Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (10): 1604-1612.doi: 10.3724/SP.J.1006.2019.81091

• RESEARCH NOTES • Previous Articles    

Hexaploid ancestor of cultivated hexaploid oats inferred from high throughput GBS-SNP markers

ZHOU Ping-Ping1,2,YAN Hong-Hai1,2,3,*(),PENG Yuan-Ying2,*()   

  1. 1College of Life Sciences, China West Normal University, Nanchong 637009, Sichuan, China
    2Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    3Collaboration and Innovation Center of Tissue Repair Material Engineering Technology, China West Normal University, Nanchong 637009, Sichuan, China
  • Received:2018-12-24 Accepted:2019-05-12 Online:2019-10-12 Published:2019-09-10
  • Contact: Hong-Hai YAN,Yuan-Ying PENG E-mail:Honghai_yan@outlook.com;yy.peng@hotmail.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31571739);the Doctoral Scientific Research Foundation of West China Normal University(17E081)

Abstract:

Cultivated hexaploid oat is one of the most important cereal crops in the word, clearing its hexaploid ancestor would substantially improve the utilization efficiency of the genetic resources of oat, and therefore provide theoretical reference for oat germplasm conservation. In this study, 27 naked oats originated from China were sequenced by using GBS (genotyping by sequencing). SNPs were calling by combining the previously published GBS data of another 66 hexaploid oats including six species using UNEAK pipeline. A total of 8902 SNPs with MAF > 0.5, call rate > 0.95 were obtained. Four taxa with missing value greater than 15% were excluded for further analyses. Finally, 89 oat taxa meeting the requirement were used for PCA, STRUCTURE and UPGMA clustering analyses. All three analyses revealed some consistent results as follows: most wild hexaploid oats with the exception of A. sterilis showed strong genetic differentiations among each other, resulting in a grouping by species. Clustering analysis divided all the taxa into two clusters representing wild species and cultivated species, respectively, indicating some significant genetic differences existed between this two types of hexaploids. Within cultivated hexaploid oats, A. byzantina showed a high degree of genetic homogeneity with A. sativa, while naked oats differed from the others and formed an independent subcluster with close relationships with A. sativa. The taxa from the wild hexaploid species A. sterilis were mainly subdivided into two groups. Notably, these accessions of A. sterilis originated from western Asia (Iran-lraq-Turkey region) were clustered with the cultivated oats A. sativa and A. byzantina, suggesting that A. sativa and A. byzantina might be derived from progenitor germplasm from Iran-lraq-Turkey region. Another wild hexaploid species A. hybrida showed high degree of genetic homogeneity with A. fatua, is better to consider as a subspecies of A. fatua. This research contributes to clarifying the hexaploid origin of cultivated hexaploid oats.

Key words: cultivated hexaploid oat, GBS, domestication, origin, SNPs

Table 1

Materials used in this study including species name, accession number, origin and germplasm type"

