Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (6): 829-838.doi: 10.3724/SP.J.1006.2019.84111


Mapping of genes confessing same height of tiller and main stem in sorghum

Rui WANG1,*,Liang LING2,*,Peng-Jie ZHAN1,Ji-Zhen YU1,Jian-Qiang CHU1,Jun-Ai PING1,*(),Fu-Yao ZHANG1,*()   

  1. 1 Sorghum Institute, Shanxi Academy of Agricultural Sciences / Key Laboratory of Genetic and Germplasm Innovation in Sorghum for Shanxi Province, Yuci 030600, Shanxi, China
    2 Institute of Edible Fungi, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China
  • Received:2018-08-21 Accepted:2019-01-19 Online:2019-06-12 Published:2019-06-12
  • Contact: Rui WANG,Liang LING,Jun-Ai PING,Fu-Yao ZHANG E-mail:pingja1029@163.com;zfy5607@163.com
  • Supported by:
    This study was supported by the Doctoral Research Fund of Shanxi Academy of Agricultural Sciences(YBSJJ1606);the China Agriculture Research System(CARS-06);the Advantage Research Group of Shanxi Academy of Agricultural Sciences (YCX2018D2YS11).


In this study, an F2 population derived from a cross between two sorghum lines with same height and different heights of tiller and main stem respectively was used to construct pools. In order to map genes related to same height of tiller and main stem, BSA and SLAF-seq technique were developed. Genetic analysis showed that the trait of same height of tiller and main stem was controlled by a single recessive nuclear gene. Reference genome of sorghum was used to design markers by simulating the number of markers produced by different enzymes. The SLAF library was conducted and sequenced by paired-end sequencing. The restriction enzyme was Rsa I + Hae III. The fragment length was 364-414 bp. The quality of Q30 was up to 91.70% and the GC content (45.79%) was low enough to perform sequencing. Compared with the sequencing data of rice, the construction of SLAF library fitted well to the standard, with its paired-end mapped reads reaching to 93.35% and normal digestion ratio reaching to 90.60% in sorghum. In total of 30.80 M reads and 133,246 SLAF labels were obtained and 319,428 SNPs were found. The associated region was located by SNP-index, Euclidean distance, and their combination. The candidate regions had a size of 1.95 Mb at nucleotides 54,788,026-56,740,873 on Chr.9. The SNPs locating at the associated region were analyzed between the two parents. Four non-synonymous-coding SNPs were found in this region. By verification, these SNPs were considered to be related to same height of tiller and main stem. Corresponding to three candidate genes (Sobic.009G197901.1, Sobic.009G213300.1, and Sobic.009G221200.1), these genes may be functional genes directly related to the traits.

Key words: sorghum, same height of tiller and main stem, SLAF, SNP

Table 1

Number of SLAF labels on each chromosome"

Chromosome length
Expected SLAF number
Average SLAF distance (bp)
Chr.1 84007898 11859 7083.89
Chr.2 88663305 12527 7077.78
Chr.3 84691115 11983 7067.61
Chr.4 77402132 10684 7244.68
Chr.5 70937750 9529 7444.41
Chr.6 70774438 9694 7300.88
Chr.7 73201405 10007 7315.02
Chr.8 63096686 8854 7126.35
Chr.9 67846938 9319 7280.50
Chr.10 69378333 9446 7344.73
合计Total 750000000 103902 7218.34

Fig. 1

Distribution of SLAF on reference genome Abscissa represents the length of the chromosome; the deep color area is SLAF label concentrated distribution area."

