Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (10): 1874-1890.doi: 10.3724/SP.J.1006.2021.04216
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
MENG Xin-Hao1(), ZHANG Jing-Nan1, CUI Shun-Li1, Charles Y. Chen2, MU Guo-Jun1, HOU Ming-Yu1, YANG Xin-Lei1,*(), LIU Li-Feng1,*()
[1] | 禹山林. 中国花生品种及其系谱. 上海: 上海科技出版社, 2008. pp 353-465. |
Yu S L. Chinese Peanut Varieties and Their Lines. Shanghai: Shanghai Scientific & Technical Publishers, 2018. pp 353-465(in Chinese). | |
[2] | Xiang D Q, Cao H H, Cao Y G, Yang J P, Huang L J, Wang S C, Dai J R. Construction of a genetic map and location of quantitative trait loci for yield component traits in maize by SSR markers. Acta Genet Sin, 2001, 28:778-784. |
[3] |
Varshney R K, Close T J, Singh N K, Hoisington D A, Cook D R. Orphan legume crops enter the genomics era! Curr Opin Plant Biol, 2009, 12:202-210.
doi: 10.1016/j.pbi.2008.12.004 pmid: 19157958 |
[4] | 方宣钧. 作物DNA标记辅助育种. 北京: 科学出版社, 2001. pp 305-336. |
Fang X J. Crop DNA Marker-assisted Breeding. Beijing: Science Press, 2001. pp 305-336(in Chinese). | |
[5] |
Wang B H, Guo W Z, Zhu X F, Wu Y T, Huang N T, Zhang T Z. QTL mapping of yield and yield components for elite hybrid derived-RILs in upland cotton. J Genet Genomics, 2007, 34:35-45.
doi: 10.1016/S1673-8527(07)60005-8 |
[6] |
Luo H Y, Guo J B, Ren X P, Chen W G, Huang L, Zhou X J, Chen Y N, Liu N, Xiong F, Lei Y, Liao B S, Jiang H F. Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2018, 131:267-282.
doi: 10.1007/s00122-017-3000-7 |
[7] |
Wang Z H, Huai D X, Zhang Z H, Cheng K, Kang Y P, Wan L Y, Yan L Y, Jiang H F, Lei Y, Liao B S. Development of a high-density genetic map based on specific length amplified fragment sequencing and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Front Plant Sci, 2018, 9:827.
doi: 10.3389/fpls.2018.00827 |
[8] |
Luo H Y, Ren X P, Li Z D, Xu Z H, Li X P, Huang L, Zhou X J, Chen Y N, Chen W G, Lei Y, Liao B S, Pandey M K, Varshney R K, Guo B Z, Jiang X G, Liu F, Jiang H F. Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A05 in cultivated peanut (Arachis hypogaea L.). BMC Genomics, 2017, 18:58.
doi: 10.1186/s12864-016-3456-x |
[9] | 李英杰. 栽培种花生株高、分枝数及荚果性状QTL定位分析. 山东农业大学硕士学位论文, 山东泰安, 2016. |
Li Y J. QTL Analysis for Plant Height, Total Branching Number and Pod Traits in Peanut (Arachis hypogaea L.). MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2016 (in Chinese with English abstract). | |
[10] | 李振动, 李新平, 黄莉, 任小平, 陈玉宁, 周小静, 廖伯寿, 姜慧芳. 栽培种花生荚果大小相关性状QTL定位. 作物学报, 2015, 41:1313-1323. |
Li Z D, Li X P, Huang L, Ren X P, Chen Y N, Zhou X J, Liao B S, Jiang H F. Mapping of QTLs for pod size related traits in cultivated peanut (Arachis hypogaea L.). Acta Agron Sin, 2015, 41:1313-1323 (in Chinese with English abstract). | |
[11] | 吕维娜. 花生栽培种SSR遗传连锁图谱构建及重要产量性状QTL定位分析. 郑州大学硕士学位论文, 河南郑州, 2014. |
Lyu W N. Contruction of Genetic Linkage Map Based on SSR Markers and QTLs Identification for Major Yield Traits in the Cultivated Peanut (Arachis hypogaea L.). MS Thesis of Zhengzhou University, Zhengzhou, Henan, China, 2014 (in Chinese with English abstract). | |
[12] | 成良强. 花生遗传图谱构建及产量相关性状的QTL分析. 中国农业科学院硕士学位论文, 北京, 2014. |
Cheng L Q. Construction of Genetic Linkage Map and QTL Analysis for Yield Related Traits in Peanut (Arachis hypogaea L.). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2014 (in Chinese with English abstract). | |
[13] |
Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, Naito Y, Kuboyama T, Nakaya A, Sasamoto S, Watanabe A, Kato M, Kawashima K, Kishida Y, Kohara M, Kurabayashi A, Chika T, Tsuruoka H, Wada T, Isobe S. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol, 2012, 12:80.
