Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (10): 1874-1890.doi: 10.3724/SP.J.1006.2021.04216

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL mapping and QTL × Environment interaction analysis of pod and seed related traits in cultivated peanut (Arachis hypogaea L.)

MENG Xin-Hao1(), ZHANG Jing-Nan1, CUI Shun-Li1, Charles Y. Chen2, MU Guo-Jun1, HOU Ming-Yu1, YANG Xin-Lei1,*(), LIU Li-Feng1,*()   

  1. 1State Key Laboratory of North China for Crop Improvement and Regulation / Key laboratory of Crop Germplasm Resources of Hebei Province / Hebei Agricultural University, Baoding 071001, Hebei, China
    2Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn 36849, USA
  • Received:2020-09-22 Accepted:2021-03-19 Online:2021-10-12 Published:2021-04-08
  • Contact: YANG Xin-Lei,LIU Li-Feng E-mail:mxinhao1994@126.com;peanut@hebau.edu.cn;liulifeng@hebau.edu.cn
  • Supported by:
    Special Fund for Modern Agro-industry Technology Research System of China(CARS-13);National Natural Science Foundation of China(31701459);National Natural Science Foundation of China(31771833);Science and Technology Research and Development Program of Hebei Province(16226301D);Earmarked Fund for Hebei Oil Crop Innovation Team of Modern Agro-industry Technology Research System(HBCT2018090202);Support Program for the Top Young Talents of Hebei Province(0602015)

Abstract:

Pod and seed traits are important agronomy traits, which are closely related to yield in cultivated peanut (Arachis hypogaea L.). In the present study, to identify molecular markers closely linked to pod and seed traits, a RIL8 population with 315 families was developed that derived from Jihua 5 with large pod and M130 with small pod of US germplasm. A genetic linkage map containing 363 polymorphic loci was constructed using SSR, AhTE, SRAP, and TRAP markers. All polymorphic loci were mapped on 21 linkage groups, which spanned 1360.38 cM with an average distance of 3.75 cM. Subsequently, a total of 97 QTLs for pod and seed traits were identified by ICIM method at five environments from 2017 to 2018, explaining the phenotypic variations of 2.36%-12.15%, and located on A02, A05, A08, A09, B02, B03, B04, B08, and B09 chromosomes. Among them, nine QTLs were detected for pod length, 13 QTLs for pod width, 14 QTLs for pod thickness, 11 QTLs for seed length, 13 QTLs for seed width, 13 QTLs for hundred-pod weight, 10 QTLs for hundred-seed weight. Four QTLs with major effect were detected, including qPWA08.1, qPTA08.3, qPTA08.4, and qSWB08.5, which explained the phenotypic variations of 10.02%-12.15%. Furthermore, 45 stable QTLs were repeatedly detected in more than three environments. QTL clusters were detected on A02, A08, B02, B04, and B08 chromosomes, respectively. In addition, 15 epistatic QTLs were identified that explaining phenotypic variation of 10.23%-51.84%. These results will provide an important theoretical basis for molecular marker-assisted breeding of pod and seed traits in peanut.

Key words: peanut, pod, seed, QTL, QTL×E

Fig. 1

Phenotypes of pods and seeds The white bar indicates 1 cm."

Table 1

Descriptive statistical results of the RILs and their parents"

性状
Trait
环境
Environment
亲本 Parents RIL群体 RIL population
冀花5号
Jihua 5
M130 最小值
Minimum
最大值
Maximum
平均值±标准误
Mean±SD
变异系数
CV
Shapiro-Wilk
(w-test)
偏度
Skewness
峰度
Kurtosis
荚果长 17QY 43.28±1.46** 30.25±1.24 24.09 47.94 33.08±3.80 0.11 0.9592*** 0.75 0.72
PL (mm) 17DM 43.57±0.96** 29.84±0.65 24.81 49.04 34.72±4.13 0.12 0.9606*** 0.69 0.52
18QY 45.33±0.99** 31.66±1.15 23.96 49.04 34.53±4.18 0.12 0.9685*** 0.58 0.20
18DM 41.25±2.08** 28.84±1.06 24.80 44.60 33.23±3.61 0.11 0.9685*** 0.46 -0.18
18QA 43.59±1.03** 30.18±1.17 23.35 46.95 33.01±3.79 0.11 0.9723** 0.53 0.13
荚果宽 17QY 15.17±0.39** 12.42±0.50 9.12 17.88 12.86±1.63 0.13 0.9649*** 0.54 0.24
PW (mm) 17DM 15.16±0.97** 12.81±0.51 9.32 18.04 12.94±1.72 0.13 0.9597*** 0.47 0.13
18QY 14.95±1.03** 11.90±0.49 10.16 19.09 12.77±1.65 0.13 0.9327*** 0.91 0.74
18DM 15.40±0.81** 12.95±1.12 9.21 19.79 13.50±1.73 0.13 0.9668*** 0.61 0.25
18QA 15.02±0.86** 12.51±0.79 9.79 18.20 12.68±1.57 0.12 0.9347*** 0.87 0.53
荚果厚 17QY 15.33±0.54** 12.98±0.43 8.51 17.17 12.30±1.66 0.13 0.9262*** 0.85 0.22
PT (mm) 17DM 15.53±0.90** 13.2±0.38 8.78 18.79 12.41±1.72 0.14 0.9254*** 0.98 0.77
18QY 15.28±0.65** 13.19±0.59 9.65 19.50 13.21±1.64 0.12 0.9647*** 0.66 0.72
18DM 15.39±0.85** 12.77±0.71 9.16 17.73 13.46±1.58 0.12 0.982* 0.04 -0.14
18QA 15.23±0.95** 12.86±0.35 9.32 19.65 12.98±1.62 0.12 0.9698** 0.6 0.79
种子长 17QY 19.56±0.64** 16.38±0.96 12.26 23.09 16.43±1.88 0.11 0.9691** 0.54 0.24
SL (mm) 17DM 19.58±0.38** 16.12±0.56 11.89 22.94 16.94±2.04 0.12 0.9728** 0.38 -0.15
18QY 20.32±0.79** 17.30±0.79 13.34 23.33 17.17±1.95 0.11 0.9594 *** 0.57 0.01
18DM 18.79±1.75** 15.47±0.91 12.98 22.44 16.46±1.66 0.10 0.9723** 0.47 0.10
18QA 18.18±0.69** 16.03±0.81 13.06 22.03 16.63±1.65 0.10 0.9703** 0.47 0.17
种子宽 17QY 9.89±0.24** 8.67±0.63 5.89 11.02 8.29±0.89 0.11 0.9852* 0.01 0.09
SW (mm) 17DM 9.78±0.53** 8.39±0.22 6.33 11.19 8.37±0.80 0.10 0.9849* 0.20 0.36
18QY 10.42±0.74** 8.91±0.62 7.14 10.91 8.82±0.65 0.07 0.9725** 0.44 0.17
18DM 9.37±0.78** 8.43±0.54 6.89 11.32 8.70±0.67 0.08 0.9855* 0.35 0.64
18QA 9.49±0.40* 8.57±0.89 6.39 10.93 8.32±0.68 0.08 0.9848* 0.34 0.52
种子厚 17QY 10.29±0.32** 9.46±0.45 6.00 10.04 7.78±0.76 0.10 0.9783* 0.20 -0.22
ST (mm) 17DM 10.28±0.38** 9.20±0.37 6.18 10.39 7.96±0.67 0.08 0.9763* 0.51 0.82
18QY 10.45±0.93* 9.74±0.61 7.29 12.42 9.41±0.77 0.08 0.9899* 0.09 0.40
18DM 10.13±0.45** 9.18±0.94 6.91 11.96 9.34±0.82 0.09 0.9853* -0.13 0.19
18QA 9.83±0.36* 9.07±0.65 6.95 11.99 9.33±0.90 0.10 0.9811* 0.17 0.06
百果重 17QY 254.03±6.84** 170.13±0.91 71.04 239.22 144.50±30.93 0.21 0.9812* 0.19 -0.12
HPW (g) 17DM 247.18±2.30** 164.64±3.78 79.86 245.97 157.07±33.15 0.21 0.9681*** 0.37 -0.23
18QY 271.28±8.80** 184.48±2.45 94.85 325.53 180.11±40.66 0.23 0.9678*** 0.54 0.19
18DM 236.77±6.46** 155.79±3.57 61.32 256.43 163.31±36.51 0.22 0.9825* 0.05 -0.17
18QA 233.38±1.89** 159.70±5.95 78.28 296.87 159.77±34.14 0.21 0.9788* 0.51 0.51
百仁重 17QY 105.22±2.17** 70.04±0.69 27.73 91.24 56.08±11.05 0.20 0.9859* 0.05 -0.11
HSW (g) 17DM 100.82±1.49** 68.83±1.14 36.93 101.23 62.80±12.11 0.19 0.9719** 0.42 0.07
18QY 114.32±2.73** 76.20±3.11 43.73 119.87 74.77±13.96 0.19 0.9775* 0.34 -0.03
18DM 96.12±2.48** 63.88±1.06 30.07 106.51 67.38±13.71 0.20 0.9826* 0.14 -0.21
18QA 100.24±1.44** 63.90±1.65 37.21 108.20 63.25±13.05 0.21 0.9666 *** 0.53 0.14

