Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (1): 262-276.doi: 10.3724/SP.J.1006.2023.24024

• TILLAGE & CULTIVATION ·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Tuber sugar-end adaptability, stability, and screening of French fries processing varieties in potato

DUAN Hui-Min1(), WANG Yu2, CHENG Li-Xiang3, SA Gang3, XIA Lu-Lu2, ZHANG Feng1,3,*()   

  1. 1College of Agriculture, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    2College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China
    3State Key Laboratory of Aridland Crop Science / Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2022-01-19 Accepted:2022-05-05 Online:2023-01-12 Published:2022-05-27
  • Contact: ZHANG Feng E-mail:1273475789@qq.com;zhangf@gsau.edu.cn
  • Supported by:
    Gansu Province Science and Technology Key Project(21ZD11NA002);Gansu Province Disease Resistance, Quality and Efficiency Special Potato Varieties Innovation and Demonstration Expansion Project(GNKJ-2020-1);Gansu Province Central Government Guides Local Science and Technology Development Special Fund Project

Abstract:

French fries need to have a bright and uniform color in the process of potato processing. Potato tuber sugar-end would make the fried fries brown ends. Screening the French fries processing varieties with sugar-end resistance by analyzing component content and color parameters related to sugar-end in the tuber and combining the genotype + genotype and environment interactions (GGE) model would provide a theoretical basis for the selection and planting of French fries processing varieties. Eight varieties (lines) with excellent comprehensive agronomic traits were selected and planted in two different ecological areas of Hexi irrigation area (Yongchang) and Alpine humid area (Weiyuan). After harvest, the tubers were stored at room temperature (20℃) and low temperature (4℃), respectively. Then, the contents of starch, fructose, glucose, sucrose, and free amino acids at the basal and apical tubers were measured after 15 days and 60 days storage. The color of basal and apical ends of French fries was measured for evaluating tuber sugar-end type. Meanwhile, the effects of locations, varieties, storage conditions, and their interactions on tuber sugar-end were analyzed. Combining with the GGE model, the adaptability and stability of the tested varieties showed that six varieties had tuber sugar-end in Yongchang, among which five varieties were basal sugar-end and one variety was apical sugar-end. In Weiyuan, nine varieties had tuber sugar-end, among which four varieties were basal sugar-end and five varieties were apical sugar-end. The low color difference at the basal and apical ends of potato varieties indicated that the sugar-end degree was low in Yongchang location. The variance analysis indicated that the environment and interaction effects were the primary factors that determined tuber sugar-end. Among the interaction effects, the interaction between environment and genotype played a role in determining sugar-end. The GGE model revealed that the composition of basal ends was higher adaptability than the apical end of tubers. Moreover, the sucrose and free amino acids of tubers were higher stability than starch and reducing sugar in each location. The suitable location for planting fries processing potatoes was Yongchang, and more accurately discriminability location for the tuber sugar-end was Weiyuan. The sugar-end varieties can be better identified under room temperature storage. In conclusion, H0940 was a material with sugar-end resistance and Gannongshu 7 was a processing variety with sugar-end resistance.

Key words: sugar-end, tuber components, French fries color, GGE analysis

Table 1

Pedigree of tested varieties (lines) and material source"

品种(系)
Variety (Line)
系谱
Pedigree
材料来源
Material source
Shepody Bake-King × F58050 Falkton Agricultural Experimental Station, Canada
荷混18 Hehun 18 Nena × Dunja Saatzucht Johs, Germany
H0940 AR 00-9417 × 0730-185 甘肃农业大学 Gansu Agricultural University, China
H0942 Melody × 0730-185 甘肃农业大学 Gansu Agricultural University, China
H0951 Russet Burbank × 0730-185 甘肃农业大学 Gansu Agricultural University, China
H0953 Russet Burbank × 0730-185 甘肃农业大学 Gansu Agricultural University, China
甘农薯7号 Gannongshu 7 大西洋×陇薯7号 Atlantic × Longshu 7 甘肃农业大学 Gansu Agricultural University, China
0730-217 大西洋×陇薯7号 Atlantic × Longshu 7 甘肃农业大学 Gansu Agricultural University, China

Table 2

Agronomic traits of potato varieties (lines)"