种名a
Speciesa
材料编号b
Accession numberb
来源地
Origin
种质类型
Germplasm type
A. byzantina CN 21305 Antalya, Turkey Cultivated material
A. byzantina CN 52992 Alabama, United States Cultivar
A. byzantina CN 53022 Kansas, United States Cultivar
A. byzantina CN 53030 Georgia, United State Cultivar
A. byzantina CN 53046 Georgia, United States Cultivar
A. byzantina CN 53811 Algeria Cultivated material
A. byzantina CN 88661 Colonia, Uruguay Cultivar
A. fatua CN 21269 Iraq Wild species
A. fatua CN 22544 Turkey Wild species
A. fatua CN 24167 Israel Wild species
A. fatua CN 24919 Iran Wild species
A. fatua CN 82124 Gansu, China Wild species
A. fatua PI 545459 South Dakota United States Wild species
A. fatua PI 560776 Van Turkey Wild species
A. fatua PI 544659 South Dakota, United States Wild species
A. hybrida CN 24884 Iran Wild species
A. hybrida CN 24885 Iran Wild species
A. hybrida CN 24926 Iran Wild species
A. hybrida CN 24930 Iran Wild species
A. hybrida CN 25241 Ordu, Turkey Wild species
A. occidentalis CN 23036 Canary Islands, Spain Wild species
A. occidentalis CN 25942 Morocco Wild species
A. occidentalis CN 4541 Canary Islands, Spain Wild species
A. occidentalis CN 4547 Canary Islands, Spain Wild species
A. occidentalis CN 25956 Morocco Wild species
A. occidentalis CN 26226 Canary Islands, Spain Wild species
A. sativa CN 18136 Ontario, Canada Cultivar
A. sativa CN 1954 Transvaal, South Africa Cultivated material
A. sativa CN 22319 Ethiopia Cultivated material
A. sativa CN 24549 Mugla, Turkey Cultivated material
A. sativa CN 2806 Alger, Algeria Cultivar
A. sativa CN 2807 Alabama, United States Cultivar
A. sativa CN 2897 Morocco Cultivated material
A. sativa CN 5220 Texas, United States Cultivar
A. sativa CN 5224 United States Cultivar
A. sativa CN 53006 Montana, United States Cultivar
A. sativa CN 64264 Heves, Hungary Cultivated material
A. sativa CN 21340 Kirsehir, Turkey Cultivated material
A. sativa CN 63538 Uttar Pradesh, India Landrace
A. sativa CN 64364 Gruzinsk, Georgia Landrace
A. sativa CN 64371 Chernivtsi, Ukraine Landrace
A. sativa CN 64377 Irkutsk, Russian Federation Cultivated material
A. sativa CN 64378 Dzavhan, Mongolia Cultivated material
A. sativa CN 64379 Khevsuretiya, Georgia Landrace
A. sativa CN 64399 Ankara, Turkey Landrace
A. sativa PI 40650 Gansu, China Landrace
A. sativa PI 636013 Heves, Hungary Landrace
A. sativa CN 63917 Gonder, Ethiopia Landrace
A. sativa ssp. nuda CN 53975 Illinois, United States Cultivar
种名a
Speciesa
材料编号b
Accession numberb
来源地
Origin
种质类型
Germplasm type
A. sativa ssp. nuda ZY000674 Deqing, Yunnan, China Landrace
A. sativa ssp. nuda ZY000670 Lijiang, Yunnan, China Landrace
A. sativa ssp. nuda ZY000671 Lijiang, Yunnan, China Landrace
A. sativa ssp. nuda ZY000386 Fanshi, Shanxi, China Landrace
A. sativa ssp. nuda ZY000347 Lanxian, Shanxi, China Landrace
A. sativa ssp. nuda ZY000619 Huangzhong, Shanxi, China Landrace
A. sativa ssp. nuda ZY000383 Shenchi, Shanxi, China Landrace
A. sativa ssp. nuda ZY000290 Youyu, Shanxi, China Landrace
A. sativa ssp. nuda ZY000615 Minhe, Qinghai, China Landrace
A. sativa ssp. nuda ZY000607 Xining, Qinghai, China Landrace
A. sativa ssp. nuda ZY000012 Fengning, Hebei, China Landrace
A. sativa ssp. nuda ZY000021 Kangbao, Hebei, China Landrace
A. sativa ssp. nuda ZY000016 Zhuolu, Hebei, China Landrace
A. sativa ssp. nuda ZY000024 Shangyi, Hebei, China Landrace
A. sativa ssp. nuda ZY000232 Ningcheng, Inner Mongolia, China Landrace
A. sativa ssp. nuda ZY000100 Huhhot, Inner Mongolia, China Landrace
A. sativa ssp. nuda ZY000064 Jining, Inner Mongolia, China Landrace
A. sativa ssp. nuda ZY000236 Keqi, Inner Mongolia, China Landrace
A. sativa ssp. nuda ZY000083 Fengzhen, Inner Mongolia, China Landrace
A. sativa ssp. nuda ZY000090 Zhuozi, Inner Mongolia, China Landrace
A. sativa ssp. nuda ZY000241 Zuoqi, Inner Mongolia, China Landrace
A. sativa ssp. nuda ZY000245 Shangdu, Inner Mongolia, China Landrace
A. sativa ssp. nuda ZY000632 Pingli, Shaanxi, China Landrace
A. sativa ssp. nuda ZY000625 Xunyang, Shaanxi, China Landrace
A. sativa ssp. nuda ZY000635 Ningshan, Shaanxi, China Landrace
A. sativa ssp. nuda ZY000622 Zhenping, Shaanxi, China Landrace
A. sativa ssp. nuda ZY000630 Zhenping, Shaanxi, China Landrace
A. sterilis CN 19783 Esfahan, Iran Wild species
A. sterilis CN 19991 Mazandaran, Iran Wild species
A. sterilis CN 20234 Iraq Wild species
A. sterilis CN 20235 Iraq Wild species
A. sterilis CN 20239 Iraq Wild species
A. sterilis CN 20242 Iraq Wild species
A. sterilis CN 20280 Iraq Wild species
A. sterilis CN 20349 Lebanon Wild species
A. sterilis CN 20625 Israel Wild species
A. sterilis CN 20982 Elazig, Turkey Wild species
A. sterilis CN 23417 Morocco Wild species
A. sterilis CN 24168 Israel Wild species
A. sterilis CN 24842 Siirt, Turkey Wild species
A. sterilis CN 25974 Morocco Wild species
A. sterilis CN 21178 Algeria Wild species
A. sterilis CN 22266 Ethiopia Wild species
A. sterilis CN 75938 Israel Wild species