Fig. 2

Frequency profile for each trait of RIL population in different environments Abbreviations are the same as those given in Table 1."

Table 2

Correlation analysis of each trait in different environments"

环境
Environment
性状
Trait
荚果长
PL
荚果宽
PW
荚果厚
PT
种子长
SL
种子宽
SW
种子厚
ST
百果重
HPW
17QY 荚果宽PW 0.6536***
荚果厚PT 0.7286*** 0.9226***
种子长SL 0.8522*** 0.6346*** 0.7011***
种子宽SW 0.2752*** 0.5291*** 0.4692*** 0.5357***
种子厚ST 0.3724*** 0.4974*** 0.5333*** 0.5713*** 0.7453***
百果重HPW 0.6587*** 0.6515*** 0.6454*** 0.6549*** 0.5196*** 0.5614***
百仁重HSW 0.6242*** 0.6188*** 0.6282*** 0.6737*** 0.6041*** 0.5970*** 0.8280***
17DM 荚果宽PW 0.6667***
荚果厚PT 0.7353*** 0.9087***
种子长SL 0.8430*** 0.6208*** 0.6751***
种子宽SW 0.2599*** 0.4804*** 0.3924*** 0.4370***
种子厚ST 0.3991*** 0.5326*** 0.6052*** 0.5025*** 0.6033***
百果重HPW 0.6214*** 0.6927*** 0.6884*** 0.6196*** 0.4634*** 0.5350***
百仁重HSW 0.6037*** 0.6143*** 0.6171*** 0.6326*** 0.5256*** 0.5961*** 0.8651***
18QY 荚果宽PW 0.7442***
荚果厚PT 0.6400*** 0.9129***
种子长SL 0.8711*** 0.6054*** 0.4848***
种子宽SW 0.4281*** 0.6622*** 0.5653*** 0.4141***
种子厚ST 0.3921*** 0.5563*** 0.5647*** 0.4347*** 0.6530***
百果重HPW 0.6801*** 0.6522*** 0.5825*** 0.7041*** 0.5554*** 0.6193***
百仁重HSW 0.7373*** 0.7132*** 0.6362*** 0.7571*** 0.6475*** 0.6927*** 0.8726***
18DM 荚果宽PW 0.6995***
荚果厚PT 0.6364*** 0.9102***
种子长SL 0.8786*** 0.6328*** 0.5997***
种子宽SW 0.4231*** 0.5523*** 0.5578*** 0.4899***
种子厚ST 0.3408*** 0.4766*** 0.5764*** 0.4895*** 0.6946***
百果重HPW 0.6586*** 0.6285*** 0.6474*** 0.6724*** 0.6040*** 0.6302***
百仁重HSW 0.6676*** 0.6262*** 0.6347*** 0.7130*** 0.6717*** 0.7052*** 0.8606***
18QA 荚果宽PW 0.7231***
荚果厚PT 0.6760*** 0.9333***
种子长SL 0.8586*** 0.6254*** 0.5920***
种子宽SW 0.2765*** 0.4873*** 0.4558*** 0.3500***
种子厚ST 0.3117*** 0.4761*** 0.5240*** 0.4215*** 0.6740***
百果重HPW 0.5869*** 0.6571*** 0.6460*** 0.6029*** 0.4700*** 0.5189***
百仁重HSW 0.4829*** 0.5246*** 0.5032*** 0.5874*** 0.5972*** 0.6089*** 0.8070***

Table 3

Analysis of variance of each trait and broad-sense heritability in RIL population"

变异来源
Source of variation
自由度
DF
荚果长
PL (mm)
荚果宽
PW (mm)
荚果厚
PT (mm)
种子长
SL (mm)
种子宽
SW (mm)
种子厚
ST (mm)
百果重
HPW (g)
百仁重
HSW (g)
区组间Block/environment 5 2.05 ns 3.39 ns 5.87 ns 2.84 ns 3.23 ns 4.53 ns 29.36 ns 14.19 ns
基因型Genotype (G) 314 143.74** 101.27** 105.53** 46.78** 10.30** 17.39** 31.78** 77.12**
环境Environment (E) 4 502.85** 310.54** 915.58** 112.56** 154.97** 2337.02** 349.28** 1898.64**
基因型×环境G × E 1196 8.79** 7.36** 7.53** 3.82** 3.08** 4.54** 4.30** 10.18**
遗传变异系数GVC (%) 12.87 15.34 14.21 13.96 16.39 15.68 17.54 17.28
广义遗传力h2B (%) 64.61 60.76 61.21 65.88 61.71 67.50 54.09 57.83

Fig. 3

Genetic linkage map of peanut Abbreviations are the same as those given in Table 1."