品种(系)
Variety (line)
块茎长
Length of tubers (cm)
块茎宽
Width of tubers (cm)
块茎长宽比
Length-width ration
商品率
Commercial
rate (%)
干物质含量
Dry matter content (%)
薯肉颜色
Flesh color
永昌Yongchang
Shepody 9.12 ±0.94 BC 5.42±0.11 C 1.68±0.14 A 87.56±0.12 B 24.33±0.12 C 白White
荷混18 Hehun 18 7.95±0.65 C 6.45±0.08 B 1.23±0.07 B 88.28±0.15 A 28.15±0.10 A 黄Yellow
H0940 7.97±1.28 C 4.93±0.21 D 1.60±0.21 AB 84.47±0.17 C 22.67±0.19 D 黄Yellow
H0942 8.97±0.85 BC 6.30±0.10 B 1.42±0.12 AB 80.73±0.09 F 22.33±0.10 D 黄Yellow
H0951 9.92±0.91 ABC 5.83±0.13 C 1.70±0.13 A 80.23±0.14 F 20.33±0.17 E 黄Yellow
H0953 12.76±0.85 A 7.51±0.07 A 1.70±0.08 A 83.44±0.08 D 18.00±0.08 F 白White
甘农薯7号 Gannongshu 7 11.80±0.79 AB 7.60±0.10 A 1.55±0.11 AB 82.67±0.10 E 25.43±0.07 B 白White
0730-217 11.13±0.82 AB 7.31±0.11 A 1.52±0.12 AB 88.59±0.12 A 22.33±0.08 D 白White
渭源Weiyuan
Shepody 10.67±1.06 AB 6.33±0.13 B 1.68±0.14 AB 88.71±0.14 A 21.00±0.15 D 白White
荷混18 Hehun 18 11.38±0.67 A 5.68±0.09 C 2.00±0.07 A 85.73±0.12 F 26.48±0.07 AB 黄Yellow
H0940 10.53±1.60 AB 6.53±0.20 B 1.60±0.18 B 86.27±0.19 E 20.33±0.21 E 黄Yellow
H0942 9.23±0.87 AB 6.48±0.11 B 1.42±0.09 BC 88.49±0.07 A 23.67±0.12 C 黄Yellow
H0951 11.25±1.01 A 6.60±0.12 B 1.70±0.11 AB 88.02±0.15 B 18.67±0.14 F 黄Yellow
H0953 7.94±0.78 B 7.33±0.09 A 1.08±0.12 C 85.49±0.08 F 18.00±0.12 F 白White
甘农薯7号 Gannongshu 7 10.27±0.71 AB 6.70±0.09 B 1.53±0.10 B 87.00±0.07 D 25.33±0.10 B 白White
0730-217 9.03±0.69 AB 5.93±0.09 C 1.52±0.08 B 87.51±0.07 C 27.00±0.06 A 白White

Fig. 1

Starch contents in basal and apical parts of potato tubers of different varieties or lines planted in two locations The Different uppercase letters indicate significant differences among varieties or lines, and lowercase letters indicate significant differences under different planting and storage conditions of tuber parts within varieties or lines at P ≤ 0.05."

Fig. 2

Fructose contents in basal and apical parts of potato tubers of different varieties or lines planted in two locations Different uppercase letters indicate significant differences among varieties or lines, and lowercase letters indicate significant differences under different planting and storage conditions of tuber parts within the varieties or lines at P ≤ 0.05."

Fig. 3

Glucose contents in basal and apical parts of potato tubers of different varieties or lines planted in two locations Different uppercase letters indicate significant differences among varieties or lines, and lowercase letters indicate significant differences under different planting and storage conditions of tuber parts within the varieties or lines at P ≤ 0.05."

Fig. 4

Sucrose contents in basal and apical parts of potato tubers of different varieties or lines planted in two locations Different uppercase letters indicate significant differences among varieties or lines, and lowercase letters indicate significant differences under different planting and storage conditions of tuber parts within the varieties or lines at P ≤ 0.05."

Fig. 5

Free amino acids contents in basal and apical parts of potato tubers of different varieties or lines planted in two locations Different uppercase letters indicate significant differences among varieties or lines, and lowercase letters indicate significant differences under different planting and storage conditions of tuber parts within the varieties or lines at P ≤ 0.05."

