO Han-Min, YAN Hai-Feng, WENG Meng-Ling, ZHOU Zhong-Feng, WU Jian-Ming. Cloning and functional analysis of ScGA20ox1 gibberellin oxidase gene in sugarcane [J]. Acta Agronomica Sinica, 2022, 48(4): 1017-1026. |
[7] | JIN Min-Shan, QU Rui-Fang, LI Hong-Ying, HAN Yan-Qing, MA Fang-Fang, HAN Yuan-Huai, XING Guo-Fang. Identification of sugar transporter gene family SiSTPs in foxtail millet and its participation in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 825-839. |
[8] | YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850. |
[9] | ZHOU Yue, ZHAO Zhi-Hua, ZHANG Hong-Ning, KONG You-Bin. Cloning and functional analysis of the promoter of purple acid phosphatase gene GmPAP14 in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 590-596. |
[10] | HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607. |
[11] | JIN Rong, JIANG Wei, LIU Ming, ZHAO Peng, ZHANG Qiang-Qiang, LI Tie-Xin, WANG Dan-Feng, FAN Wen-Jing, ZHANG Ai-Jun, TANG Zhong-Hou. Genome-wide characterization and expression analysis of Dof family genes in sweetpotato [J]. Acta Agronomica Sinica, 2022, 48(3): 608-623. |
[12] | TAN Xue-Lian, GUO Tian-Wen, HU Xin-Yuan, ZHANG Ping-Liang, ZENG Jun, LIU Xiao-Wei. Characteristics of microbial community in the rhizosphere soil of continuous potato cropping in arid regions of the Loess Plateau [J]. Acta Agronomica Sinica, 2022, 48(3): 682-694. |
[13] | QU Jian-Zhou, FENG Wen-Hao, ZHANG Xing-Hua, XU Shu-Tu, XUE Ji-Quan. Dissecting the genetic architecture of maize kernel size based on genome-wide association study [J]. Acta Agronomica Sinica, 2022, 48(2): 304-319. |
[14] | CHEN Xin-Yi, SONG Yu-Hang, ZHANG Meng-Han, LI Xiao-Yan, LI Hua, WANG Yue-Xia, QI Xue-Li. Effects of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid [J]. Acta Agronomica Sinica, 2022, 48(2): 478-487. |
[15] | YU Hui-Fang, ZHANG Wei-Na, KANG Yi-Chen, FAN Yan-Ling, YANG Xin-Yu, SHI Ming-Fu, ZHANG Ru-Yan, ZHANG Jun-Lian, QIN Shu-Hao. Genome-wide identification and expression patterns in response to signals from Phytophthora infestans of CrRLK1Ls gene family in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 249-258. |
|