Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (01): 131-139.doi: 10.3724/SP.J.1006.2020.94048
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
LI Yang,YAO Lu-Hua,GUO Xin,ZHAO Xiao,HUANG Lei,WANG Deng-Ke,ZHANG Xue-Feng,XIAO Qian-Lin,YANG Rui-Ji,GUO Yan-Jun()
[1] |
N’Dayegamiye A, Tran T S . Effects of green manures on soil organic matter and wheat yields and N nutrition. Can J Soil Sci, 2001,81:371-382.
doi: 10.4141/S00-034 |
[2] |
Yeats T H, Rose J K C . The formation and function of plant cuticles. Plant Physiol, 2013,163:5-20.
doi: 10.1104/pp.113.222737 |
[3] |
Gonzalez A, Ayerbe L . Effect of terminal water stress on leaf epicuticular wax load, residual transpiration and grain yield in barley. Euphytica, 2010,172:341-349.
doi: 10.1007/s10681-009-0027-0 |
[4] |
Skorska E, Szwarc W . Influence of UV-B radiation on young triticale plants with different wax cover. Biol Planta, 2007,51:189-192.
doi: 10.1007/s10535-007-0038-4 |
[5] |
Zhu M, Riederer M, Hildebrandt U . Very-long-chain aldehydes induce appressorium formation in ascospores of the wheat powdery mildew fungus Blumeria graminis. Fungal Biol, 2017,121:716-728.
doi: 10.1016/j.funbio.2017.05.003 pmid: 28705398 |
[6] | 朱命炜, 王红星, 李建军, 李俊英, 王太霞, 李景原 . 木立芦荟发育过程中叶表皮角质膜和蜡质的变化. 电子显微学报, 2004,23:670-673. |
Zhu M W, Wang H X, Li J J, Li J Y, Wang T X, Li J Y . Changes in the cuticle and wax of the leaves during the development of aloe ( Aloe arborescens Mill.). J Chin Elect Microscopy Soc, 2004,23:670-673 (in Chinese with English abstract). | |
[7] | 韦存虚, 王建波, 陈义芳, 周卫东, 孙国荣 . 盐生植物星星草叶表皮具有泌盐功能的蜡质层. 生态学报, 2004,24:2451-2456. |
Wei C X, Wang J B, Cheng Y F, Zhou W D, Sun G R . Epicuticular wax of leaf epidermis: a functional structure for salt excretion in a halophyte Puccinellia tenuiflora. Acta Ecol Sin, 2004,24:2451-2456 (in Chinese with English abstract) | |
[8] |
Jetter R, Riederer M . Composition of cuticular waxes onOsmunda regalis Fronds. J Chem Ecol, 2000,26:399-412.
doi: 10.1023/A:1005409405771 |
[9] |
Lee S B, Suh M C . Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species. Plant Cell Rep, 2015,34:557.
doi: 10.1007/s00299-015-1772-2 pmid: 25693495 |
[10] | 李晓婷, 赵晓, 王登科, 黄蕾, 姚露花, 王党军, 和玉吉, 郭彦军 . 天然草地植物叶角质层蜡质的化学组成及其对自由放牧的响应. 草业学报, 2018,27(6):137-147. |
Li X T, Zhao X, Wang D K, Huang L, Yao L H, Wang D J, He Y J, Guo Y J . Chemical profiles of cuticular waxes in arid steppe plant species and their responses to continuous grazing. Acta Pratacult Sin, 2018,27(6):137-147 (in Chinese with English abstract). | |
[11] |
Bernard A, Joubès J . Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Prog Lipid Res, 2013,52:110-129.
doi: 10.1016/j.plipres.2012.10.002 |
[12] |
Kunst L, Samuels L . Plant cuticles shine: advances in wax biosynthesis and export. Curr Opin Plant Biol, 2009,12:721-727.
doi: 10.1016/j.pbi.2009.09.009 pmid: 19864175 |
[13] |
Kosma D K, Rowland O . Answering a four decade-old question on epicuticular wax biosynthesis. J Exp Bot, 2016,67:2538-2540.
doi: 10.1093/jxb/erw144 pmid: 27162275 |
[14] |
Zhang J Y, Broeckling C D, Blancaflor E B, Sledge M K, Sumner L W, Wang Z Y . Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa(Medicago sativa). Plant J, 2005,42:689-707.