doi: 10.1186/1471-2229-12-80 pmid: 22672714 |
[14] | 姜慧芳. 花生种质资源描述规范和数据标准, 3-9. 北京: 中国农业出版社, 2006. pp 355-455. |
Jiang H F. Specification for Description and Data of Peanut Germplasm Resources, 3-9. Beijing: China Agriculture Press, 2016. pp 355-455(in Chinese) | |
[15] | 王亮, 杨鑫雷, Getahun A, 崔顺立, 穆国俊, 刘立峰, 李自超. 栽培种花生AFLP标记体系的优化及多态性引物筛选. 核农学报, 2017, 31:2087-2095. |
Wang L, Yang X L, Getahun A, Cui S L, Mu G J, Liu L F, Li Z C. Screening for polymorphic primer pairs and optimization of AFLP marker system in peanut. J Nucl Agric Sci, 2017, 31:2087-2095 (in Chinese with English abstract). | |
[16] |
Lin Z X, He D H, Zhang X L, Nie Y C, Guo X P, Feng C D, Stewart J M. Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breed, 2008, 124:180-187.
doi: 10.1111/pbr.2005.124.issue-2 |
[17] |
Yu J W, Yu S X, Lu C R, Wang W, Fan S L, Song M Z, Lin Z X, Zhang X L, Zhang J F. High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. J Integr Plant Biol, 2007, 49:716-724.
doi: 10.1111/jipb.2007.49.issue-5 |
[18] | 崔顺立, 刘立峰, 陈焕英, 耿立格, 孟成生, 杨余. 河北省花生地方品种基于SSR标记的遗传多样性. 中国农业科学, 2009, 42:3346-3353. |
Cui S L, Liu L F, Chen H Y, Geng L G, Meng C S, Yang Y. Genetic diversity of peanut landraces in Hebei province revealed by SSR markers. Sci Agric Sin, 2009, 42:3346-3353 (in Chinese with English abstract). | |
[19] | JoinMap 4.0 Software for the Calculation of Genetic Linkage Maps in Experimental Populations. Wageningen: Kyazma B V, 2006. |
[20] | Kosambi D D. The estimation of map distances from recombination values. Ann Hum Genet, 2011, 1:172-175. |
[21] |
Voorrips RE. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93:77-78.
pmid: 12011185 |
[22] | 陈建国, 朱军. 籼粳交稻米蛋白质含量的基因型与环境互作效应的分析. 作物学报, 1999, 25:579-584. |
Chen J G, Zhu J. Analysis of genotype by environment interaction for protein content in indica-japonica crosses of rice(Oryza sativa L.). Acta Agron Sin, 1999, 25:579-584 (in Chinese with English abstract). | |
[23] | 刘雪海, 田俊芹. 花生品种主要性状遗传力和遗传进度的估算. 华北农学报, 1981, 1(2):48-50. |
Liu X M, Tian J Q. Estimation of heritability and genetic progress of main traits of peanut varieties. Acta Agric Boreali-Sin, 1981, 1(2):48-50 (in Chinese). | |
[24] |
Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3:269-283.
doi: 10.1016/j.cj.2015.01.001 |
[25] | 张志勇. 水稻粒型和粒重性状的主效QTL定位研究. 厦门大学硕士学位论文, 福建厦门, 2008. |
Zhang Z Y. Mapping of Major QTL for Grain Shape and Weight Traits in Rice (Oryza sativa L.). MS Thesis of Xiamen University, Xiamen, Fujian, China, 2008 (in Chinese with English abstract). | |
[26] |
Varshney R K, Bertioli D J, Moretzsohn M C, Vadez V, Krishnamurthy L, Aruna R, Nigam S N, Moss B J, Seetha K, Ravi K, He G, Knapp S J, Hoisington D A. The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet, 2009, 118:729-739.
