Acta Agron Sin ›› 2013, Vol. 39 ›› Issue (01): 110-117.doi: 10.3724/SP.J.1006.2013.00110
• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles Next Articles
NI Yu1,3,WANG Jing1,SONG Chao1,XIA Rui-E1,SUN Zheng-Yuan1,GUO Yan-Jun2,LI Jia-Na1,3,*
[1]Jenk M A, Joly R J, Peters P J, Rich P J, Axtell J D, Ashworth E N. Chemically induced cuticle mutation affecting epidermal conductance to water vapor and disease susceptibility in Sorghum bicolor (L.) Moench. Plant Physiol, 1994, 105: 1239–1245[2]Ficke A, Gadoury D M, Godfrey D, Dry I B. Host barriers and responses to Uncinula necator in developing grape berries. Phytopathol, 2004, 94: 438–445[3]Russin J S, Guo B Z, Tubajika K M, Brown L, Cleveland T E, Widstorm N W. Comparison of kernel wax from corn genotypes resistant or susceptible to Aspergillus flavus. Biochem Cell Biol, 1997, 87: 529–533[4]Zinsou V, Wydra K, Ahohuendo B, Schreiber L. Leaf waxes of cassava (Manihot esculenta Crantz) in relation to ecozone and resistance to Xanthomonas blight. Euphytica, 2006, 149: 189–198[5]Chen Z-Y(陈志谊), Wang Y-H(王玉环), Yin S-Z(殷尚智). A study on the mechanism of resistance to sheath blight in rice. Sci Agric Sin (中国农业科学), 1992, 25(4): 41–46 (in Chinese with English abstract)[6]Ashraf M, Zafar Z U. Some physiological characteristics in resistant and susceptible cotton cultivars infected with cotton leaf curl virus. Biol Plant, 1999, 42: 615–620[7]Li H-Y(李海英), Liu Y-G(刘亚光), Yang Q-K(杨庆凯). Studies on the structural resistance to Cercospora sojina Hara in soybean leaves. Chin J Oil Crop Sci (中国油料作物学报), 2002, 24(2): 74–76 (in Chinese with English abstract)[8]Kang L-G(康立功), Qi F-K(齐凤坤), Xu X-Y(许向阳), Li J-F(李景富). Relationship between tomato leaf wax and cutin layers with infection by helminthosporium carposaprum. China Veget (中国蔬菜), 2010, (18): 47–50 (in Chinese with English abstract)[9]Luo K(罗宽), Zhou B-W (周必文). Rape Disease and Its Governance (油菜病害及治理). Beijing: China Business Press, 1994 (in Chinese)[10]Yang B, Rahman M H, Liang Y, Shah S, Kav N N V. Characterization of defense signaling pathways of Brassica napus and Brassica carinata in response to Sclerotinia sclerotiorum challenge. Plant Mol Biol Rep, 2010, 28: 253–263[11]Guo X M, Stotz H U. Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling. Mol Plant Microbe Interact, 2007, 20: 1384–1395[12]Zhang W, Yang X F, Qiu D W, Guo L H, Zeng H M, Mao J J, Gao Q F. Pea T1-induced systemic acquired resistance in tobacco follows salicylic acid-dependent pathway. Mol Biol Rep, 2011, 38: 2549–2556[13]Kacprzak P, Macioszek V K, Kononowicz A K. Induced systemic resistance (ISR) in the protection of plants against pathogenic fungi. Postepy Biol Komorki, 2011, 38: 129–142[14]Garbay B, Tautu M T, Costaglioli P. Low level of pathogenesis-related protein 1 mRNA expression in 15-day-old Arabidopsis cer6-2 and cer2 eceriferum mutants. Plant Sci, 2007, 172: 299–305[15]Cajustea J F, González-Candelasa L, Veyrat A, García-Breijo F J, Reig-Arminana J, Lafuentea M T. Epicuticular wax content and morphology as related to ethylene and storage performance of ‘Navelate’ orange fruit. Postharvest Biol Technol, 2010, 55: 29–35[16]Zhang X-P(臧宪朋), Xu Y-P(徐幼平), Cai X-Z(蔡新忠). Establishment of an inoculation technique system for Sclerotinia sclerotiorum based on mycelial suspensions. J Zhejiang Univ (浙江大学学报), 2010, 36(4): 381–386 (in Chinese with English abstract)[17]Rosler J, Krekel F, Amrhein N, Schmid J. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol, 1997, 113: 175–179[18]Olmos E, Piqueras A, Martinez-Solano J R, Hellin E. The subcellular localization of peroxidase and the implication of oxidative stress in hyperhydrated leave of regenerated carnation plants. Plant Sci, 1997, 130: 97–105[19]Sun N, Song K. Effect of nonthermal treatment on the molecular properties of mushroom polyphenoloxidase. Food Chem Toxicol, 2003, 68: 1639–1643[20]Kim K S, Park S H, Jenks M A. Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. J Plant Physiol, 2007, 164: 1134–1143[21]Mauch-Mani B, Slusarenko A J. Production of salicylic acid precursors is a major function of phenylalanine ammonialyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell, 1996, 8: 203–212[22]Sreedhara H S, Nandini B A, Shetty S A, Shetty H S. Peroxidase activities in the pathogenesis of Sclerospora graminicola in pearl millet seedlings. Int J Trop Plant Dis, 1995, 13: 19–32[23]Dietrich R A, Delaney T P, Uknes S J, Ward E R, Ryals J A, Dangl J L. Arabidopsis mutants simulating disease resistance response. Cell, 1994, 77: 565–577[24]Bowling S A, Clarke J D, Liu Y, Klessig D F, Dong X. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell, 1997, 9: 1573–1584[25]Rate D N, Cuenca J V, Bowman G R, Guttman D S, Greenberg J T. The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. Plant Cell, 1999, 11: 1695–1708[26]Cao H, Bowling S A, Gordon A S, Dong X. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell, 1994, 6: 1583–1592[27]Shah J, Kachroo P, Klessig D F. The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders defense in gene expression salicylic acid dependent. Plant Cell, 1999, 11: 191–206[28]Rubiales D, Niks R E. Avoidance of rust infection by some genotypes of Hordeum chilensedue to their relative inability to induce the formation of appressoria. Physiol Mol Plant Pathol, 1996, 49: 89–101[29]Tsuba M, Katagiri G, Takeuchi Y, Yamaoka N. Chemical factors of the leaf surface involved in the morphogenesis of Blumeria graminis. Physiol Mol Plant Pathol, 2002, 60: 51–57[30]Furtado G Q, Alves S A M, Godoy C V, Salatino M L F, Massola N S. Influence of light and leaf epicuticular wax layer on phakopsora pachyrhizi infection in soybean. Trop Plant Pathol, 2009, 34: 306–312[31]Shepherd T, Griffiths D W. The effects of stress on plant cuticular waxes. New Phytol, 2006, 171: 469–499[32]Li J-J(李婧婧), Huang J-H(黄俊华), Xie S-C(谢树成). Plant wax and its response to environmental conditions: an overview. Acta Ecolo Sin (生态学报), 2011, 31(2): 565–574 (in Chinese with English abstract)[33]Koch K, Hartmann K D, Schreiber L, Barthlott W, Neinhuis C. Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability. Environ Exp Bot, 2006, 56: 1–9[34]Guo Y-J(郭彦军), Ni Y(倪郁), Guo Y-J(郭芸江), Han L(韩龙), Tang H(唐华). Effects of air humidity and soil water deficit on characteristics of leaf cuticular waxes in alfalfa (Medicago staiva).Acta Ecolo Sin (生态学报), 2011, 31(18): 5273–5280 (in Chinese with English abstract)[35]Smith J A, Blanchette R A, Burnes T A, Gillman J H, David A J. Epicuticular wax and white pine blister rust resistance in resistant and susceptible selections of eastern white pine (pinus strobus). Phytopathol, 2006, 96: 171–177[36]Raffaele S, Vailleau F, Leger A, Joubes J, Miersch O, Huard C, Blee E, Mongrand S, Domergue F, Roby D. A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell, 2008, 20: 752–767[37]José J R, Alexander Y. Surface lipids and plant defenses. Plant Physiol Bioch, 2009, 47: 540–549 |