Fig. 2

Distribution of observed control insert size"

Table 2

Alignment analysis of obtained reads in Oryza sativa"

mapped reads (%)
mapped reads (%)
Unmap reads
Digestion normally
Digestion partly
水稻 Oryza sativa 93.35 2.79 3.86 90.60 9.40

Table 3

Statistics of sequencing for each sample"

Sample ID
Total reads
Q30 (%) GC (%)
父本 Male parent 4040595 92.05 45.96
母本 Female parent 3591789 92.49 45.96
混池aa Pool aa 10734806 92.02 45.58
混池ab Pool ab 12433150 90.24 45.67
水稻(对照) Rice (control) 192955 92.22 43.57

Table 4

Statistics of SLAF"

Sample ID
SLAF number
Total depth
Average depth
父本 Male parent 117244 2922769 24.93×
母本 Female parent 119317 2438178 20.43×
混池aa Pool aa 131993 8387924 63.55×
混池ab Pool ab 132818 8011244 60.32×

Table 5

Statistics of SNP information"

Sample ID
Total SNP
SNP number
Heterozygote ratio (%)
父本 Male parent 319428 221552 3.42
母本 Female parent 319428 233073 5.54
混池aa Pool aa 319428 265665 48.54
混池ab Pool ab 319428 312515 68.51

Table 6

Distribution statistics of SLAF and SNP on genome"

SLAF number
SNP number
Chr.1 12565 31481
Chr.2 14026 40153
Chr.3 14064 35216
Chr.4 11159 24654
Chr.5 10947 29394
Chr.6 11411 31105
Chr.7 11939 24799
Chr.8 10144 25585
Chr.9 10634 27338
Chr.10 10933 25189
其他Other 15424 24514
合计Total 133246 319428

Fig. 3

Distribution of SLAF and SNP on genome Abscissa represents the length of the chromosome; the darker area is SLAF label concentrated distribution area."

Fig. 4

Distribution of SNP-index associated values on genome The red line represents the threshold line of 0.99. The blue line represents the threshold line of 0.95, and the green line represents the threshold line of 0.90."

Table 7

Statistics of associated region information"

Size (Mb)
Gene number
Chr.9 54788026 56740873 1.95 265
Total 1.95 265

Fig. 5

Distribution of ED associated values on genome"

Table 8

Statistics of associated region information"

Size (Mb)
Gene number
Chr.9 30964929 38410608 7.45 44
Chr.9 43824552 59633348 15.81 1538
合计Total 23.26 1582

Table 9

Information of SNP"

Chr.9 55037659 C→A Sobic.009G197901.1
Chr.9 55037906 T→G Sobic.009G197901.1
Chr.9 56069487 T→G Sobic.009G213300.1
Chr.9 56613839 A→G Sobic.009G221200.1

Table 1

0 Sequence and information of the primers"

Primer ID
Forward primer (5'-3')
Reverse primer (5'-3')
Size (bp)

Fig. 6

Sequencing results of the parents with primer SNP1(A), SNP2(B), SNP3(C), and SNP4(D)"

