Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2014, Vol. 40 ›› Issue (05): 779-787.doi: 10.3724/SP.J.1006.2014.00779

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Association Mapping and Resistant Alleles Analysis for Sheath Blight Resistance in Rice

SUN Xiao-Tang,LU Dong-Dong,OU-YANG Lin-Juan,HU Li-Fang,BIAN Jian-Min,PENG Xiao-Song,CHEN Xiao-Rong,FU Jun-Ru,HE Xiao-Peng,HE Hao-Hua*,ZHU Chang-Lan*   

  1. College of Agronomy, Jiangxi Agricultural University / Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China
  • Received:2014-09-24 Revised:2014-01-12 Online:2014-05-12 Published:2014-03-24

Abstract:

To identify and map sheath blight (ShB) resistance loci in rice, we carried out association analysis of 456 rice accessions using 144 genome-wide markers based on GLM (Q), MLM (Q+K), and MLM (PCA+K) models of TASSEL software. The phenotyping were assayed at the seedling stage with a micro-chamber screening method. The results showed that thirteen markers were significantly associated with ShB resistance detected by using at least two models, which explained from 1.84% to 8.42% of the phenotypic variance. In addition, ten of the identified resistant loci were either quite near or within the interval of previously identified QTLs. RM1036, RM5371, and RM7585 were novel resistant loci that had not been previously reported. The resistant allele 150 of RM7585 showed the largest negative effect to ShB rating, allele 129 of RM5371 existed in 259 (56.8%) of 456 rice accessions, and 82 of RM1036 existed in 26 (5.7%) rice accessions. The number of putative resistant alleles presented in rice was highly and significantly correlated with the decrease of ShB rating. The resistant alleles identified in this study are readily available and can be exploited for marker-assisted selection.

Key words: RiceSheath blight, Association mapping, Resistant alleles

[1]Savary S, Teng P S, Willocquet L, Nutter F W. Quantification and modeling of crop losses: a review of purposes. Annu Rev Phytopathol, 2006, 44: 89–112



[2]Pinson S R M, Capdevielle F M, Oard J H. Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines. Crop Sci, 2005, 45: 503–510



[3]Channamallikarjuna V, Sonah H, Prasad M, Rao G J N, Chand S, Upreti H C, Singh N K, Sharma T R. Identification of major quantitative trait loci qSBR11-1 for sheath blight resistance in rice. Mol Breed, 2009, 25: 155–166



[4]Zuo S M, Yin Y J, Pan C H, Chen Z X, Zhang Y F, Zhu L H, Pan X B. Fine mapping of qSB-11LE, the QTL that confers partial resistance to rice sheath blight. Theor Appl Genet, 2013, 126: 1257–1272



[5]Che K P, Zhan Q C, Xing Q H, Wang Z P, Jin D M, He DJ, Wang B. Tagging and mapping of rice sheath blight resistant gene. Theor Appl Genet, 2003, 106: 293–297



[6]Liu G, Jia Y, Correa-Victoria F J, Prado G A, Yeater K M, McClung A, Correll J C. Mapping quantitative trait loci responsible for resistance to sheath blight in rice. Phytopathology, 2009, 99: 1078–1084



[7]谢学文, 许美容, 藏金萍, 孙勇, 朱苓华, 徐建龙, 周永力, 黎志康. 水稻抗纹枯病QTL 表达的遗传背景及环境效应. 作物学报, 2008, 34: 1885–1893



Xie X W, Xu M R, Zang J P, Sun Y, Zhu L H, Xu J L, Zhou Y L, Li Z K. Genetic background and environmental effects on expression of QTL for sheath blight resistance in reciprocal introgression lines of rice. Acta Agron Sin, 2008, 34: 1885–1893 (in Chinese with English abstract)



[8]李芳, 程立锐, 许美容, 周政, 张帆, 孙勇, 周永力, 朱苓华, 徐建龙, 黎志康. 利用品质性状的回交选择导入系挖掘水稻抗纹枯病QTL. 作物学报, 2009, 35: 1729–1737



Li F, Cheng L R, Xu M R, Zhou Z, Zhang F, Sun Y, Zhou Y L, Zhu L H, Xu J L, Li Z K. QTL mining for sheath blight resistance using the backcross selected introgression lines for grain quality in rice. Acta Agron Sin, 2009, 35: 1729–1737 (in Chinese with English abstract)



[9]Liu G, Jia Y, McClung A, Oard J H, Lee F N, Correll J C. Confirming QTLs and finding additional loci responsible for resistance to rice sheath blight disease. Plant Dis, 2013, 97: 113–117