Fig. 1

Distribution of MAF of obtained GBS markers The number above each bar represents the percentage of distribution of MAF of obtained GBS markers."

Fig. 2

PCA analysis of 89 Avena taxa based on 8902 GBS markers"

Fig. 3

STRUCTURE analysis based on 8902 GBS markers A: the delta K value reaches to the peak with K=4. B: the grouping results at the optimal K(4) value. Each color represents a group. Each vertical bar represents one of Avena taxa."

Fig. 4

Phylogenetic tree was constructed by using UPGMA method"

[1] Kong L, Huo H, Mao P . Antioxidant response and related gene expression in aged oat seed. Front Plant Sci, 2015,6:158
[2] FAOSTATS. . 2016
[3] Coffman F A . Oat History, Identification and Classification. Washington D. C: US Department of Agriculture, Agricultural Research Service. 1977. pp 3-30
[4] Cox D J, Frey K J . Improving cultivated oats ( Avena sativa L.) with alleles for vegetative growth index from A. sterilis L. Theor Appl Genet, 1984,68:239-245
[5] Branson C V, Frey K J . Recurrent selection for groat oil content in oat. Crop Sci, 1989,29:1382-1387
[6] Zamir D . Improving plant breeding with exotic genetic libraries. Nat Rev Genet, 2001,2:983-989
[7] Loskutov I G, Rines H W. Avena. In: Kole C, ed. Wild Crop Relatives: Genomic and Breeding Resources. Heidelberg: Springer Press, 2011. pp 109-183
[8] Baum B R. Oats: Wild and Cultivated. A Monograph of the Genus Avena L. (Poaceae). Ottawa: Minister of Supply and Services Press, 1977.
[9] Ladizinsky G. Studies in Oat Evolution. A Man’s Life with Avena (Springer Briefs in Agriculture). Heidelberg: Springer Press, 2012. pp 1-18
[10] Coffman F A . Origin of cultivated oats. J Am Soc Agron, 1946,38:983-1002
[11] 郑殿升, 张宗文 . 大粒裸燕麦(莜麦)(Avena nuda L.)起源及分类问题的探讨. 植物遗传资源学报, 2011,5:667-670.
Zheng D S, Zhang Z W . Discussion on the origin and taxonomy of naked oat ( Avena nuda L.). J Plant Genet Resour, 2011,5:667-670 (in Chinese with English abstract)
[12] Zhou X, Jellen E N, Murphy J P . Progenitor germplasm of domisticated hexaploid oat. Crop Sci, 1999,39:1208-1214
[13] Loskutov I G . On evolutionary pathways of Avena species. Genet Resour Crop Evol, 2008,55:211-220
[14] 刘青, 刘欢, 林磊 . 燕麦属系统学研究进展. 热带亚热带植物学报, 2014,5:516-524
Liu Q, Liu H, Lin L . Research advances on systematics of Avena( Pooideae, Poaceae). J Trop Subtrop Bot, 2014,5:516-524 (in Chinese with English abstract)
[15] Ladizinsky G. The domestication and history of oats. In: Mattsson B, Lyhagen R, eds. Proceedings of the 3rd International Oat Conference, Lund, Sweden. Svalof AB, 1988. pp 7-12
[16] Baum B R . Extrapolation of the predomesticated hexaploid cultivated oats. Evolution, 1973,27:518-523
[17] Huang Y F, Poland J A, Wight C P, Tinker N A . Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated oat. PLoS One, 2014,9:e102448
[18] Chew P, Meade K, Hayes A, Harjes C, Bao Y, Beattie A D, Puddephat I, Gusmini G, Tanksley S D . A study on the genetic relationships of Avena taxa and the origins of hexaploid oat. Theor Appl Genet, 2016,129:1405-1415