Fig. 4

Collinearity between genetic map and integrated map of this study"

Table 4

QTL-mapping of pod and kernel related traits"

性状
Trait
位点
QTL
环境Environment 染色体
Chr.
位置
Position
范围
Range
标记区间
Marker interval
LOD 可解释的表型变异PVE (%) 加性效应
Additive
来源
Variety
荚果长 qPLA08.5 17QY A08 19.317 1.395-24.581 me3em14-196-Ah4-4 3.0543 4.5412 1.0026 冀花5号Jihua 5
PL (mm) qPLB04.2 18QY B04 48.814 45.2-53.084 T3em5-340-me1em3-75 3.1524 4.4841 -1.052 M130
qPLA02.2 18QY A02 33 28.586-35.04 AHGS1163-AHGS1886 3.4276 4.1455 -1.009 M130
qPLA08.2 18QY A08 16.487 1.395-24.581 me3em14-196-Ah4-4 3.165 5.3035 1.142 冀花5号Jihua 5
qPLB04.1 18DM B04 31.814 29.825-32.253 PMc348-GM1641 2.7216 2.4116 -0.7788 M130
qPLA08.3 18DM A08 17.43 1.395-24.581 me3em14-196-Ah4-4 3.6112 5.5059 1.1219 冀花5号Jihua 5
qPLA02.1 18QA A02 31 28.586-35.04 AHGS1163-AHGS1886 3.1466 3.8886 -0.8444 M130
qPLA08.4 18QA A08 17.43 1.395-24.581 me3em14-196-Ah4-4 3.1664 6.2318 1.0698 冀花5号Jihua 5
qPLA08.1 18QA A08 8.403 2.674-9.42 HBAUAh177-AhTE0658 3.1246 3.7403 0.83 冀花5号Jihua 5
荚果宽 qPWA08.9 17QY A08 27 24.581-32.375 Ah4-4-TC9B08 3.0347 3.4027 0.3487 冀花5号Jihua 5
PW (mm) qPWA08.1 17QY A08 5.539 2.674-9.42 HBAUAh177-AhTE0658 8.3529 10.0181 0.6021 冀花5号Jihua 5
qPWA09.1 17DM A09 47.976 44.512-52.51 AHS1620-me4em15-230 3.4111 5.6928 -0.4961 M130
qPWA08.5 17DM A08 25 24.581-32.375 Ah4-4-TC9B08 2.6823 2.4856 0.3265 冀花5号Jihua 5
qPWB08.1 17DM B08 0 0-6.125 AHGS1286-TC20B05 4.5802 4.1738 -0.426 M130
qPWA08.2 17DM A08 6.971 2.674-9.42 HBAUAh177-AhTE0658 7.2488 8.0948 0.5908 冀花5号Jihua 5
qPWA08.6 18QY A08 26 24.581-32.375 Ah4-4-TC9B08 3.405 4.9727 0.3919 冀花5号Jihua 5
qPWA08.7 18DM A08 27 24.581-32.375 Ah4-4-TC9B08 5.1642 6.0632 0.4812 冀花5号Jihua 5
qPWB08.3 18DM B08 1 0-6.125 AHGS1286-TC20B05 4.8423 5.3595 -0.4547 M130
qPWA08.3 18DM A08 6.971 2.674-9.42 HBAUAh177-AhTE0658 6.2926 7.5419 0.5384 冀花5号Jihua 5
qPWA08.8 18QA A08 27 24.581-32.375 Ah4-4-TC9B08 4.0778 5.4765 0.3976 冀花5号Jihua 5
qPWB08.2 18QA B08 0 0-6.125 AHGS1286-TC20B05 3.2573 3.7144 -0.3288 M130
qPWA08.4 18QA A08 7.687 2.674-9.42 HBAUAh177-AhTE0658 5.0836 6.6321 0.439 冀花5号Jihua 5
荚果厚 qPTA08.6 17QY A08 22.146 1.395-24.581 me3em14-196-Ah4-4 4.2717 6.0053 0.4499 冀花5号Jihua 5
PT (mm) qPTA08.1 17QY A08 6.255 2.674-9.42 HBAUAh177-AhTE0658 3.8997 5.4416 0.4305 冀花5号Jihua 5
qPTA08.7 17DM A08 25 24.581-32.375 Ah4-4-TC9B08 4.683 5.2195 0.434 冀花5号Jihua 5
qPTB08.1 17DM B08 0 0-6.125 AHGS1286-TC20B05 3.5352 3.7738 -0.3716 M130
qPTA08.2 17DM A08 6.255 2.674-9.42 HBAUAh177-AhTE0658 4.1823 5.3897 0.4421 冀花5号Jihua 5
qPTA08.5 18QY A08 12 9.42-15.535 AhTE0658-TC6H03 3.3146 4.8431 0.3898 冀花5号Jihua 5
qPTA09.1 18DM A09 46.976 44.512-52.51 AHS1620-me4em15-230 3.9877 5.5482 -0.4349 M130
qPTA08.8 18DM A08 27 24.581-32.375 Ah4-4-TC9B08 3.8396 3.7738 0.3577 冀花5号Jihua 5
qPTA05.1 18DM A05 25.186 20.904-39.785 me13em5-112-GM1577 2.5575 2.6714 -0.3018 M130
qPTB08.3 18DM B08 2 0-6.125 AHGS1286-TC20B05 6.4241 6.1373 -0.4581 M130
qPTA08.3 18DM A08 7.688 2.674-9.42 HBAUAh177-AhTE0658 11.0128 11.0554 0.6137 冀花5号Jihua 5
qPTA08.9 18QA A08 27 24.581-32.375 Ah4-4-TC9B08 3.3743 4.1636 0.3621 冀花5号Jihua 5
qPTB08.2 18QA B08 0 0-6.125 AHGS1286-TC20B05 3.3221 3.5571 -0.3361 M130
qPTA08.4 18QA A08 7.688 2.674-9.42 HBAUAh177-AhTE0658 9.437 12.1489 0.6205 冀花5号Jihua 5
种子长 qSLB04.3 17QY B04 51.814 45.2-53.084 T3em5-340-me1em3-75 3.5098 4.5251 -0.4663 M130
SL (mm) qSLA02.4 17QY A02 34 28.586-35.04 AHGS1163-AHGS1886 4.5943 5.4414 -0.5079 M130
qSLA02.2 17DM A02 33 28.586-35.04 AHGS1163-AHGS1886 5.3238 7.4048 -0.6248 M130
qSLB04.2 18QY B04 49.814 45.2-53.084 T3em5-340-me1em3-75 4.3546 6.0388 -0.5601 M130
qSLA02.3 18QY A02 33 28.586-35.04 AHGS1163-AHGS1886 5.7194 6.4678 -0.5774 M130
qSLA08.2 18QY A08 18.373 1.395-24.581 me3em14-196-Ah4-4 4.392 6.4226 0.576 冀花5号Jihua 5
qSLB02.1 18QY B02 10 10-29.536 AHTE0398-CTW_NEW_38 2.5587 2.3638 -0.3495 M130
qSLB04.1 18DM B04 16.405 43.26-4.103 AHTE0001-AHM091 3.9425 5.5578 -0.43 M130
qSLA08.1 18DM A08 9.119 2.674-9.42 HBAUAh177-AhTE0658 2.898 3.8087 0.3432 冀花5号Jihua 5
qSLA02.1 18QA A02 32 28.586-35.04 AHGS1163-AHGS1886 3.3469 3.8192 -0.3879 M130
