Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2024, Vol. 50 ›› Issue (5): 1172-1180.doi: 10.3724/SP.J.1006.2024.34167

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Screening of regeneration capacity and genetic transformation efficiency in recombinant inbred lines of Gossypium hirsutum L.

LE Yu(), WANG Tao, ZHANG Xian-Long, LIN Zhong-Xu*()   

  1. College of Plant Science & Technology, Huazhong Agricultural University / National Key Laboratory of Crop Genetic Improvement, Wuhan 430070, Hubei, China
  • Received:2023-10-16 Accepted:2024-01-12 Online:2024-05-12 Published:2024-02-07
  • Contact: E-mail: linzhongxu@mail.hzau.edu.cn
  • Supported by:
    National Natural Science Foundation of China(32172025)

Abstract:

Transgenic engineered breeding is an effective way of cotton germplasm innovations. In order to expand the renewable genotypes of upland cotton and to enrich cotton transgenic receptors, we constructed an F9 recombinant inbred population (YE) by the single-seed descent method using the high-yielding broad leaf cotton variety Emian 22 (E22) from Hubei province as the male parent and the high regeneration-capable okra leaf variety Yuzao 1 (YZ1) as the female parent. We compared the callus induction rate (CIF), callus secondary fecundity (CSC), embryo rate of callus (CRE), and callus embryo time (CET) of 164 recombinant inbred lines using two different hormone combinations of IBA+KT (IK) and 2,4-D+KT (DK), respectively, which were mature tissue culture systems in cotton. A total of 12 regenerable broad leaf lines were obtained and evaluated for the genetic transformation efficiency using the current mature genetic transformation system in cotton; meanwhile, agronomic traits of these lines were investigated. Finally, a family line YE3, with a genetic transformation efficiency of 82.9% and better agronomic traits, was obtained. This study develops a new genotype of upland cotton, which will facilitate the genetic transformation and gene function research of cotton.

Key words: cotton, RILs, somatic embryogenesis, regeneration capacity, transformation efficiency

Fig. 1

Embryogenesis and plant regeneration process of cotton in IK system A: hypocotyl; B: the induced callus tissue of 1-2 months; C: the embryonic callus with cotyledons; D: a large amount of embryoid formation; E: plant regeneration; F: hydroponics can be transplanted."

Fig. 2

Embryogenesis and plant regeneration process of cotton in DK system A: hypocotyl; B: the induced callus tissue of 1-2 months; C: the embryonic callus with cotyledons; D: a large amount of embryoid formation; E: plant regeneration; F: hydroponics can be transplanted."

Fig. 3

Callus proliferation frequency profile in IK and DK systems CSC: callus secondary fecundity. "

Fig. 4

Line chart of culture-related traits of regenerated lines in IK and DK systems A: CET, callus embryo time; B: CRE, the embryo rate of callus."

Table 1

Comparison of CSC, CRE, and CET in regenerated YE lines"