[19] Yan H, Bekele W A, Wight C P, Peng Y, Langdon T, Latta R G, Fu Y B, Diederichsen A, Howarth C J, Jellen E N, Boyle B, Wei Y, Tinker N A . High-density marker profiling confirms ancestral genomes of Avena species and identifies D-genome chromosomes of hexaploid oat. Theor Appl Genet, 2016,129:2133-2149
[20] Chaffin A S, Huang Y F, Smith S, Bekele W A, Babiker E, Gnanesh B N, Foresman B J, Blanchard S G, Jay J J, Reid R W, Wight C P, Chao S, Islamovic E, Kolb F L, McCartney C, Mitchell F J W, Beattie A D, Bjornstad A, Bonman J M, Langdon T, Howarth C J, Brouwer C R, Jellen E N, Klos K E, Poland J A, Hsieh T F, Brown R, Jackson E, Schlueter J A, Tinker N A . A consensus map in cultivated hexaploid oat reveals conserved grass synteny with substantial subgenome rearrangement. Plant Genome, 2016,9. doi: 10.3835/plantgenome2015.10.0102.
[21] Torkamaneh D, Laroche J, Belzile F . Genome-wide SNP calling from genotyping by sequencing (GBS) data: a comparison of seven pipelines and two sequencing technologies. PLoS One, 2016,11:e0161333
[22] Lu F, Lipka A E, Glaubitz J, Elshire R, Cherney J H, Casler M D, Buckler E S, Costich D E . Switchgrass genomic diversity, ploidy, and evolution: novel insights from a Nnetwork-based SNP discovery protocol. PLoS Genet, 2013,9:139-147
[23] Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S . TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23:2633-2635
[24] Pritchard J, Stephens M, Donnelly . Inference of population structure using multilocus genotype data. Genetics, 2000,155:945-959
[25] Evanno G, Regnaut S, Goudet J . Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005,14:2611-2620
[26] Earl D A, Vonholdt B M . STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour, 2012,4:359-361
[27] R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. . 2016.
[28] Souza E, Sorrells M E . Relationships among 70 north American oat germplasms: I. cluster analysis using quantitative characters. Crop Sci, 1991,31:599-605
[29] Koch. K . Beiträge zu einer flora des orients. Linnaeus, 1948,21:289-443
[30] Baohong G, Zhou X, Murphy J P . Genetic variation within Chinese and Western cultivated oat accessions. Cereal Res Commun, 2003,31:339-346
[31] Malzew A . Wild and cultivated oats: Sectio Eu Avena Griseb. Bull Appl Bot, Genet Plant Breed, 1930,38:473-506 (in Russian with English abstract)
[1] CUI Jing, WANG Zhi-Cheng, ZHANG Xin-Yu, KE Hui-Feng, WU Li-Qiang, WANG Xing-Fen, ZHANG Gui-Yin, MA Zhi-Ying, ZHANG Yan. Function study of cotton GbSTK gene in regulating flowering and Verticillium wilt resistance [J]. Acta Agronomica Sinica, 2021, 47(1): 30-41.
[2] LIU Yi-Ke,ZHU Zhan-Wang,CHEN Ling,ZOU Juan,TONG Han-Wen,ZHU Guang,HE Wei-Jie,ZHANG Yu-Qing,GAO Chun-Bao. Revealing the genetic diversity of wheat varieties (lines) in China based on SNP markers [J]. Acta Agronomica Sinica, 2020, 46(02): 307-314.