Fig. 6

Color differences in basal and apical parts of tubers of different potato varieties or lines planted in two locations after storage and fried Different uppercase letters indicate significant differences among varieties or lines, and lowercase letters indicate significant differences under different planting and storage conditions of varieties or lines planted in two locations at P ≤ 0.05."

Fig. 7

Colors in French fries of different potato varieties or lines"

Table 3

Correlation analysis between fried potato hunter values and tuber components"

亨特指数Hunter
value
样本量
Sample
size
果糖
Fructose
葡萄糖
Glucose
蔗糖
Sucrose content
游离氨基酸
Free amino acids
相关性
Pearson
correlation
P-value 相关性 Pearson
correlation
P-value 相关性
Pearson
correlation
P-value 相关性
Pearson
correlation
P-value
L* 288 0.115* 0.025 0.073 0.108 -0.099* 0.047 0.013 0.412
a* 288 -0.086 0.074 -0.011 0.425 -0.123* 0.019 -0.008 0.446
b* 288 -0.014 0.405 0.127* 0.015 -0.254** 0.000 0.039 0.253
ΔE 144 -0.236** 0.002 -0.029 0.364 -0.152* 0.034 0.014 0.435

Table 4

Analysis of variances of potato tuber composition"

性状
Trait
变异来源
Source of variations
自由度 DF 平方和
Sum of square
均方
Mean squares
F检验
F-test
显著性 Significance
基部淀粉
Starch of basal tubers
试点 Location (L) 1 15.987 15.987 5.748 <0.050
基因型 Genotype (G) 7 363.493 51.928 18.670 <0.001
储藏 Storage (S) 2 206.145 103.072 37.060 <0.001
试点×基因型L × G 7 478.585 68.369 24.582 <0.001
试点×储藏 L × S 2 14.071 7.035 2.530 0.085
基因型×储藏 G × S 14 643.946 45.996 16.538 <0.001
试点×基因型×储藏 L × G × S 14 422.502 30.179 10.851 <0.001
残差 Residual 96 267.001 2.781
总变异 Total 143 2411.730
顶部淀粉
Starch of apical tubers
试点 Location 1 106.468 106.468 30.513 <0.001
基因型 Genotype 7 200.798 28.685 8.221 <0.001
储藏 Storage 2 379.414 189.707 54.369 <0.001
试点×基因型 L × G 7 205.039 29.291 8.395 <0.001
试点×储藏 L × S 2 0.324 0.162 0.046 0.955
基因型×储藏 G × S 14 400.278 28.591 8.194 <0.001
试点×基因型×储藏 L × G × S 14 186.154 13.297 3.811 <0.001
残差 Residual 96 334.966 3.489
总变异 Total 143 1813.441
基部还原糖
Reducing sugar of basal tubers
试点 Location 1 2.780 2.780 0.890 0.348
性状
Trait
变异来源
Source of variations
自由度 DF 平方和
Sum of square
均方
Mean squares
F检验
F-test
显著性 Significance
基部还原糖
Reducing sugar of basal tubers