[1] | TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388. |
[2] | ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415. |
[3] | DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080. |
[4] | WANG Xing-Rong, LI Yue, ZHANG Yan-Jun, LI Yong-Sheng, WANG Jun-Cheng, XU Yin-Ping, QI Xu-Sheng. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage [J]. Acta Agronomica Sinica, 2022, 48(5): 1279-1287. |
[5] | ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140. |
[6] | LIU Dan, ZHOU Cai-E, WANG Xiao-Ting, WU Qi-Meng, ZHANG Xu, WANG Qi-Lin, ZENG Qing-Dong, KANG Zhen-Sheng, HAN De-Jun, WU Jian-Hui. Rapid identification of adult plant wheat stripe rust resistance gene YrC271 using high-throughput SNP array-based bulked segregant analysis [J]. Acta Agronomica Sinica, 2022, 48(3): 553-564. |
[7] | YANG Xin, LIN Wen-Zhong, CHEN Si-Yuan, DU Zhen-Guo, LIN Jie, QI Jian-Min, FANG Ping-Ping, TAO Ai-Fen, ZHANG Li-Wu. Molecular identification of a geminivirus CoYVV and screening of resistant germplasms in jute [J]. Acta Agronomica Sinica, 2022, 48(3): 624-634. |
[8] | LI Ling-Hong, ZHANG Zhe, CHEN Yong-Ming, YOU Ming-Shan, NI Zhong-Fu, XING Jie-Wen. Transcriptome profiling of glossy1 mutant with glossy glume in common wheat (Triticum aestivum L.) [J]. Acta Agronomica Sinica, 2022, 48(1): 48-62. |
[9] | ZHANG Si-Meng, NI Wen-Rong, LYU Zun-Fu, LIN Yan, LIN Li-Zhuo, ZHONG Zi-Yu, CUI Peng, LU Guo-Quan. Identification and index screening of soft rot resistance at harvest stage in sweetpotato [J]. Acta Agronomica Sinica, 2021, 47(8): 1450-1459. |
[10] | FU Hua-Ying, ZHANG Ting, PENG Wen-Jing, DUAN Yao-Yao, XU Zhe-Xin, LIN Yi-Hua, GAO San-Ji. Identification of resistance to leaf scald in newly released sugarcane varieties at seedling stage by artificial inoculation [J]. Acta Agronomica Sinica, 2021, 47(8): 1531-1539. |
[11] | XI Ling, WANG Yu-Qi, ZHU Wei, WANG Yi, CHEN Guo-Yue, PU Zong-Jun, ZHOU Yong-Hong, KANG Hou-Yang. Identification of resistance to wheat and molecular detection of resistance genes to wheat stripe rust of 78 wheat cultivars (lines) in Sichuan province [J]. Acta Agronomica Sinica, 2021, 47(7): 1309-1323. |
[12] | ZUO Xiang-Jun, FANG Peng-Peng, LI Jia-Na, QIAN Wei, MEI Jia-Qin. Characterization of aphid-resistance of a hairy wild Brassica oleracea taxa, B. incana [J]. Acta Agronomica Sinica, 2021, 47(6): 1109-1113. |
[13] | MA Yan-Bin, WANG Xia, LI Huan-Li, WANG Pin, ZHANG Jian-Cheng, WEN Jin, WANG Xin-Sheng, SONG Mei-Fang, WU Xia, YANG Jian-Ping. Transformation and molecular identification of maize phytochrome A1 gene (ZmPHYA1) in cotton [J]. Acta Agronomica Sinica, 2021, 47(6): 1197-1202. |
[14] | ZHAO Jia-Jia, QIAO Ling, WU Bang-Bang, GE Chuan, QIAO Lin-Yi, ZHANG Shu-Wei, YAN Su-Xian, ZHENG Xing-Wei, ZHENG Jun. Seedling root characteristics and drought resistance of wheat in Shanxi province [J]. Acta Agronomica Sinica, 2021, 47(4): 714-727. |
[15] | ZHENG Ying-Xia, CHEN Du, WEI Peng-Cheng, LU Ping, YANG Jin-Yue, LUO Shang-Ke, YE Kai-Mei, SONG Bi. Effects of planting density on lodging resistance and grain yield of spring maize stalks in Guizhou province [J]. Acta Agronomica Sinica, 2021, 47(4): 738-751. |
|