[1] 邹剑秋, 朱凯, 张志鹏, 黄先伟 . 国内外高粱深加工研究现状与发展前景. 杂粮作物, 2002,22(5):296-298.
Zou J Q, Zhu K, Zhang Z P, Huang X W . Status and prospects of research on sorghum deep processing at home and abroad. Rain Fed Crops, 2002,22(5):296-298 (in Chinese with English abstract).
[2] 吕富堂, 韩爱清, 杜秀兰, 张福耀, 李团银 . 建国以来中国高粱发展历程及发展趋势. 山西农业科学, 2002,30(3):20-24.
Lyu F T, Han A Q, Du X L, Zhang F Y, Li T Y . Development and tendency of Chinese sorghum since the founding of P R China. J Shanxi Agric Sci, 2002,30(3):20-24 (in Chinese with English abstract).
[3] 白文斌, 张福跃, 焦晓燕, 董良利, 柳青山, 平俊爱 . 中国高粱产业工程技术研究的定位思考. 中国农学通报, 2013,29(11):107-110.
Bai W B, Zhang F Y, Jiao X Y, Dong L L, Liu Q S, Ping J A . The fixed position thought of sorghum engineering technology research in china. Chin Agric Sci Bull, 2013,29(11):107-110 (in Chinese with English abstract).
[4] 张福耀, 平俊爱 . 高粱的根本出路在于机械化. 农业技术与装备, 2012, ( 20):19-21.
Zhang F Y, Ping J A . The fundamental way of sorghum is mechanization. Agric Technol Equip, 2012, ( 20):19-21 (in Chinese with English abstract).
[5] 焦少杰, 王黎明, 姜艳喜, 严洪冬, 苏德峰, 孙广全 . 粒用高粱机械化栽培品种选择. 园艺与种苗, 2012, ( 12):1-2.
Jiao S J, Wang L M, Jiang Y X, Yan H D, Su D F, Sun G Q . Varieties selection of grain sorghum for mechanized cultivation. Hortic Seed, 2012, ( 12):1-2 (in Chinese with English abstract).
[6] Quinby J R, Karper R E . Inheritance of height in sorghum. Agronomy, 1954,46:212-216.
doi: 10.2134/agronj1954.00021962004600050007x
[7] Pereira M G, Lee M, Bramel-Cox P, Woodman W, Doebley J, Whitkus R . Construction of an RFLP map in sorghum and comparative mapping in maize. Genome, 1994,37:236-243.
doi: 10.1139/g94-033 pmid: 18470074
[8] Lin Y R, Schertz K F, Paterson A H . Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics, 1995,141:391-411.
doi: 10.1101/gad.9.17.2193 pmid: 8536986
[9] Rami J F, Dufour P, Trouch G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P . Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum ( Sorghum bicolor L. Moench). Theor Appl Genet, 1998,97:605-616.
doi: 10.1007/s001220050936
[10] Klein R R, Rodrigyez-Herrera R, Schlueter J A . Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum. Theor Appl Genet, 2001,102:307-319.
doi: 10.1007/s001220051647
[11] Upadhyaya H D, Wang Y H, Sharma S, Singh S . Association mapping of height and maturity across five environments using the sorghum mini core collection. Genome, 2012,55:471-479.
doi: 10.1139/g2012-034 pmid: 22680231
[12] Upadhyaya H D, Wang Y H, Gowda C L, Sharma S . Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection. Theor Appl Genet, 2013,126:2003-2015.
doi: 10.1007/s00122-014-2318-7 pmid: 23649651
[13] Harris-Shultz K R, Davis R F, Knoll J E, Anderson W, Wang H . Inheritance and identification of a major quantitative trait locus (QTL) that confers resistance to Meloidogyne incognita and a novel QTL for plant height in sweet sorghum. Phytopathology, 2015,105:1522-1528.
[14] 苏舒 . 高粱形态学农艺性状的QTL定位研究. 南京大学硕士学位论文, 江苏南京, 2012.
Su S . QTL Mapping of Agronomic Traits of Morphology in Sorghum. MS Thesis of Nanjing University, Nanjing, Jiangsu,China, 2012 (in Chinese with English abstract).
[15] 刘娟 . 高粱株高和抗蚜连锁标记的发掘与验证. 河北农业大学硕士学位论文, 河北保定, 2014.
Liu J . Discover and Validation of Markers Linkage with Plant Height and Resistance to Aphid of Sorghum. MS Thesis of Agricultural University of Hebei, Baoding, Hebei, China, 2014 (in Chinese with English abstract).
