Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (09): 1569-1576.doi: 10.3724/SP.J.1006.2011.01569

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Comparative Genomics Analysis and Constructing EST Markers Linkage Map of Powdery Mildew Resistance Gene pm42 in Wheat

LIU Zi-Ji,ZHU Jie,HUA Wei,YANG Zuo-Min,SUN Qi-Xin,LIU Zhi-Yong*   

  1. Department of Plant Genetics & Breeding, China Agricultural University / Beijing Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Heterosis Research & Utilization, the Ministry of Education, Beijing 100193, China
  • Received:2011-03-02 Revised:2011-04-27 Online:2011-09-12 Published:2011-06-28
  • Contact: 刘志勇, E-mail: zhiyongliu@cau.edu.cn

Abstract: Constructing fine genetic linkage map of target gene provides a starting point for map-based cloning. Fine genetic mapping of functional genes in wheat has benefited greatly from comparative genomics analysis. The genome sequences of rice and Brachypodium distachyon provide powerful tools for comparative genomics analysis and fine genetic mapping of target gene in wheat. In the present study, comparative genomics analysis using wheat-Brachypodium-rice genomic colinearity showed that genomic region containing pm42 in wheat 2BS was orthologous to Brachypodium chromosome 1 and rice chromosome 3. Two EST-SSCP markers, CD452782 and BF201235, three EST-STS markers, CJ674042,EB513371, and CV771633, linked to pm42 were developed and an EST marker-based genetic linkage map of pm42 was constructed. CJ674042, BF201235, CD452782, and CV771633 were distal to pm42 with genetic distances of 1.9, 12.0, 19.7, and 25.7 cM, respectively. EB513371 was proximal to pm42 with a genetic distance of 14.6 cM. An integrated high-density comparative genomics genetic linkage map of pm42 was constructed and the powdery mildew resistance gene was mapped in a 3.3 cM interval orthologous to 66 kb and 69 kb genomic regions in Brachypodium chromosome 1 and rice chromosome 3, respectively, providing useful information for the fine mapping, molecular assisted selection and gene pyramiding of pm42.

Key words: Resistance gene to wheat powdery mildew, pm42, Comparative genomics, Brachypodium distachyon, Colinearity, EST-STS, EST-SSCP