[10]韩月澎, 邢永忠, 陈宗祥, 顾世梁, 潘学彪, 陈秀兰, 张启发. 杂交水稻亲本明恢63对纹枯病水平抗性的QTL定位. 遗传学报, 2002, 29: 565–570



Han Y P, Xing Y Z, Chen Z X, Gu S L, Pan X B, Chen X L, Zhang Q F. Mapping QTLs for horizontal resistance to sheath blight in an elite rice restorer line, Minghui63. Acta Genet Sin, 2002, 29: 565–570 (in Chinese with English abstract)



[11]Sharma A, McClung A M, Pinson S R M, Kepiro J L, Shank A R, Tabien R E, Fjellstrom R. Genetic mapping of sheath blight resistance QTLs within tropical japonica rice cultivars. Crop Sci, 2009, 49: 256–264



[12]Li Z K, Pinson S R M, Marshetti M A, Stansel J W, Park W D. Characterization of quantitative trait loci (QTLs) in cultivated rice contributing to field resistance to sheath blight (Rhizoctonia solani). Theor Appl Genet, 1995, 91: 374–381



[13]Mackay I, Powell W. Methods for linkage disequilibrium mapping in crops. Trends Plant Sci, 2007, 12: 57–63



[14]Breseghello F, Sorrells M E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165–1177



[15]Huang X H, Wei X H, Sang T, Zhao Q, Feng Q, Zhao Y, Li C Y, Zhu C R, Lu T, Zhang Z W, Li M, Fan D L, Guo Y L, Wang A H, Wang L, Deng L W, Li W J, Lu Y Q, Weng Q J, Liu K Y, Huang T, Zhou T Y, Jing Y F, Li W, Lin Z, Buckler E S, Qian Q, Zhang Q F, J Y, Han B. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010, 42: 961-967



[16]Jia L M, Yan W G, Zhu C S, Agrama H A, Jackson A, Yeater K, Li X B, Huang B H, Hu B L, Mcclung A, Wu D X. Allelic analysis of sheath blight resistance with association mapping in rice. PLoS One, 2012, 7(3): e32703



[17]王子斌, 左示敏, 李刚, 陈夕军, 陈宗祥, 张亚芳, 潘学彪. 水稻抗纹枯病苗期快速鉴定技术研究. 植物病理学报, 2009, 39: 174–182



Wang Z B, Zuo S M, Li G, Chen X J, Chen Z X, Zhang Y F, Pan X B. Rapid identification technology of resistance to rice sheath blight in seedling stage. Acta Phytopath Sin, 2009, 39: 174–182 (in Chinese with English abstract)



[18]Jia Y, Correa-Victoria F, McClung A, Zhu L, Liu G, Wamishe Y, Xie J, Marchetti M A, Pinson S R M, Rutger J N, Correll J C. Rapid determination of rice cultivar responses to the sheath blight pathogen Rhizoctonia solani using a micro-chamber screening method. Plant Dis, 2007, 91: 485–489



[19]陈夕军, 王玲, 左示敏, 王子斌, 陈宗祥, 张亚芳, 周而勋, 郭泽建, 黄世文, 潘学彪. 水稻纹枯病寄主-病原物互作鉴别品种与菌株的筛选. 植物病理学报, 2009, 39: 514–520



Chen X J, Wang L, Zuo S M, Wang Z B, Chen Z X, Zhang Y F, Zhou E X, Guo Z J, Huang S W, Pan X B. Screening of varieties and isolates for identifying interaction between host and pathogen of rice sheath blight. Acta Phytopath Sin, 2009, 39: 514–520 (in Chinese with English abstract)



[20]Liu K, Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21: 2128–2129



[21]Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005, 14: 2611–2620



[22]Hardy O J, Vekemans X. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes, 2002, 2: 618–620



[23]Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007, 23: 2633–2635



[24]文自翔, 赵团结, 郑永战, 刘顺湖, 王春娥, 王芳, 盖钧镒. 中国栽培和野生大豆农艺及品质性状与SSR标记的关联分析II. 优异等位变异的发掘. 作物学报, 2008, 34: 1339–1349



Wen Z X, Zhao T J, Zheng Y Z, Liu S H, Wang C E, Wang F, Gai J Y. Association analysis of agronomic and quality traits with SSR markers in Glycine max and Glycine soja in China: II. Exploration of elite alleles. Acta Agron Sin, 2008, 34: 1339–1349 (in Chinese with English abstract)



[25]左示敏, 王子斌, 陈夕军, 张亚芳, 陈夕军, 陈宗祥, 潘学彪. 水稻纹枯病改良新抗源YSBR1的抗性评价. 作物学报, 2009, 35: 608–614