[3] Hong JIANG,Shi SUN,Wen-Wen SONG,Cun-Xiang WU,Ting-Ting WU,Shui-Xiu HU,Tian-Fu HAN. Characterization of Growth Period Structure and Identification of E Genes of MGIII Soybean Varieties from Different Geographic Regions [J]. Acta Agronomica Sinica, 2018, 44(10): 1448-1458.
[4] ZHANG Xue-Yong, MA Lin, ZHENG Jun. Characteristics of Genes Selected by Domestication and Intensive Breeding in Crop Plants [J]. Acta Agron Sin, 2017, 43(02): 157-170.
[5] CAO Ting-Jie,XIE Jing-Zhong,WU Qiu-Hong,CHEN Yong-Xing,WANG Zhen-Zhong,ZHAO Hong,WANG Xi-Cheng,ZHAN Ke-Hui,XU Ru-Qiang,WANG Ji-Rui,LUO Ming-Cheng,LIU Zhi-Yong. Genetic Diversity of Registered Wheat Varieties in Henan Province Based on Pedigree and Single-Nucleotide Polymorphism [J]. Acta Agron Sin, 2015, 41(02): 197-206.
[6] WANG Chun-Ping,GAO Li-Juan,PAN Zhi-Fen,NIMA Zha-Xi,TANG Ya-Wei,ZENG Xing-Quan,LI Qiao,DENG Guang-Bing,LONG Hai,YU Mao-Qun. Polymorphism of Starch Granule-Associated Proteins and 5′ Leader Sequence of GBSSI Gene in Indigenous Naked Barley (Hordeum vulgare L.) from Qinghai-Tibetan Plateau in China [J]. Acta Agron Sin, 2012, 38(07): 1148-1154.
[7] LIU Yu-Hui,WANG Li,YANG Hong-Yu,YU Bin,LI Yuan-Ming,ZHANG Jun-Lian,WANG Di. Cloning of Granule-Bound Starch Synthase Gene and Construction of Its RNAi Vector in Potato Tuber [J]. Acta Agron Sin, 2012, 38(07): 1187-1195.
[8] DAO Ai-Fen, QI Jian-Min, SU Jian-Guang, LI Ai-Jing, LI Mu-Lan, FANG Beng-Beng, LIN Li-Hui, XU Jian-Tang, TUN Jian-Mei, LIN Pei-Qing. Method Comparison of Using SRAP and ISSR and Combination of Both in Origin and Evolution of Jute [J]. Acta Agron Sin, 2011, 37(12): 2277-2284.
[9] SHAO Jing, DAI Wei-Min, ZHANG Lian-Ju, SONG Xiao-Ling, QIANG Qing. Genetic Diversity and Origin of Weedy Rice in Jiangsu Province, China [J]. Acta Agron Sin, 2011, 37(08): 1324-1332.
[10] ZHANG Han, WANG Jian-Cheng, WANG Dong-Jian, TAO Feng-Xia, HU Jin-Fang, SONG Guo-An, GUAN Yan-An, LI Ru-Yu. Assessment of Genetic Diversity in Chinese Sorghum Landraces Using SSR Markers as Compared with Foreign Accessions [J]. Acta Agron Sin, 2011, 37(02): 224-234.
[11] MA Dian-Rong;LI Mao-Bai;WANG Nan;XU Zheng-Jin;CHEN Wen-Fu. Genetic Diversity and Populati [J]. Acta Agron Sin, 2008, 34(03): 403-411.
[12] YAN Long;GUAN Jian-Ping;ZONG Xu-Xiao. Genetic Diversity Analysis of Pigeonpea Germplasm Resources by AFLP [J]. Acta Agron Sin, 2007, 33(05): 790-798.
[13] GUO Hua;WANG Xian-Ze;LI Hai-Lei;GAO Ai-Ying;TIAN Ji-Chun. Binding Characteristics of Granule-Bound Starch Synthase (GBSS) with Starch in Wheat Cultivar Chinese Spring [J]. Acta Agron Sin, 2007, 33(02): 322-325.
[14] DONG Ying-Shan ZHUANG Bing-Chang ZHAO Li-Mei SUN Hun ZHANG Ming;HE Meng-Yuan. The Genetic Diversity Centers of Annual Wild Soybean in China [J]. Acta Agron Sin, 2000, 26(05): 521-527.
[15] FU Da-Xiong;RUAN Ren-Wu;DAI Xiu-Mei;LIU Yong-Mei. A Study on Ancient Barley, Wheat and Millet Discovered at Changguo of Tibet [J]. Acta Agron Sin, 2000, 26(04): 392-398.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!