qSLA08.3 18QA A08 18.373 1.395-24.581 me3em14-196-Ah4-4 4.1987 6.4454 0.5045 冀花5号Jihua 5
种子宽 qSWB08.1 17QY B08 0 0-6.125 AHGS1286-TC20B05 3.3062 5.0411 -0.197 M130
SW (mm) qSWB08.2 17DM B08 0 0-6.125 AHGS1286-TC20B05 3.2831 3.6766 -0.1703 M130
qSWA08.2 17DM A08 26 15.535-26.911 TC6H03-AhTE0477 3.9168 4.8359 0.1949 冀花5号Jihua 5
qSWA08.4 18QY A08 27 24.581-32.375 Ah4-4-TC9B08 2.7094 3.7658 0.1335 JH5
qSWB08.4 18QY B08 2 0-6.125 AHGS1286-TC20B05 5.52 7.3282 -0.188 M130
qSWB02.1 18QY B02 12 10-29.536 AHTE0398-CTW_NEW_38 2.5171 3.4186 -0.1275 M130
qSWA09.1 18DM A09 23.976 23.052-24.982 RN27A10-AHTE0122 2.6959 3.1535 0.1305 冀花5号Jihua 5
qSWA02.1 18DM A02 30 28.586-35.04 AHGS1163-AHGS1886 3.4558 3.8727 0.1449 冀花5号Jihua 5
qSWB08.5 18DM B08 3 0-6.125 AHGS1286-TC20B05 9.9761 11.9698 -0.2551 M130
qSWA08.1 18DM A08 12 9.42-15.535 AhTE0658-TC6H03 4.1572 4.7351 0.1598 冀花5号Jihua 5
qSWA02.2 18QA A02 32 28.586-35.04 AHGS1163-AHGS1886 3.2739 4.3875 0.1518 冀花5号Jihua 5
qSWA08.3 18QA A08 26 24.581-32.375 Ah4-4-TC9B08 3.511 4.5457 0.1544 冀花5号Jihua 5
qSWB08.3 18QA B08 0 0-6.125 AHGS1286-TC20B05 4.8277 5.6235 -0.1723 M130
qSWB02.2 18QA B02 13 10-29.536 AHTE0398-CTW_NEW_38 3.055 4.4285 -0.1526 M130
种子厚 qSTA09.1 17QY A09 22.976 21.827-23.052 T1me13-75-RN27A10 2.9792 4.3897 0.1586 冀花5号Jihua 5
ST (mm) qSTB08.1 17QY B08 0 0-6.125 AHGS1286-TC20B05 4.1523 5.9184 -0.1856 M130
qSTB08.5 17DM B08 1 0-6.125 AHGS1286-TC20B05 3.511 5.2695 -0.1578 M130
qSTA08.3 18QY A08 19.317 1.395-24.581 me3em14-196-Ah4-4 4.3155 6.9533 0.2296 冀花5号Jihua 5
qSTB08.2 18QY B08 0 0-6.125 AHGS1286-TC20B05 4.6686 4.8687 -0.1935 M130
qSTA08.4 18QY A08 21 15.535-26.911 TC6H03-AhTE0477 2.8698 3.8907 0.1716 冀花5号Jihua 5
qSTA09.2 18DM A09 24.976 23.052-24.982 RN27A10-AHTE0122 3.8787 4.14 0.1812 冀花5号Jihua 5
qSTB08.3 18DM B08 0 0-6.125 AHGS1286-TC20B05 5.4215 5.8448 -0.2147 M130
qSTB03.1 18DM B03 59.043 27.96-64.668 GM1954-IPAHM103 2.8689 3.5976 0.1682 冀花5号Jihua 5
qSTA08.1 18DM A08 10 9.42-15.535 AhTE0658-TC6H03 6.5305 7.3459 0.24 冀花5号Jihua 5
qSTA08.5 18QA A08 29 24.581-32.375 Ah4-4-TC9B08 5.1955 7.3853 0.2579 冀花5号Jihua 5
qSTB08.4 18QA B08 0 0-6.125 AHGS1286-TC20B05 2.608 3.1638 -0.1697 M130
qSTA08.2 18QA A08 18 15.535-26.911 TC6H03-AhTE0477 3.5829 5.2767 0.2178 冀花5号Jihua 5
百果重 qHPWA08.8 17QY A08 31 24.581-32.375 Ah4-4-TC9B08 2.612 2.884 6.1294 J冀花5号ihua 5
HPW (g) qHPWB08.3 17QY B08 1 0-6.125 AHGS1286-TC20B05 4.2913 4.8043 -7.9731 M130
qHPWA08.1 17QY A08 6.971 2.674-9.42 HBAUAh177-AhTE0658 3.942 5.0068 8.1239 冀花5号Jihua 5
qHPWB08.1 17DM B08 0 0-6.125 AHGS1286-TC20B05 5.4732 6.1589 -9.2979 M130
qHPWA08.2 17DM A08 6.971 2.674-9.42 HBAUAh177-AhTE0658 3.361 4.5239 7.9317 冀花5号Jihua 5
qHPWA08.5 18QY A08 26 24.581-32.375 Ah4-4-TC9B08 3.7742 5.4674 10.1994 冀花5号Jihua 5
qHPWA09.1 18DM A09 1.574 1.243-1.881 me10em6-244-T3me4-50 2.9275 4.4348 9.1722 冀花5号Jihua 5
qHPWA08.6 18DM A08 27 24.581-32.375 Ah4-4-TC9B08 4.3701 4.589 9.3388 冀花5号Jihua 5
qHPWB08.4 18DM B08 1 0-6.125 AHGS1286-TC20B05 6.3447 6.2963 -10.993 M130
qHPWA08.3 18DM A08 7.687 2.674-9.42 HBAUAh177-AhTE0658 7.3085 7.9283 12.3093 冀花5号Jihua 5
qHPWA08.7 18QA A08 27 24.581-32.375 Ah4-4-TC9B08 3.3108 4.3355 7.727 冀花5号Jihua 5
qHPWB08.2 18QA B08 0 0-6.125 AHGS1286-TC20B05 3.1924 3.6078 -7.0792 M130
qHPWA08.4 18QA A08 8.403 2.674-9.42 HBAUAh177-AhTE0658 6.215 7.9641 10.5143 冀花5号Jihua 5
百仁重 qHSWA09.2 17QY A09 19.976 19.851-20.044 AHGS0362-AHS1950 2.7386 3.9653 2.281 冀花5号Jihua 5
HSW (g) qHSWA08.6 17QY A08 28 24.581-32.375 Ah4-4-TC9B08 3.2048 4.984 2.5511 冀花5号Jihua 5
qHSWA08.4 18QY A08 26 24.581-32.375 Ah4-4-TC9B08 6.1813 8.9514 4.4051 冀花5号Jihua 5
qHSWB02.1 18QY B02 10 10-29.536 AHTE0398-CTW_NEW_38 3.4265 4.1876 -3.0213 M130
qHSWA08.5 18DM A08 27 24.581-32.375 Ah4-4-TC9B08 3.116 4.3944 2.9937 冀花5号Jihua 5
qHSWB08.1 18DM B08 0 0-6.125 AHGS1286-TC20B05 4.3546 5.07 -3.2325 M130
qHSWA08.1 18DM A08 9.119 2.674-9.42 HBAUAh177-AhTE0658 4.7443 5.7178 3.4257 冀花5号Jihua 5
qHSWA09.1 18QA A09 1.574 1.243-1.881 me10em6-244-T3me4-50 2.6987 4.1254 3.2042 冀花5号Jihua 5
qHSWA08.2 18QA A08 18.373 1.395-24.581 me3em14-196-Ah4-4 2.6696 4.3569 3.306 冀花5号Jihua 5
qHSWA08.3 18QA A08 20 15.535-26.911 TC6H03-AhTE0477 4.2105 5.6344 3.7483 冀花5号Jihua 5