[16] Lafarge T A, Broad J, Hammer G L . Tillering in grain sorghum over a wide range of population densities: identification of a common hierarchy for tiller emergence, leaf area development and fertility. Ann Bot, 2002,90:87-98.
doi: 10.1093/aob/mcf152 pmid: 4233856
[17] Feltus F A, Hart G E, Schertz K F, Casa A M, Kresovich S, Abraham S, Klein P E, Brown P J, Paterson A H . Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor Appl Genet, 2006,112:1295-1305.
[18] Shehzad T, Iwata H, Okuno K . Genome-wide association mapping of quantitative traits in sorghum ( Sorghum bicolor( L.) Moench) by using multiple models. Breed Sci, 2009,59:217-227.
[19] Shiringani A L, Frisch M, Friedt W . Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Theor Appl Genet, 2010,121:323-336.
[20] 董维, 苏舒, 游录鹏, 黄守程, 戚金亮, 陆桂华, 黄应华, 杨永华 . 高粱F6代群体分蘖数的QTL定位. 南京林业大学学报(自然科学版), 2013,37(2):55-58.
Dong W, Su S, You L P, Huang S C, Qi J L, Lu G H, Huang Y H, Yang Y H . QTLs analysis of tillers number in F6 sorghum population. J Nanjing For Univ( Nat Sci Edn), 2013,37(2):55-58 (in Chinese with English abstract).
[21] Kozich J J, Westcott S L, Baxter N T, Highlander S K, Schloss P D . Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl Environ Microbiol, 2013,79:5112-5120.
doi: 10.1128/AEM.01043-13 pmid: 23793624
[22] International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 2005,436:793-800.
doi: 10.1038/nature03895 pmid: 16100779
[23] Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R . Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol, 2012,30:174-178.
doi: 10.1038/nbt.2095 pmid: 22267009
[24] Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J . MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res, 2013,23:687-697.
doi: 10.1101/gr.146936.112 pmid: 23299975
[25] Li H, Durbin R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009,25:1754-1760.
pmid: 2705234
[26] Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano L M, Kamoun S, Terauchi R . QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J, 2013,74:174-183.
doi: 10.1111/tpj.12105 pmid: 23289725
[27] 贺捷 . 甜高粱分蘖特性国内研究进展. 中国糖料, 2017,39(2):65-67.
He J . Research progresses on tillering characteristics of sweet sorghum in China. Sugar Crops China, 2017,39(2):65-67 (in Chinese with English abstract).
[28] 詹鹏杰, 张福耀, 王瑞, 于纪珍, 李燕 . 适宜机械化生产酿造高粱汾酒粱1号的选育. 安徽农业科学, 2016,44(31):13-14.
Zhan P J, Zhang F Y, Wang R, Yu J Z, Li Y . Breeding of Fenjiuliang No.1: a brewing sorghum suitable for mechanized production. J Anhui Agric Sci, 2016,44(31):13-14 (in Chinese with English abstract).
[29] Brown P J, Klein P E, Bortiri E, Acharya C B, Rooney W L, Kresovich S . Inheritance of inflorescence architecture in sorghum. Theor Appl Genet, 2006,113:931-942.
doi: 10.1109/LPT.2002.806092 pmid: 16847662
[30] Shiringani A L, Frisch M, Friedt W . Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Theor Appl Genet, 2010,121:323-336.
[31] 王柏柯, 李宁, 唐亚萍, 王强, 杨涛, 杨生保, 帕提古丽, 余庆辉, 高杰 . 基于简化基因组测序技术的番茄雄性不育基因定位. 西北农林科技大学学报(自然科学版), 2017,45(6):177-184.
Wang B K, Li N, Tang Y P, Wang Q, Yang T, Yang S B, Pati G L, Yu Q H, Gao J . Mapping male-sterile gene in tomato by specific length amplified fragment sequencing. J Northwest A&F Univ(Nat Sci Edn). 2017,45(6):177-184 (in Chinese with English abstract).
[32] 王伟, 刘凡, 任莉, 徐理, 陈旺, 曾令益, 黄炳文, 方小平 . 采用SLAF-seq技术开发甘蓝型油菜霜霉病抗性SNP位点. 中国油料作物学报, 2016,38:555-562.