基因型 Genotype 7 297.750 42.540 13.630 <0.001
储藏 Storage 2 34.160 17.080 5.470 <0.01
试点×基因型 L × G 7 252.730 36.100 11.570 <0.001
试点×储藏 L × S 2 1.140 0.570 0.180 0.833
基因型×储藏 G × S 14 96.490 6.890 2.210 <0.05
试点×基因型×储藏 L × G × S 14 303.220 21.660 6.940 <0.001
残差 Residual 96 299.530 3.120
总变异 Total 143 1287.800
顶部还原糖
Reducing sugar of apical tubers
试点 Location 1 6.280 6.280 1.020 0.315
基因型 Genotype 7 222.700 31.810 5.160 <0.001
储藏 Storage 2 104.220 52.110 8.460 <0.001
试点×基因型 L × G 7 301.950 43.140 7.000 <0.001
试点×储藏 L × S 2 4.090 2.040 0.330 0.718
基因型×储藏 G × S 14 203.520 14.540 2.360 <0.010
试点×基因型×储藏 L × G × S 14 105.320 7.520 1.220 0.273
残差 Residual 96 591.410 6.160
总变异 Total 143 1539.490
基部蔗糖
Sucrose of basal tubers
试点 Location 1 0.643 0.643 2.012 0.159
基因型 Genotype 7 89.125 12.732 39.853 <0.001
储藏 Storage 2 8.391 4.196 13.133 <0.001
试点×基因型 L × G 7 61.058 8.723 27.302 <0.001
试点×储藏 L × S 2 0.393 0.196 0.615 0.543
基因型×储藏 G × S 14 31.441 2.246 7.030 <0.001
试点×基因型×储藏 L × G × S 14 53.875 3.848 12.045 <0.001
残差 Residual 96 30.670 0.319
总变异 Total 143 275.595
顶部蔗糖
Sucrose of apical tubers
试点 Location 1 30.223 30.223 132.163 <0.001
基因型 Genotype 7 91.383 13.055 57.089 <0.001
储藏 Storage 2 14.786 7.393 32.329 <0.001
试点×基因型 L × G 7 109.449 15.636 68.375 <0.001
试点×储藏 L × S 2 2.329 1.165 5.093 <0.010
基因型×储藏 G × S 14 78.798 5.628 24.613 <0.001
试点×基因型×储藏 L × G × S 14 56.282 4.020 17.580 <0.001
残差 Residual 96 21.953 0.229
总变异 Total 143 405.202
基部游离氨基酸
Free amino acids of basal tubers
试点 Location 1 0.001 0.001 0.840 0.362
基因型 Genotype 7 1.198 0.171 143.244 <0.001
储藏 Storage 2 0.013 0.007 5.542 <0.010
试点×基因型 L × G 7 1.159 0.166 138.640 <0.001
试点×储藏 L × S 2 0.035 0.017 14.528 <0.001
基因型×储藏 G × S 14 0.318 0.023 19.040 <0.001
试点×基因型×储藏 L × G × S 14 0.287 0.021 17.167 <0.001
残差 Residual 96 0.115 0.001
总变异 Total 143 3.126
顶部游离氨基酸
Free amino acid of
apical tubers
试点 Location 1 0.065 0.065 55.472 <0.001
基因型 Genotype 7 0.795 0.114 96.845 <0.001
储藏 Storage 2 0.084 0.042 35.839 <0.001
试点×基因型 L × G 7 0.713 0.102 86.897 <0.001
试点×储藏 L × S 2 0.006 0.003 2.709 0.072
基因型×储藏 G × S 14 0.689 0.049 41.970 <0.001
试点×基因型×储藏 L × G × S 14 0.170 0.012 10.378 <0.001
残差 Residual 96 0.113 0.001
总变异 Total 143 2.635