Table 5

Epistatic QTL mapping for pod and seed related traits"

性状
Trait
上位性QTL名称
Epi-QTL name
环境
Environment
染色体
Chr.
位置1
Position 1
标记区间1
Marker interval 1
上位性QTL名称
Epi-QTL name
染色体
Chr.
位置2
Position 2
标记区间2
Marker interval 2
LOD 可解释的遗传变异
PVE (%)
PL (mm) Epi-qPLA09.1 18BD A09 50.976 AHS1620-me4em15-230 Epi-qPLA05.1 A05 50 T2me4-75-seq18C2 5.09 10.23
PW (mm) Epi-qPWB08.1 17BD B08 5 AHGS1286-TC20B05 Epi-qPWA08.2 A08 25 TC6H03-AhTE0477 5.33 11.95
Epi-qPWA08.1 18BD A08 15.544 me3em14-196-Ah4-4 Epi-qPWA08.1 A08 20.26 me3em14-196-Ah4-4 5.54 42.46
PT (mm) Epi-qPTB09.1 17BD B09 5 T3me2-388-AHGS1576 Epi-qPTB09.1 B09 10 T3me2-388-AHGS1576 6.05 39.57
Epi-qPTA02.3 17BD A02 50 AHGS1886-AHGS1159 Epi-qPTA02.3 A02 55 AHGS1886-AHGS1159 5.05 40.63
Epi-qPTA08.1 17BD A08 10.827 me3em14-196-Ah4-4 Epi-qPTA08.1 A08 15.544 me3em14-196-Ah4-4 7.66 51.84
Epi-qPTA03.1 17BD A03 40 AhTE0570-TC4G02 Epi-qPTA03.1 A03 45 AhTE0570-TC4G02 6.42 37.16
Epi-qPTA10.1 17BD A10 20 AhTE0586-AHGS1192 Epi-qPTA10.1 A10 25 AHGS1192-seq3e10 6.56 38.94
Epi-qPTA02.2 17DM A02 45 AHGS1886-AHGS1159 Epi-qPTA02.2 A02 50 AHGS1886-AHGS1159 6.05 40.39
Epi-qPTA08.2 17DM A08 15.544 me3em14-196-Ah4-4 Epi-qPTA08.2 A08 20.26 me3em14-196-Ah4-4 5.01 39.62
Epi-qPTA02.1 18QA A02 10 pPGSseq14F4-Ah3TC13E05 Epi-qPTA02.1 A02 15 Ah3TC13E05-AHGS1463 5.37 26.30
SL (mm) Epi-qSLB08.1 17BD B08 0 AHGS1286-TC20B05 Epi-qSLA08.1 A08 25 TC6H03-AhTE0477 7.60 11.61
HPW (g) Epi-qHPWB08.1 17BD B08 5 AHGS1286-TC20B05 Epi-qHPWA08.1 A08 25 TC6H03-AhTE0477 8.05 17.75
Epi-qHPWB08.2 18DM B08 5 AHGS1286-TC20B05 Epi-qHPWA08.2 A08 25 TC6H03-AhTE0477 5.04 15.36
HSW (g) Epi-qHSWB08.1 17BD B08 5 AHGS1286-TC20B05 Epi-qHSWA08.1 A08 25 TC6H03-AhTE0477 7.30 13.99

Table 6

Interaction effects of additive QTLs by environments for pod and seed related traits"