Wang W, Liu F, Ren L, Xu L, Chen W, Zeng L Y, Huang B W, Fang X P . Resistance SNP development to downy mildew in Brassica napus using SLAF-seq technique. Chin J Oil Crop Sci, 2016,38:555-562 (in Chinese with English abstract).
[33] Geng X, Jiang C, Yang J, Wang L, Wu X, Wei W . Rapid identification of candidate genes for seed weight using the SLAF-Seq method in Brassica napus. PLoS One, 2016,11:e0147580.
doi: 10.1371/journal.pone.0147580 pmid: 26824525
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[3] LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564.
[4] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
[5] ZHENG Xiang-Hua, YE Jun-Hua, CHENG Chao-Ping, WEI Xing-Hua, YE Xin-Fu, YANG Yao-Long. Xian-geng identification by SNP markers in Oryza sativa L. [J]. Acta Agronomica Sinica, 2022, 48(2): 342-352.
[6] XU De-Rong, SUN Chao, BI Zhen-Zhen, QIN Tian-Yuan, WANG Yi-Hao, LI Cheng-Ju, FAN You-Fang, LIU Yin-Du, ZHANG Jun-Lian, BAI Jiang-Ping. Identification of StDRO1 gene polymorphism and association analysis with root traits in potato [J]. Acta Agronomica Sinica, 2022, 48(1): 76-85.
[7] GENG La, HUANG Ye-Chang, LI Meng-Di, XIE Shang-Geng, YE Ling-Zhen, ZHANG Guo-Ping. Genome-wide association study of β-glucan content in barley grains [J]. Acta Agronomica Sinica, 2021, 47(7): 1205-1214.
[8] ZHANG Chun, ZHAO Xiao-Zhen, PANG Cheng-Ke, PENG Men-Lu, WANG Xiao-Dong, CHEN Feng, ZHANG Wei, CHEN Song, PENG Qi, YI Bin, SUN Cheng-Ming, ZHANG Jie-Fu, FU Ting-Dong. Genome-wide association study of 1000-seed weight in rapeseed (Brassica napus L.) [J]. Acta Agronomica Sinica, 2021, 47(4): 650-659.
[9] WANG Rui, SHI Long-Jian, TIAN Hong-Li, YI Hong-Mei, YANG Yang, GE Jian-Rong, FAN Ya-Ming, REN Jie, WANG Lu, LU Da-Lei, ZHAO Jiu-Ran, WANG Feng-Ge. Identification of SNP core primer and establishment of high throughput detection scheme for purity identification in maize hybrids [J]. Acta Agronomica Sinica, 2021, 47(4): 770-779.
[10] JIN Yi-Rong, LIU Jin-Dong, LIU Cai-Yun, JIA De-Xin, LIU Peng, WANG Ya-Mei. Genome-wide association study of nitrogen use efficiency related traits in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2021, 47(3): 394-404.
[11] WANG Yuan, WANG Jin-Song, DONG Er-Wei, WU Ai-Lian, JIAO Xiao-Yan. Effects of long-term nitrogen fertilization with different levels on sorghum grain yield, nitrogen use characteristics and soil nitrate distribution [J]. Acta Agronomica Sinica, 2021, 47(2): 342-350.
[12] DONG Er-Wei, WANG Jin-Song, WU Ai-Lian, WANG Yuan, WANG Li-Ge, HAN Xiong, GUO Jun, JIAO Xiao-Yan. Effects of row space and plant density on characteristics of grain filling, starch and NPK accumulation of sorghum grain of different parts of panicle [J]. Acta Agronomica Sinica, 2021, 47(12): 2459-2470.
[13] XIE Lei, REN Yi, ZHANG Xin-Zhong, WANG Ji-Qing, ZHANG Zhi-Hui, SHI Shu-Bing, GENG Hong-Wei. Genome-wide association study of pre-harvest sprouting traits in wheat [J]. Acta Agronomica Sinica, 2021, 47(10): 1891-1902.
[14] LIU Chang, MENG Yun, LIU Jin-Dong, WANG Ya-Mei, Guoyou Ye. Combining QTL-seq and linkage analysis to identify the QTL of mesocotyl elongation in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(10): 2036-2044.
[15] SUN Qian, ZOU Mei-Ling, ZHANG Chen-Ji, JIANG Si-Rong, Eder Jorge de Oliveira, ZHANG Sheng-Kui, XIA Zhi-Qiang, WANG Wen-Quan, LI You-Zhi. Genetic diversity and population structure analysis by SNP and InDel markers of cassava in Brazil [J]. Acta Agronomica Sinica, 2021, 47(1): 42-49.
Full text



No Suggested Reading articles found!