doi: 10.1007/s00122-008-0933-x pmid: 19048225 |
[27] |
Lu Q, Liu H, Hong Y B, Li H F, Liu H Y, Li X Y, Wen S J, Zhou G Y, Li S X, Chen X P, Liang X Q. Consensus map integration and QTL meta-analysis narrowed a locus for yield traits to 0.7 cM and refined a region for late leaf spot resistance traits to 0.38 cM on linkage group A05 in peanut (Arachis hypogaea L.). BMC Genomics, 2018, 19:887.
doi: 10.1186/s12864-018-5288-3 |
[28] |
Liang Y B, Liang X Q, Chen X P, Zhou H Y, Li G Y, Shao X, Wen S J. Construction of genetic linkage map based on SSR markers in peanut (Arachis hypogaea L.). Agric Sci China, 2008, 7:915-921.
doi: 10.1016/S1671-2927(08)60130-3 |
[29] |
Hong Y B, Chen X P, Liang X Q, Liu H Y, Zhou G Y, Li S X, Wen S J, Holbrook C, Guo B Z. A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biol, 2010, 10:17.
doi: 10.1186/1471-2229-10-17 |
[30] |
Huang L, He H, Chen W G, Ren X P, Chen Y N, Zhou X J, Xia Y L, Wang X L, Jiang X J, Liao B S, Jiang H F. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2015, 128:1103-1115
doi: 10.1007/s00122-015-2493-1 pmid: 25805315 |
[31] | 曾新颖, 郭建斌, 赵姣姣, 陈伟刚, 邱西克, 黄莉, 罗怀勇, 周晓静, 姜慧芳, 黄家权. 花生籽仁大小相关性状QTL定位. 作物学报, 2019, 45:1200-1207. |
Zeng X Y, Guo J B, Zhao J J, Chen W G, Qiu X K, Huang L, Luo H Y, Zhou X J, Jiang H F, Huang J Q. Identification of QTL related to seed size in peanut (Arachis hypogaea L.). Acta Agron Sin, 2019, 45:1200-1207 (in Chinese with English abstract). | |
[32] | Gomez S M, Narayana M, Schubert A M, Ayers J, Baring M R, Burow M D. Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis. Electr J Biotechnol, 2009, 12:1-10. |
[33] | Yuan A P, Cao L Y, Zhuang J Y, Li R Z, Zheng K L, Zhu J, Cheng S H. Analysis of additive and AE interaction effects of QTLs controlling plant height, heading date and panicle number in rice (Oryza sativa L.). J Genet Genomics, 2003, 30:899-906. |
[34] |
Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water. Crop Sci, 2001, 41:493-509.
doi: 10.2135/cropsci2001.412493x |
[1] | ZHANG Yu-Kun, LU Ying, CUI Kan, XIA Shi-Tou, LIU Zhong-Song. Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss. [J]. Acta Agronomica Sinica, 2022, 48(6): 1325-1332. |
[2] | HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356. |
[3] | YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487. |
[4] | QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501. |
[5] | CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515. |
[6] | WANG Xuan-Dong, YANG Sun-Yu-Yue, GAO Run-Jie, YU Jun-Jie, ZHENG Dan-Pei, NI Feng, JIANG Dong-Hua. Screening Streptomyces against Xanthomonas axonopodis pv. glycines and study of growth-promoting and biocontrol effect [J]. Acta Agronomica Sinica, 2022, 48(6): 1546-1557. |
[7] | LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565. |
[8] | ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058. |
[9] | YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102. |
[10] | LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221. |
[11] | SHI Yu-Qin, SUN Meng-Dan, CHEN Fan, CHENG Hong-Tao, HU Xue-Zhi, FU Li, HU Qiong, MEI De-Sheng, LI Chao. Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L [J]. Acta Agronomica Sinica, 2022, 48(4): 801-811. |
[12] | QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004. |
[13] | ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552. |
[14] | DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571. |
[15] | WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643. |
|