Zuo S M, Wang Z B, Chen X J, Zhang Y F, Chen X J, Chen Z X, Pan X B. Evaluation of resistance of a novel rice germplasm YSBR1 to sheath blight. Acta Agron Sin, 2009, 35: 608–614 (in Chinese with English abstract)



[26]Cardon L R, Palmer J L. Population stratification and spurious allelic association. Lancet, 2003, 361: 598–604



[27]Yu J M, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006, 38: 203–208 



[28]Zhao H H, Fernando R L, Dekkers J C. A power and precision of alternate methods for linkage disequilibrium mapping of quantitative trait loci. Genetics, 2007, 175: 1975–1986



[29]左示敏, 张亚芳, 陈宗祥, 陈夕军, 潘学彪. 水稻抗纹枯病遗传育种研究进展. 中国科学: 生命科学, 2010, 40: 1014–1023



Zuo S M, Zhang Y F, Chen Z X, Chen X J, Pan X B. Current progress in genetics and breeding in resistance to rice sheath blight. Sci Sin Vitae, 2010, 40: 1014–1023 (in Chinese with English abstract)



[30]王晓鸣, 金达生, 戴法超, 梁克恭. 作物遗传资源的抗病虫多样性与农业可持续发展. 中国农业科技导报, 2000, (5): 67–70



Wang X M, Jin D S, Dai F C, Liang K G. The diversity of resistance to disease and pest in crop germplasm and the sustainable developing on agriculture. J Agric Sci Technol, 2000, (5): 67–70 (in Chinese with English abstract)

[1] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[2] WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859.
[3] Cong HUANG,Xiao-Fang LI,Ding-Guo LI,Zhong-Xu LIN. QTL Mapping for Yield, Growth Period and Plant Height Traits Using MAGIC Population in Upland Cotton [J]. Acta Agronomica Sinica, 2018, 44(9): 1320-1333.
[4] QIU Xian-Jin,YUAN Zhi-Hua,CHEN Kai,DU Bin,HE Wen-Jing,YANG Long-Wei,XU Jian-Long,XING Dan-Ying,Lü Wen-Kai. Genetic Dissection of Grain Chalkiness in Indica Mini-core Germplasm Using Genome-wide Association Method [J]. Acta Agron Sin, 2015, 41(07): 1007-1016.
[5] ZHANG Dong-Ling,ZHANG Hong-Na,HAO Chen-Yang,WANG Lan-Fen,LI Tian,ZHANG Xue-Yong*. Influence of Canopy Temperature (CT)During Grain-Filling Period onYield and Effects of Several CT-Associated SSR Loci [J]. Acta Agron Sin, 2015, 41(04): 548-556.
[6] LI Dong-Hua,LIU Wen-Ping,ZHANG Yan-Xin,WANG Lin-Hai,WEI Wen-Liang,GAO Yuan,DING Xia,WANG Lei,ZHANG Xiu-Rong. Identification Method of Drought Tolerance and Association Mapping for Sesame (Sesamum indicum L.) [J]. Acta Agron Sin, 2013, 39(08): 1425-1433.
[7] YU Hai-Xia,TIAN Ji-Chun. Association between Starch Pasting Properties and DArT Markers in Common Wheat [J]. Acta Agron Sin, 2012, 38(11): 1997-2006.
[8] JIAN Shuang,WEN Zi-Xiang,LI Hai-Chao,YUAN Dao-Hua,LI Jin-Ying,ZHANG Hui,YE Yong-Zhong,LU Wei-Guo. Identification of QTLs for Glycinin (11S) and β-Conglycinin (7S) Fractions of Seed Storage Protein in Soybean by Association Mapping [J]. Acta Agron Sin, 2012, 38(05): 820-828.
[9] WEN Zi-Xiang;ZHAO Tuan-Jie;ZHENG Yong-Zhan;LIU Shun-Hu;WANG Chun-E;WANG Fang;GAI Jun-Yi. Association Analysis of Agronomic and Quality Traits with SSR Markers in Glycine max and Glycine soja in China: II. Exploration of Elite Alleles [J]. Acta Agron Sin, 2008, 34(08): 1339-1349.
[10] WEN Zi-Xiang;ZHAO Tuan-Jie;ZHENG Yong-Zhan;LIU Shun-Hu;WANG Chun-E;WANG Fang;GAI Jun-Yi. Association Analysis of Agronomic and Quality Traits with SSR Markers in Glycine max and Glycine soja in China: I. Population Structure and Associated Markers [J]. Acta Agron Sin, 2008, 34(07): 1169-1178.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!