doi: 10.1111/j.1365-313X.2005.02405.x pmid: 15918883 |
[15] |
Zhou L Y, Ni E D, Yang J W, Zhou H, Liang H, Li J, Jiang D G, Wang Z H, Liu Z L, Zhuang C X . Rice OsGL1-6 is involved in leaf cuticular wax accumulation and drought resistance. PLoS One, 2013,8:12.
doi: 10.1371/journal.pone.0065139 pmid: 23741473 |
[16] |
杜青峰, 王党军, 于翔宇, 姚露花, 和玉吉, 王瑞, 马生兰, 郭彦军 . 玉米间作夏季绿肥对当季植物养分吸收和土壤养分有效性的影响. 草业学报, 2016,25(3):225-233.
doi: 10.11686/cyxb2015483 |
Du Q F, Wang D J, Yu X Y, Yao L H, He Y J, Wang R, Ma S L, Guo Y J . The effects of corn and green manure intercropping on soil nutrient availability and plant nutrient uptake. Acta Pratac Sin, 2016,25(3):225-233 (in Chinese with English abstract)
doi: 10.11686/cyxb2015483 |
|
[17] | 张国发, 吴园园, 徐太海, 梁彦涛 . 田菁秸秆还田对松嫩平原盐碱土改良效果的研究. 大庆师范学院学报, 2018,38(3):48-50. |
Zhang G F, Wu Y Y, Xu T H, Liang Y T . The effects of returning Sesbania cannabina straw on improving soil quality in alkalized soils of Songnen Plain. J Daqing Norm Univ, 2018,38(3):48-50 (in Chinese). | |
[18] | 杨湘如, 郑永发 . 幼龄果园套种竹豆生态效益试验研究. 中国水土保持, 1991, (11):29-30. |
Yang X R, Zheng Y F . The ecological profits of Phaseolus calcaratns intercropping with young orchard. Chin Water Soil Conserv, 1991, (11):29-30 (in Chinese). | |
[19] |
Guo Y, Li J J, Busta L, Jetter R . Coverage and composition of cuticular waxes on the fronds of the temperate fernsPteridium aquilinum, Cryptogramma crispa, Polypodium glycyrrhiza, Polystichum munitum and Gymnocarpium dryopteris. Ann Bot, 2018,122:555-568.
doi: 10.1093/aob/mcy078 pmid: 30252045 |
[20] |
Jetter R, Riederer M, Seyer A, Mioskowski C . Homologous long-chain alkanediols from Papaver leaf cuticular waxes. Phytochemistry, 1996,42:1617-1620.
doi: 10.1016/0031-9422(96)00180-X |
[21] |
Vermeer C P, Nastold P, Jetter R . Homologous very-long-chain 1,3-alkanediols and 3-hydroxyaldehydes in leaf cuticular waxes ofRicinus communis L. Phytochemistry, 2003,62:433-438.
doi: 10.1016/s0031-9422(02)00560-5 pmid: 12620356 |
[22] |
Busta L, Jetter R . Moving beyond the ubiquitous: the diversity and biosynthesis of specialty compounds in plant cuticular waxes. Phytochem Rev, 2018,17:1275-1304.
doi: 10.1007/s11101-017-9542-0 |
[23] |
Wen M, Jetter R . Composition of secondary alcohols, ketones, alkanediols, and ketols inArabidopsis thaliana cuticular waxes. J Exp Bot, 2009,60:1811-1821.
doi: 10.1093/jxb/erp061 pmid: 19346242 |
[24] |
Hegebarth D, Buschhaus C, Wu M, Bird D, Jetter R . The composition of surface wax on trichomes ofArabidopsis thaliana differs from wax on other epidermal cells. Plant J, 2016,88:762-774.
doi: 10.1111/tpj.13294 pmid: 27496682 |
[25] |
Guo Y J, Jetter R . Comparative analyses of cuticular waxes on various organs of potato (Solanum tuberosum L.). J Agric Food Chem, 2017,65:3926-3933.
doi: 10.1021/acs.jafc.7b00818 pmid: 28467851 |
[26] |
Guo Y J, Busta L, Jetter R . Cuticular wax coverage and composition differ among organs ofTaraxacum officinale. Plant Physiol Biochem, 2017,115:372-379.
doi: 10.1016/j.plaphy.2017.04.004 pmid: 28432976 |
[27] |
Lee S, Kim H, Kim R, Suh M . Overexpression of Arabidopsis MYB96 confers drought resistance inCamelina sativa via cuticular wax accumulation. Plant Cell Rep, 2014,33:1535-1546.