家系a
Lines a
叶形
Shape of leaves
培养体系b
Culture system b
愈伤组织继代繁殖力
CSC (g)
愈伤组织出胚率CRE (%) 愈伤组织出胚时间
CET (d)
90 d 180 d
E22 阔叶
Broad leaf
IBA+KT 3.03 0 0 -
2,4-D+KT 5.56 - 33.3 189
YZ1 鸡脚叶
Okra leaf
IBA+KT 4.14 70 75 70
2,4-D+KT 4.51 67.5 100 61
YE1 鸡脚叶
Okra leaf
IBA+KT 3.70 56.25 100 70
2,4-D+KT 5.34 25 100 80
YE3 阔叶
Broad leaf
IBA+KT 2.80 50 100 67
2,4-D+KT 4.23 37.5 100 80
YE20 鸡脚叶
Okra leaf
IBA+KT 4.62 45.83 100 85
2,4-D+KT 4.83 37.5 85 87
YE21 阔叶
Broad leaf
IBA+KT 4.93 37.5 100 80
2,4-D+KT 4.37 29.17 100 87
YE22 阔叶
Broad leaf
IBA+KT 3.98 45.83 100 90
2,4-D+KT 6.02 37.5 100 90
YE32 鸡脚叶
Okra leaf
IBA+KT 4.00 33.33 100 75
2,4-D+KT 4.46 - 100 95
YE33 阔叶
Broad leaf
IBA+KT 3.92 31.25 67 70
2,4-D+KT 7.28 - 100 102
YE38 阔叶
Broad leaf
IBA+KT 3.48 42.5 100 67
2,4-D+KT 6.26 50 100 80
YE54 阔叶
Broad leaf
IBA+KT 4.77 43.75 67 75
2,4-D+KT 4.46 - 67 130
YE81 阔叶
Broad leaf
IBA+KT 3.94 25 50 80
2,4-D+KT 5.24 - 67 154
YE86 阔叶
Broad leaf
IBA+KT 3.74 67.5 100 80
2,4-D+KT 3.88 67.5 100 80
YE87 阔叶
Broad leaf
IBA+KT 4.23 50 100 69
2,4-D+KT 4.84 50 100 85
YE108 鸡脚叶
Okra leaf
IBA+KT 4.74 81.25 67 80
2,4-D+KT 5.03 37.5 67.5 80
YE110 鸡脚叶
Okra leaf
IBA+KT 5.01 43.75 50 71
2,4-D+KT 3.66 37.5 100 75
YE111 阔叶
Broad leaf
IBA+KT 3.58 60 100 69
2,4-D+KT 4.53 50 67.5 86
YE120 鸡脚叶
Okra leaf
IBA+KT 3.62 31.25 67 80
2,4-D+KT 4.88 37.5 100 80
YE122 鸡脚叶
Okra leaf
IBA+KT 3.86 70.83 100 69
2,4-D+KT 5.60 50 100 85
YE127 鸡脚叶
Okra leaf
IBA+KT 3.22 43.75 100 67
2,4-D+KT 5.76 - 100 95
YE130 鸡脚叶
Okra leaf
IBA+KT 5.42 84.38 100 69
2,4-D+KT 5.53 41.67 100 79
YE137 鸡脚叶
Okra leaf
IBA+KT 5.42 - 25 110
2,4-D+KT 5.53 31.25 67 90
YE138 阔叶
Broad leaf
IBA+KT 4.51 56.25 67 67
2,4-D+KT 7.44 - 67.7 130
YE142 阔叶
Broad leaf
IBA+KT 5.68 - 75 116
2,4-D+KT 5.13 - 67.7 154
YE144 鸡脚叶
Okra leaf
IBA+KT 5.19 - 25 110
2,4-D+KT 5.75 - 67 154
YE148 鸡脚叶
Okra leaf
IBA+KT 3.81 50 100 78
2,4-D+KT 3.81 37.5 100 75
YE164 鸡脚叶
Okra leaf
IBA+KT 3.24 62.5 67 71
2,4-D+KT 5.31 37.5 100 75

Fig. 5

Some regenerated plants"

Fig. 6

Identification of positive transformation plants in YE3 A and E: embryonic callus; B and F: embryo; C, G, D, and H: leaf. Bar: 1000 μm."

Table 2

Agronomic traits of 12 regenerated broad leaf lines"