Fig. 8

GGE biplot of content adaptability of each component in potato tubers A: starch; B: reducing sugar; C: sucrose; D: free amino acids."

Fig. 9

GGE biplot of content stability of each component in potato tubers A: starch; B: reducing sugar; C: sucrose; D: free amino acids."

[1] Djaman K, Irmak S, Koudahe K, Allen S. Irrigation management in potato (Solanum tuberosum L.) production: a review. Sustainability, 2021, 13: 1504.
doi: 10.3390/su13031504
[2] Wagg C, Hann S, Kupriyanovich Y, Li S. Timing of short period water stress determines potato plant growth, yield and tuber quality. Agric Water Manage, 2021, 247: 106731.
doi: 10.1016/j.agwat.2020.106731
[3] Thompson A L, Love S L, Sowokinos J R, Thornton M K, Shock C C. Review of the sugar end disorder in potato (Solanum tuberosum L.). Am J Potato Res, 2008, 85: 375-386.
doi: 10.1007/s12230-008-9034-2
[4] Zommick D H, Knowles L O, Pavek M J, Knowles N R. In-season heat stress compromises postharvest quality and low-temperature sweetening resistance in potato (Solanum tuberosum L.). Planta, 2014, 239: 1243-1263.
doi: 10.1007/s00425-014-2048-8 pmid: 24615233
[5] Busse J S, Wiberley-Bradford A E, Bethke P C. Transient heat stress during tuber development alters post-harvest carbohydrate composition and decreases processing quality of chipping potatoes. J Sci Food Agric, 2019, 99: 2579-2588.
[6] Muleta H D, Aga M C. Role of nitrogen on potato production: a review. J Plant Sci, 2019, 7: 36-42.
[7] Naumann M, Koch M, Thiel H, Gransee A, Pawelzik E. The importance of nutrient management for potato production part II: Plant nutrition and tuber quality. Potato Res, 2020, 63: 121-137.
doi: 10.1007/s11540-019-09430-3
[8] Kumar P, Pandey S, Singh S, Kumar D, Singh B, Singh S, Rawal S, Meena R. Influence of N and K rates on yield and quality of chipping variety Kufri Chipsona-3. Potato J, 2012, 39: 191-196.
[9] Gawish R A, Ali F A, Midan S A, Taha M A. CO2 evolution and chemical constituents of leaves and tubers of potato plants as influenced by organic compost and mineral N-fertilizers applied individually or in different combination rates along with seaweed extract. J Appl Sci Res, 2012, 8: 1993-2009.
[10] Sabba R P, Bussan A J, Michaelis B A, Hughes R, Drilias M J, Glynn M T. Effect of planting and vine-kill timing on sugars, specific gravity and skin set in processing potato cultivars. Am J Potato Res, 2007, 84: 205-215.
doi: 10.1007/BF02986270
[11] Rosen C, Sun N, Olsen N, Thornton M, Pavek M, Knowles L, Knowles N R. Impact of agronomic and storage practices on acrylamide in processed potatoes. Am J Potato Res, 2018, 95: 319-327.
doi: 10.1007/s12230-018-9659-8
[12] Grudzińska M, Boguszewska-Mańkowska D, Zarzyńska K. Drought stress during the growing season: changes in reducing sugars, starch content and respiration rate during storage of two potato cultivars differing in drought sensitivity. J Agron Crop Sci, 2021, 207: 12498.
[13] Wang Y, Bethke P C, Drilias M J, Schmitt W G, Bussan A J. A multi-year survey of stem-end chip defect in chipping potatoes (Solanum tuberosum L.). Am J Potato Res, 2015, 92: 79-90.
doi: 10.1007/s12230-014-9414-8
[14] 乔焕焕, 李红兵, 郑太波, 邓西平. 干旱与复水对马铃薯块茎膨大期碳氮转运的影响. 干旱地区农业研究, 2019, 37(4): 154-162.
Qiao H H, Li H B, Zheng T B, Deng X P. Effects of drought stress and rehydration on carbon and nitrogen translocation in potato tuber swelling stage. Agric Res Arid Areas, 2019, 37(4): 154-162. (in Chinese with English abstract)
[15] Rykaczewska K. The effect of high temperature occurring in subsequent stages of plant development on potato yield and tuber physiological defects. Am J Potato Res, 2015, 92: 339-349.
doi: 10.1007/s12230-015-9436-x
[16] Abbas H, Ranjan R S. Effect of soil moisture deficit on marketable yield and quality of potatoes. Can Biosyst Engin, 2015, 57: 25-37.
[17] Bandana, Sharma V, Kaushik S K, Singh B, Raigond P. Variation in biochemical parameters in different parts of potato tubers for processing purposes. J Food Sci Technol, 2016, 53: 2040-2046.