doi: 10.1007/s00299-014-1636-1 |
[28] |
Rowland O, Zheng H, Hepworth S R, Lam P, Jetter R, Kunst L . CER4 encodes an alcohol-forming fatty acyl-coenzyme a reductase involved in cuticular wax production in Arabidopsis. Plant Physiol, 2006,142:866-877.
doi: 10.1104/pp.106.086785 pmid: 16980563 |
[29] |
Razeq F M, Kosma D K, Rowland O, Molina I . Extracellular lipids ofCamelina sativa: characterization of chloroform- extractable waxes from aerial and subterranean surfaces. Phytochemistry, 2014,106:188-196.
doi: 10.1016/j.phytochem.2014.06.018 |
[30] |
Javelle M, Vernoud V, Depege-Fargeix N, Arnould C, Oursel D, Domergue F, Sarda X, Rogowsky P M . Overexpression of the epidermis-specific homeodomain-leucine zipper IV transcription factor Outer Cell Layer1 in maize identifies target genes involved in lipid metabolism and cuticle biosynthesis. Plant Physiol, 2010,154:273-286.
doi: 10.1104/pp.109.150540 pmid: 20605912 |
[31] |
Hansjakob A, Riederer M, Hildebrandt U . Appressorium morphogenesis and cell cycle progression are linked in the grass powdery mildew fungusBlumeria graminis. Fungal Biol, 2012,116:890-901.
doi: 10.1016/j.funbio.2012.05.006 pmid: 22862917 |
[32] | Jetter R, Kunst L, Samuels A L. Composition of plant cuticular waxes. In: Riederer C. Muller, eds. Biology of the Plant Cuticle. Oxford: Blackwell Publishing Ltd, 2006. pp 145-181. |
[33] |
Haslam T M, Mañas-Fernández A, Zhao L, Kunst L . Arabidopsis ECERIFERUM2 is a component of the fatty acid elongation machinery required for fatty acid extension to exceptional lengths. Plant Physiol, 2012,160:1164-1174.
doi: 10.1104/pp.112.201640 |
[1] | LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62. |
[2] | XU Yi**,PENG Yang**,LI Shuai,ZHAO Qiu-Ling,ZHANG Shuang-Juan,LI Jia-Na,NI Yu*. Cloning and Expression Analysis of Alkane Hydroxylase Gene MAH1 from Brassica napus [J]. Acta Agron Sin, 2017, 43(05): 640-647. |
[3] | LI Shuai,ZHAO Qiu-Ling,PENG Yang,XU Yi,LI Jia-Na,NI Yu*. Effects of SA, MeJA, and ACC on Leaf Cuticular Wax Constituents, Structure and Permeability in Brassica napus [J]. Acta Agron Sin, 2016, 42(12): 1827-1833. |
[4] | XU Wen,SHEN Hao,GUO Jun,YU Xiao-Cong,LI Xiang,YANG Yan-Hui,MA Xiao,ZHAO Shi-Jie,SONG Jian-Min. Drought Resistance of Wheat NILs with Different Cuticular Wax Contents in Flag Leaf [J]. Acta Agron Sin, 2016, 42(11): 1700-1707. |
[5] | NI Yu,WANG Jing,SONG Chao,XIA Rui-E,SUN Zheng-Yuan,GUO Yan-Jun,LI Jia-Na. Effects of SA Induction on Leaf Cuticular Wax and Resistance to Sclerotinia sclerotiorurn in Brassica napus [J]. Acta Agron Sin, 2013, 39(01): 110-117. |
[6] | ZHOU Ling-Yan,JIANG Da-Gang,LI Jing,ZHOU Hai,CAO Wei-Wei,ZHUANG Chu-Xiong. Effect of Stresses on Leaf Cuticular Wax Accumulation and Its Relationship to Expression of OsGL1-Homologous Genes in Rice [J]. Acta Agron Sin, 2012, 38(06): 1115-1120. |
[7] | GUO Yan-Jun, NI Yu, GUO Yun-Jiang, HAN Long, TANG Hua, YU Yong-Xiong. Effect of Soil Water Deficit and High Temperature on Leaf Cuticular Waxes and Physiological Indices in Alfalfa (Medicago sativa) Leaf [J]. Acta Agron Sin, 2011, 37(05): 911-917. |
|