[1]Bennett M D, Leitch I J. Nuclear DNA amounts in angiosperms. Ann Bot, 1995, 76: 113–176
[2]Qi L L, Echalier B, Chao S, Lazo G R, Butler G E, Anderson O D, Akhunov E D, Dvo?ák J, Linkiewicz A M, Ratnasiri A, Dubcovsky J, Bermudez-Kandianis C E, Greene R A, Kantety R, La Rota C M, Munkvold J D, Sorrells S F, Sorrells M E, Dilbirligi M, Sidhu D, Erayman M, Randhawa H S, Sandhu D, Bondareva S N, Gill K S, Mahmoud A A, Ma X F, Miftahudin, Gustafson J P, Conley E J, Nduati V, Gonzalez-Hernandez J L, Anderson J A, Peng J H, Lapitan N L V, Hossain K G, Kalavacharla V, Kianian S F, Pathan M S, Zhang D S, Nguyen H T, Choi D W, Fenton R D, Close T J, McGuire P E, Qualset C O, Gill B S. A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics, 2004, 168: 701–712
[3]Orita M, Suzuki Y, Sekiya T, Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics, 1989, 5: 874–879
[4]Lu H J, Fellers J P, Friesen T L, Meinhardt S W, Faris J D. Genomic analysis and marker development for the Tsn1 locus in wheat using bin-mapped ESTs and flanking BAC contigs. Theor Appl Genet, 2006, 112: 1132–1142
[5]Bottley A, Xia G M, Koebner R M D. Homoeologous gene silencing in hexaploid wheat. Plant J, 2006, 47: 897–906
[6]Delaunay A, Lacroix C, Morliere S, Riault G, Chain F, Trottet M, Jacquot E. A single-stranded conformational polymorphism (SSCP)-derived quantitative variable to monitor the virulence of a Barley yellow dwarf virus-PAV (BYDV-PAV) isolate during adaptation to the TC14 resistant wheat line. Mol Plant Pathol, 2010, 11: 651–661
[7]Draper J, Mur L A J, Jenkins G, Ghosh-Biswas G C, Bablak P, Hasterok R, Routledge A P M. Brachypodium distachyon: a new model system for functional genomics in grasses. Plant Physiol, 2001, 127: 1539–1555
[8]Bossolini E, Wicker T, Knobel P A, Keller B. Comparison of orthologous loci from small grass genomes Brachypodium and rice: implications for wheat genomics and grass genome annotation. Plant J, 2007, 49: 704–717
[9]Faris J D, Zhang Z, Fellers J P, Gill B S. Micro-colinearity between rice, Brachypodium, and Triticum monococcum at the wheat domestication locus Q. Funct Integr Genomics, 2008, 8: 149–164
[10]Hua W, Liu Z J, Zhu J, Xie C J, Yang T M, Zhou Y L, Duan X Y, Sun Q X, Liu Z Y. Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor Appl Genet, 2009, 119: 223–230
[11]Lincoln S, Daly M, Lander E. Constructing genetic maps with Mapmaker/EXP3.0. Whitehead Institute Technical Report, 3rd edn. Cambridge, Masachussetts, USA: Whitehead Institute, 1992
[12]Liu R-H(刘仁虎), Meng J-L(孟金陵). MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas (遗传), 2003, 25(3): 317–321 (in Chinese with English abstract)
[13]Wang C-T(王翠亭), Huang Z-J(黄占景), He C-F(何聪芬), Bei C-L(秘彩莉), Shen Y-Z(沈银柱). Detection of the wheat salt-tolerant-mutant using PCR-SSCP combining with direct sequencing. Acta Genet Sin (遗传学报), 2001, 28(9): 852–855 (in Chinese with English abstract)
[14]Ujino-Ihara T, Matsumuto A, Iwata H, Yoshimura K, Tsumura Y. Single-strand conformation polymorphism of sequence-tagged site markers based on partial sequences of cDNA clones in Cryptomeria japonica. Genes Genet Syst, 2002, 77: 251–257
[15]Yu J, Hu S, Wang J, Wong G K, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wang X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu Z, Zhang J, He S, Zhang J, Xu J, Zhang K, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li Z, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L, Yuan L, Yang H. A draft sequence of the rice genome (Oryza sativa L ssp. indica). Science, 2002, 296: 79–92
[16]Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J. Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA, 2003, 100: 6263–6268
[17]Yan L L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen J L, Echenique V, Dubcovsky J. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science, 2004, 303: 1640–1644
[18]Griffiths S, Sharp R, Foote T N, Bertin I, Wanous M, Reader S, Colas I, Moore G. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature, 2006, 439: 749–752
[19]Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 2006, 314: 1298–1301
[20]Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J. The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA, 2006, 103: 19581–19586
[21]Guyot R, Yahiaoui N, Feuillet C, Keller B. In silico comparative analysis reveals a mosaic conservation of genes within a novel colinear region in wheat chromosome 1AS and rice chromosome 5S. Funct Integr Genomics, 2004, 4: 47–58
[22]Yahiaoui N, Srichumpa P, Dudler R, Keller B. Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J, 2004, 37: 528–538
[23]Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA, 2003, 100: 15253–15258
[24]The International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature, 2010, 463: 763–768
[25]Zhang H T, Guan H Y, Li J T, Zhu J, Xie C J, Zhou Y L, Duan X Y, Yang T, Sun Q X, Liu Z Y. Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Theor Appl Genet, 2010, 121: 1613–1621
[26]Perovic D, Stein N, Zhang H, Drecsher A, Prasad M, Kota R, Kopahnke D, Graner A. An integrated approach for comparative mapping in rice and barley with special reference to the Rph16 resistance locus. Func Integr Genomics, 2004, 4: 74–83
[27]Brunner S, Keller B, Feuillet C. A large rearrangement involving genes and low-copy DNA interrupts the microcollinearity between rice and barley at the Rph7 locus. Genetics, 2003, 164: 673–683
[1] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[2] WU Lei, WANG Dan,SU Wen-Yue,GUO Chang-Hong,SHU Yong-Jun. Developing InDel Markers from Aegilops Genus Based on Comparative Genomics [J]. Acta Agron Sin, 2012, 38(07): 1334-1338.
[3] WANG Yi-Jun,Lü Yan-Ping,XIE Qin,DENG De-Xiang,BIAN Yun-Long. Whole-Genome Sequence Characterization of Primary Auxin-Responsive Aux/IAA Gene Family in Sorghum (Sorghum bicolor L.) [J]. Acta Agron Sin, 2010, 36(4): 688-694.
[4] CAO Ya-Ping,CAO Ai-Zhong,WANG Xiu-E,CHEN Pei-Du. Screening and Application of EST-based PCR Markers Specific to Individual Chromosomes of Haynaldia villosa [J]. Acta Agron Sin, 2009, 35(1): 1-10.
[5] YE Xing-Guo. Research Outline on Some Related Characteristics of Brachypodium dis-tachyon as a New Model Plant Species [J]. Acta Agron Sin, 2008, 34(06): 919-925.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!