doi: 10.1007/s13197-016-2173-4 pmid: 27413232
[18] Sowokinos J R. Potato Biology and Biotechnology. Amsterdam: Elsevier Science BV, 2007. pp 501-523.
[19] 余斌. 引进马铃薯种质资源表型多样性分析及块茎品质的综合评价. 甘肃农业大学博士学位论文, 甘肃兰州, 2018.
Yu B. Genetic Diversity Analysis of Phenotypic Traits and Comprehensive Assessment of Tuber Quality in Introduced Potato Germplasm Resources. PhD Dissertation of Gansu Agricultural University, Lanzhou, Gansu, China, 2018. (in Chinese with English abstract)
[20] 赵艳群, 武奇伟, 任飞娥, 赵金瑞, 赵文忠. 马铃薯品种对早疫病、晚疫病和疮痂病的田间抗性评价. 中国马铃薯, 2021, 35(2): 164-169.
Zhao Y Q, Wu Q W, Ren F E, Zhao J R, Zhao W Z. Evaluation on field resistance of potato varieties to early blight, late blight and scab. Chin Potato J, 2021, 35(2): 164-169. (in Chinese with English abstract)
[21] 张永成, 田丰. 马铃薯试验研究方法. 北京: 中国农业科学技术出版社, 2007. pp 166-169.
Zhang Y C, Tian F. Potato Experimental Research Method. Beijing: China Agricultural Science and Technology Press, 2007. pp 166-169. (in Chinese)
[22] Ohara-Takada A, Matsuura-Endo C, Chuda Y, Ono H, Yada H, Yoshida M, Kobayashi A, Tsuda S, Takigawa S, Noda T. Change in content of sugars and free amino acids in potato tubers under short-term storage at low temperature and the effect on acrylamide level after frying. Biosci Biotechnol Biochem, 2005, 69: 1232-1238.
doi: 10.1271/bbb.69.1232
[23] Lee Y P, Takahashi T. An improved colorimetric determination of amino acids with the use of ninhydrin. Anal Biochem, 1966, 14: 71-77.
doi: 10.1016/0003-2697(66)90057-1
[24] 刘娟, 梁延超, 余斌, 李成, 王玉萍, 程李香, 张峰. 马铃薯薯条色泽和质地特性及薯条加工型品系筛选. 中国农业科学, 2017, 50: 4247-4265.
Liu J, Liang Y C, Yu B, Li C, Wang Y P, Cheng L X, Zhang F. Screening for French fries processing potato lines according to colour qualities and texture properties. Sci Agric Sin, 2017, 50: 4247-4265. (in Chinese with English abstract)
[25] 叶夕苗, 程鑫, 安聪聪, 袁剑龙, 余斌, 文国宏, 李高峰, 程李香, 王玉萍, 张峰. 马铃薯产量组分的基因型与环境互作及稳定性. 作物学报, 2020, 46: 354-364.
doi: 10.3724/SP.J.1006.2020.94089
Ye X M, Cheng X, An C C, Yuan J L, Yu B, Wen G H, Li G F, Cheng L X, Wang Y P, Zhang F. Genotype × environment interaction and stability of yield components for potato lines. Acta Agron Sin, 2020, 46: 354-364. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2020.94089
[26] Tajner-Czopek A, Kita A, Rytel E. Characteristics of French fries and potato chips in aspect of acrylamide content-methods of reducing the toxic compound content in ready potato snacks. Appl Sci, 2021, 11: 3943.
doi: 10.3390/app11093943
[27] 王郁, 程鑫, 叶夕苗, 程李香, 李高峰, 文国宏, 王玉萍, 张峰. 不同品系马铃薯块茎末端糖化差异分析. 中国粮油学报, 2020, 35(7): 22-27.
Wang Y, Cheng X, Ye X M, Cheng L X, Li G F, Wen G H, Wang Y P, Zhang F. Analysis of sugar-end differences of potato tubers in different lines. J Chin Cereals Oils Assoc, 2020, 35(7): 22-27. (in Chinese with English abstract)
[28] Herman D J, Knowles L O, Knowles N R. Heat stress affects carbohydrate metabolism during cold-induced sweetening of potato (Solanum tuberosum L.). Planta, 2017, 245: 563-582.
doi: 10.1007/s00425-016-2626-z pmid: 27904974
[29] Herman D J, Knowles L O, Knowles N R. Low oxygen storage modulates invertase activity to attenuate cold-induced sweetening and loss of process quality in potato (Solanum tuberosum L.). Posth Biol Technol, 2016, 121: 106-117.
doi: 10.1016/j.postharvbio.2016.07.017
[30] Liu X, Chen L, Shi W, Xu X, Li Z, Liu T, He Q, Xie C, Nie B, Song B. Comparative transcriptome reveals distinct starch- sugar interconversion patterns in potato genotypes contrasting for cold-induced sweetening capacity. Food Chem, 2021, 334: 127550.
doi: 10.1016/j.foodchem.2020.127550
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[3] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[7] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[8] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[9] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[10] TIAN Zhi-Jian;Yi Rong;CHEN Jian-Rong;GUO Qing-Quan;ZHANG Xue-Wen;. Cloning and Expression of Cellulose Synthase Gene in Ramie [Boehme- ria nivea (Linn.) Gaud.][J]. Acta Agron Sin, 2008, 34(01): 76 -83 .