性状
Trait
位置
Position
标记区间
Marker interval
LOD LOD(A) LOD
(AbyE)
可解释的遗传变异PVE 可解释的遗传变异PVE(A) 可解释的遗传变异PVE
(AbyE)
加性效应
Add
AbyE_01 AbyE_02 AbyE_03 AbyE_04 AbyE_05
HPW 1.976 T3me4-50-me10em13-84 3.2854 3.162 0.1234 0.6316 0.6176 0.014 0.3661 -0.006 -0.0408 0.0953 0.016 -0.0645
SL 16.405 AHM091-AHTE0001 6.4625 6.2415 0.2211 1.1913 1.145 0.0462 -0.5154 0.1206 -0.1441 -0.0132 0.1118 -0.0751
PL 32.814 GM1641-Ah3TC39B04 7.7019 7.1093 0.5927 1.3629 1.2801 0.0828 -0.5506 0.1878 0.0587 -0.178 -0.1467 0.0782
SL 49.814 T3em5-340-me1em3-75 6.2931 5.6064 0.6866 1.2594 1.1008 0.1586 -0.4907 0.0103 -0.1087 -0.282 0.2596 0.1208
SL 33 AHGS1163-AHGS1886 10.3475 9.9861 0.3615 1.9775 1.9001 0.0773 -0.6416 0.027 0.0248 -0.1949 0.2023 -0.0592
ST 37.706 GM1954-seq2H08 3.4137 3.1998 0.2139 0.683 0.6243 0.0588 -0.3667 -0.011 -0.2127 0.0458 0.0907 0.0872

Table 7

Interaction effects of epistatic QTLs by environments for pod and seed related traits"

Chr.1 位置1
Position 1
性状
Trait
标记区间1
Marker interval 1
Chr.2 位置2
Position 2
标记区间2
Marker interval 2
LOD LOD
(AAbyE)
PVE PVE
(AAbyE)
Add1 Add2 AddbyAdd AAbyE_01 AAbyE_02 AAbyE_03 AAbyE_04 AAbyE_05
A09 45.976 PL AHS1620-me4em15-230 B07 0 TC1A08-TC9H09 7.0121 0.0728 1.9524 0.0197 -0.1218 0.0794 -0.5448 -0.0493 -0.0654 0.0668 0.0148 0.0331
A09 50.976 PL AHS1620-me4em15-230 A06 35 me7em1-83-me8em16-92 7.8477 0.0188 2.2588 0.0066 0.0036 0.2423 -0.5959 0.0149 -0.0405 -0.0235 0.0533 -0.0043
A09 45.976 PL AHS1620-me4em15-230 B03 31.236 GM1954-IPAHM103 10.0123 0.4698 2.6465 0.0887 -0.183 -0.3668 0.6229 -0.1048 0.1381 0.139 -0.1102 -0.0622
A02 0 PT pPGSseq14F4-Ah3TC13E05 A05 5 me7em9-96-me13em5-112 8.6941 0.3066 2.3716 0.0727 -0.0142 -0.1429 -0.5926 -0.0159 -0.1916 0.0964 0.0257 0.0854
A02 60 PT AHGS1886-AHGS1159 A03 10 RM17H09-me8em1-286 7.1732 0.1598 1.9488 0.0372 0.1981 0.0409 -0.5484 0.0342 0.011 -0.1155 -0.0432 0.1136
A02 45 PT AHGS1886-AHGS1159 A06 36.412 TC7C06-AHTE0372 8.959 0.1938 2.44 0.0354 -0.2324 0.4976 -0.608 -0.0709 -0.0324 -0.069 0.11 0.0623
A08 6.111 PT me3em14-196-Ah4-4 B03 2.834 AHBGSC1003E10-GM1996 10.1986 0.0214 2.8149 0.0074 0.5756 0.21 0.6596 0.0296 0.0139 0.0111 -0.0598 0.0053
A08 1.395 PT me3em14-196-Ah4-4 A08 25 TC6H03-AhTE0477 5.4087 0.2251 1.4752 0.0536 0.4861 0.1886 -0.4783 -0.1029 0.175 -0.0222 -0.0274 -0.0225
A08 15.544 PT me3em14-196-Ah4-4 B02 10 AHTE0398-CTW_NEW_38 6.5397 0.3284 1.6356 0.0709 0.7735 -0.5558 -0.4935 0.0526 -0.1013 -0.0825 -0.0451 0.1763
B08 0 SL AHGS1286-TC20B05 B03 59.043 GM1954-IPAHM103 5.0287 0.5997 1.2864 0.1371 -0.0958 -0.1712 0.422 -0.1143 0.2612 -0.0654 -0.1314 0.05
B08 0 SL AHGS1286-TC20B05 A08 25 TC6H03-AhTE0477 15.7588 0.1295 4.009 0.0244 -0.1851 0.4017 0.7983 0.106 0.0345 -0.072 -0.022 -0.0465
A03 35 HSW AhTE0570-TC4G02 B03 6.453 AHGS1940a-AHGS1940b 9.1572 0.2059 2.4169 0.0351 -0.2737 -0.1534 -0.6022 0.0048 -0.1046 0.0963 -0.0615 0.065
A10 20 HSW AhTE0586-AHGS1192 B02 25 AHTE0398-CTW_NEW_38 5.4877 0.1016 1.4894 0.0194 0.0107 -0.2795 -0.4755 0.0571 -0.0731 -0.0229 0.0769 -0.038
[1] 禹山林. 中国花生品种及其系谱. 上海: 上海科技出版社, 2008. pp 353-465.
Yu S L. Chinese Peanut Varieties and Their Lines. Shanghai: Shanghai Scientific & Technical Publishers, 2018. pp 353-465(in Chinese).
[2] Xiang D Q, Cao H H, Cao Y G, Yang J P, Huang L J, Wang S C, Dai J R. Construction of a genetic map and location of quantitative trait loci for yield component traits in maize by SSR markers. Acta Genet Sin, 2001, 28:778-784.
[3] Varshney R K, Close T J, Singh N K, Hoisington D A, Cook D R. Orphan legume crops enter the genomics era! Curr Opin Plant Biol, 2009, 12:202-210.
doi: 10.1016/j.pbi.2008.12.004 pmid: 19157958
[4] 方宣钧. 作物DNA标记辅助育种. 北京: 科学出版社, 2001. pp 305-336.
Fang X J. Crop DNA Marker-assisted Breeding. Beijing: Science Press, 2001. pp 305-336(in Chinese).
[5] Wang B H, Guo W Z, Zhu X F, Wu Y T, Huang N T, Zhang T Z. QTL mapping of yield and yield components for elite hybrid derived-RILs in upland cotton. J Genet Genomics, 2007, 34:35-45.
doi: 10.1016/S1673-8527(07)60005-8
[6] Luo H Y, Guo J B, Ren X P, Chen W G, Huang L, Zhou X J, Chen Y N, Liu N, Xiong F, Lei Y, Liao B S, Jiang H F. Chromosomes A07 and A05 associated with stable and major QTLs for pod weight and size in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2018, 131:267-282.
doi: 10.1007/s00122-017-3000-7
[7] Wang Z H, Huai D X, Zhang Z H, Cheng K, Kang Y P, Wan L Y, Yan L Y, Jiang H F, Lei Y, Liao B S. Development of a high-density genetic map based on specific length amplified fragment sequencing and its application in quantitative trait loci analysis for yield-related traits in cultivated peanut. Front Plant Sci, 2018, 9:827.
doi: 10.3389/fpls.2018.00827
[8] Luo H Y, Ren X P, Li Z D, Xu Z H, Li X P, Huang L, Zhou X J, Chen Y N, Chen W G, Lei Y, Liao B S, Pandey M K, Varshney R K, Guo B Z, Jiang X G, Liu F, Jiang H F. Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A05 in cultivated peanut (Arachis hypogaea L.). BMC Genomics, 2017, 18:58.
doi: 10.1186/s12864-016-3456-x
[9] 李英杰. 栽培种花生株高、分枝数及荚果性状QTL定位分析. 山东农业大学硕士学位论文, 山东泰安, 2016.
Li Y J. QTL Analysis for Plant Height, Total Branching Number and Pod Traits in Peanut (Arachis hypogaea L.). MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2016 (in Chinese with English abstract).
[10] 李振动, 李新平, 黄莉, 任小平, 陈玉宁, 周小静, 廖伯寿, 姜慧芳. 栽培种花生荚果大小相关性状QTL定位. 作物学报, 2015, 41:1313-1323.
Li Z D, Li X P, Huang L, Ren X P, Chen Y N, Zhou X J, Liao B S, Jiang H F. Mapping of QTLs for pod size related traits in cultivated peanut (Arachis hypogaea L.). Acta Agron Sin, 2015, 41:1313-1323 (in Chinese with English abstract).
[11] 吕维娜. 花生栽培种SSR遗传连锁图谱构建及重要产量性状QTL定位分析. 郑州大学硕士学位论文, 河南郑州, 2014.
Lyu W N. Contruction of Genetic Linkage Map Based on SSR Markers and QTLs Identification for Major Yield Traits in the Cultivated Peanut (Arachis hypogaea L.). MS Thesis of Zhengzhou University, Zhengzhou, Henan, China, 2014 (in Chinese with English abstract).
[12] 成良强. 花生遗传图谱构建及产量相关性状的QTL分析. 中国农业科学院硕士学位论文, 北京, 2014.
Cheng L Q. Construction of Genetic Linkage Map and QTL Analysis for Yield Related Traits in Peanut (Arachis hypogaea L.). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2014 (in Chinese with English abstract).
[13] Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe M, Hasegawa M, Kiyoshima H, Suzuki S, Kuwata C, Naito Y, Kuboyama T, Nakaya A, Sasamoto S, Watanabe A, Kato M, Kawashima K, Kishida Y, Kohara M, Kurabayashi A, Chika T, Tsuruoka H, Wada T, Isobe S. In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol, 2012, 12:80.
doi: 10.1186/1471-2229-12-80 pmid: 22672714
[14] 姜慧芳. 花生种质资源描述规范和数据标准, 3-9. 北京: 中国农业出版社, 2006. pp 355-455.
Jiang H F. Specification for Description and Data of Peanut Germplasm Resources, 3-9. Beijing: China Agriculture Press, 2016. pp 355-455(in Chinese)
[15] 王亮, 杨鑫雷, Getahun A, 崔顺立, 穆国俊, 刘立峰, 李自超. 栽培种花生AFLP标记体系的优化及多态性引物筛选. 核农学报, 2017, 31:2087-2095.
Wang L, Yang X L, Getahun A, Cui S L, Mu G J, Liu L F, Li Z C. Screening for polymorphic primer pairs and optimization of AFLP marker system in peanut. J Nucl Agric Sci, 2017, 31:2087-2095 (in Chinese with English abstract).
[16] Lin Z X, He D H, Zhang X L, Nie Y C, Guo X P, Feng C D, Stewart J M. Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breed, 2008, 124:180-187.
doi: 10.1111/pbr.2005.124.issue-2
[17] Yu J W, Yu S X, Lu C R, Wang W, Fan S L, Song M Z, Lin Z X, Zhang X L, Zhang J F. High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers. J Integr Plant Biol, 2007, 49:716-724.
doi: 10.1111/jipb.2007.49.issue-5
[18] 崔顺立, 刘立峰, 陈焕英, 耿立格, 孟成生, 杨余. 河北省花生地方品种基于SSR标记的遗传多样性. 中国农业科学, 2009, 42:3346-3353.
Cui S L, Liu L F, Chen H Y, Geng L G, Meng C S, Yang Y. Genetic diversity of peanut landraces in Hebei province revealed by SSR markers. Sci Agric Sin, 2009, 42:3346-3353 (in Chinese with English abstract).
[19] JoinMap 4.0 Software for the Calculation of Genetic Linkage Maps in Experimental Populations. Wageningen: Kyazma B V, 2006.
[20] Kosambi D D. The estimation of map distances from recombination values. Ann Hum Genet, 2011, 1:172-175.
[21] Voorrips RE. MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered, 2002, 93:77-78.
pmid: 12011185
[22] 陈建国, 朱军. 籼粳交稻米蛋白质含量的基因型与环境互作效应的分析. 作物学报, 1999, 25:579-584.
Chen J G, Zhu J. Analysis of genotype by environment interaction for protein content in indica-japonica crosses of rice(Oryza sativa L.). Acta Agron Sin, 1999, 25:579-584 (in Chinese with English abstract).
[23] 刘雪海, 田俊芹. 花生品种主要性状遗传力和遗传进度的估算. 华北农学报, 1981, 1(2):48-50.
Liu X M, Tian J Q. Estimation of heritability and genetic progress of main traits of peanut varieties. Acta Agric Boreali-Sin, 1981, 1(2):48-50 (in Chinese).
[24] Meng L, Li H H, Zhang L Y, Wang J K. QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015, 3:269-283.
doi: 10.1016/j.cj.2015.01.001
[25] 张志勇. 水稻粒型和粒重性状的主效QTL定位研究. 厦门大学硕士学位论文, 福建厦门, 2008.
Zhang Z Y. Mapping of Major QTL for Grain Shape and Weight Traits in Rice (Oryza sativa L.). MS Thesis of Xiamen University, Xiamen, Fujian, China, 2008 (in Chinese with English abstract).
[26] Varshney R K, Bertioli D J, Moretzsohn M C, Vadez V, Krishnamurthy L, Aruna R, Nigam S N, Moss B J, Seetha K, Ravi K, He G, Knapp S J, Hoisington D A. The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet, 2009, 118:729-739.
doi: 10.1007/s00122-008-0933-x pmid: 19048225
[27] Lu Q, Liu H, Hong Y B, Li H F, Liu H Y, Li X Y, Wen S J, Zhou G Y, Li S X, Chen X P, Liang X Q. Consensus map integration and QTL meta-analysis narrowed a locus for yield traits to 0.7 cM and refined a region for late leaf spot resistance traits to 0.38 cM on linkage group A05 in peanut (Arachis hypogaea L.). BMC Genomics, 2018, 19:887.
doi: 10.1186/s12864-018-5288-3
[28] Liang Y B, Liang X Q, Chen X P, Zhou H Y, Li G Y, Shao X, Wen S J. Construction of genetic linkage map based on SSR markers in peanut (Arachis hypogaea L.). Agric Sci China, 2008, 7:915-921.
doi: 10.1016/S1671-2927(08)60130-3
[29] Hong Y B, Chen X P, Liang X Q, Liu H Y, Zhou G Y, Li S X, Wen S J, Holbrook C, Guo B Z. A SSR-based composite genetic linkage map for the cultivated peanut (Arachis hypogaea L.) genome. BMC Plant Biol, 2010, 10:17.
doi: 10.1186/1471-2229-10-17
[30] Huang L, He H, Chen W G, Ren X P, Chen Y N, Zhou X J, Xia Y L, Wang X L, Jiang X J, Liao B S, Jiang H F. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2015, 128:1103-1115
doi: 10.1007/s00122-015-2493-1 pmid: 25805315
[31] 曾新颖, 郭建斌, 赵姣姣, 陈伟刚, 邱西克, 黄莉, 罗怀勇, 周晓静, 姜慧芳, 黄家权. 花生籽仁大小相关性状QTL定位. 作物学报, 2019, 45:1200-1207.
Zeng X Y, Guo J B, Zhao J J, Chen W G, Qiu X K, Huang L, Luo H Y, Zhou X J, Jiang H F, Huang J Q. Identification of QTL related to seed size in peanut (Arachis hypogaea L.). Acta Agron Sin, 2019, 45:1200-1207 (in Chinese with English abstract).
[32] Gomez S M, Narayana M, Schubert A M, Ayers J, Baring M R, Burow M D. Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis. Electr J Biotechnol, 2009, 12:1-10.
[33] Yuan A P, Cao L Y, Zhuang J Y, Li R Z, Zheng K L, Zhu J, Cheng S H. Analysis of additive and AE interaction effects of QTLs controlling plant height, heading date and panicle number in rice (Oryza sativa L.). J Genet Genomics, 2003, 30:899-906.
[34] Specht J E, Chase K, Macrander M, Graef G L, Chung J, Markwell J P, Germann M, Orf J H, Lark K G. Soybean response to water. Crop Sci, 2001, 41:493-509.
doi: 10.2135/cropsci2001.412493x
[1] ZHANG Yu-Kun, LU Ying, CUI Kan, XIA Shi-Tou, LIU Zhong-Song. Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss. [J]. Acta Agronomica Sinica, 2022, 48(6): 1325-1332.
[2] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[3] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[4] QIN Lu, HAN Pei-Pei, CHANG Hai-Bin, GU Chi-Ming, HUANG Wei, LI Yin-Shui, LIAO Xiang-Sheng, XIE Li-Hua, LIAO Xing. Screening of rapeseed germplasms with low nitrogen tolerance and the evaluation of its potential application as green manure [J]. Acta Agronomica Sinica, 2022, 48(6): 1488-1501.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] WANG Xuan-Dong, YANG Sun-Yu-Yue, GAO Run-Jie, YU Jun-Jie, ZHENG Dan-Pei, NI Feng, JIANG Dong-Hua. Screening Streptomyces against Xanthomonas axonopodis pv. glycines and study of growth-promoting and biocontrol effect [J]. Acta Agronomica Sinica, 2022, 48(6): 1546-1557.
[7] LI Hai-Fen, WEI Hao, WEN Shi-Jie, LU Qing, LIU Hao, LI Shao-Xiong, HONG Yan-Bin, CHEN Xiao-Ping, LIANG Xuan-Qiang. Cloning and expression analysis of voltage dependent anion channel (AhVDAC) gene in the geotropism response of the peanut gynophores [J]. Acta Agronomica Sinica, 2022, 48(6): 1558-1565.
[8] ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058.
[9] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[10] LEI Xin-Hui, WAN Chen-Xi, TAO Jin-Cai, LENG Jia-Jun, WU Yi-Xin, WANG Jia-Le, WANG Peng-Ke, YANG Qing-Hua, FENG Bai-Li, GAO Jin-Feng. Effects of soaking seeds with MT and EBR on germination and seedling growth in buckwheat under salt stress [J]. Acta Agronomica Sinica, 2022, 48(5): 1210-1221.
[11] SHI Yu-Qin, SUN Meng-Dan, CHEN Fan, CHENG Hong-Tao, HU Xue-Zhi, FU Li, HU Qiong, MEI De-Sheng, LI Chao. Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L [J]. Acta Agronomica Sinica, 2022, 48(4): 801-811.
[12] QIN Qin, TAO You-Feng, HUANG Bang-Chao, LI Hui, GAO Yun-Tian, ZHONG Xiao-Yuan, ZHOU Zhong-Lin, ZHU Li, LEI Xiao-Long, FENG Sheng-Qiang, WANG Xu, REN Wan-Jun. Characteristics of panicle stem growth and flowering period of the parents of hybrid rice in machine-transplanted seed production [J]. Acta Agronomica Sinica, 2022, 48(4): 988-1004.
[13] ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552.
[14] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[15] WANG Juan, ZHANG Yan-Wei, JIAO Zhu-Jin, LIU Pan-Pan, CHANG Wei. Identification of QTLs and candidate genes for 100-seed weight trait using PyBSASeq algorithm in soybean [J]. Acta Agronomica Sinica, 2022, 48(3): 635-643.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!