家系a
Lines a
纤维长度
Fiber length (mm)
纤维强度
Fiber strength
(g tex-1)
马克隆值
Micronaire
(μg Inch-1)
整齐度
Uniformity index
(%)
伸长率
Elongation rate
(%)
衣分
Lint percentage
(%)
E22 26.37±2.19 28.27±2.57 5.84±0.45 84.36±1.42 6.64±0.14 43.72±0.02
YZ1 27.01±2.51 25.63±1.61 5.83±0.16 86.02±2.67 6.57±0.23 35.43±0.05
YE3 27.89±1.37 28.76±0.55 5.57±0.36 86.39±1.15 6.72±0.07 40.53±0.02
YE21 27.05±0.80 28.71±1.63 6.14±0.12 86.79±2.28 6.67±0.12 40.84±0.02
YE22 25.95±1.44 27.18±2.66 5.90±0.25 84.83±2.34 6.56±0.15 39.78±0.04
YE33 27.19±2.00 26.29±1.89 5.84±0.33 85.54±1.78 6.57±0.15 39.93±0.01
YE38 26.67±1.34 26.19±2.81 5.37±0.31 85.77±1.57 6.59±0.18 38.87±0.01
YE54 27.33±0.95 28.88±1.23 5.95±0.25 85.78±1.76 6.76±0.13 39.94±0.04
YE81 28.80±0.53 31.20±4.52 5.46±0.26 87.06±0.98 6.72±0.16 35.71±0.00
YE86 26.34±0.46 25.81±1.06 6.05±0.38 85.44±1.58 6.58±0.11 39.13±0.00
YE87 27.36±1.48 28.57±2.30 6.31±0.78 85.59±3.11 6.64±0.10 40.85±0.06
YE111 27.71±1.65 27.06±2.19 5.77±0.21 85.87±1.62 6.76±0.05 39.09±0.02
YE138 27.78±1.80 29.36±3.11 5.59±0.18 86.10±1.49 6.67±0.15 39.45±0.01
YE142 28.05±1.32 27.32±1.92 5.41±0.20 86.64±1.44 6.61±0.16 39.42±0.01
[1] Tanveer K, Siva R V, Sadhu L. High-frequency regeneration via somatic embryogenesis of an elite recalcitrant cotton genotype (Gossypium hirsutum L.) and efficient Agrobacterium-mediated transformation. Plant Cell Tissue Organ Cult, 2010, 101: 323-330.
doi: 10.1007/s11240-010-9691-y
[2] Price H J, Roberta H S. Somatic embryogenesis in suspension cultures of Gossypium klotzschianum anderss. Planta, 1979, 145: 305-307.
doi: 10.1007/BF00454456 pmid: 24317738
[3] Davidonis G H, Hamilton R H. Plant regeneration from callus tissue of Gossypium hirsutum L. Plant Sci Lett, 1983, 32: 89-93.
doi: 10.1016/0304-4211(83)90102-5
[4] Kumar S, Pental D. Regeneration of Indian cotton variety MCU-5 through somatic embryogenesis. Curr Sci, 1998, 74: 538-540.
[5] Kumria R, Sunnichan V G, Das D K, Gupta S K, Reddy V S, Bhatnagar R K, Leelavathi S. High-frequency somatic embryo production and maturation into normal plants in cotton (Gossypium hirsutum) through metabolic stress. Plant Cell Rep, 2003, 21: 635-639.
pmid: 12789412
[6] Rauf S, Hafeez-ur-Rahman. A study of in vitro regeneration in relation to doses of growth regulators in hybrids of upland cotton. Plant Cell Tissue Organ Cult, 2005, 83: 209-215.
doi: 10.1007/s11240-005-5770-x
[7] Jin S X, Zhang X L, Nie Y C, Guo X P, Liang S G, Zhu H G. Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biol Plant, 2006, 50: 519-524.
doi: 10.1007/s10535-006-0082-5
[8] 陈天子, 吴慎杰, 李飞飞, 郭旺珍, 张天真.新疆棉花4个主栽品种的体细胞胚胎发生及植株再生. 作物学报, 2008, 34: 1374-1380.
Chen T Z, Wu S J, Li F F, Guo W Z, Zhang T Z. In vitro regeneration of four commercial cotton (Gossypium hirsutum L.) cultivars grown in Xinjiang, China. Acta Agron Sin, 2008, 34: 1374-1380 (in Chinese with English abstract).
[9] 葛书娅, 沈秋平, 何积明, 吕尊富, 郑海彪, 李飞飞.陆地棉新陆早45号体细胞胚胎发生及再生体系的建立. 作物学报, 2018, 30: 492-497.
Ge S Y, Shen Q P, He J M, Lyu Z F, Zheng H B, Li F F. A regeneration system for cotton variety Xinluzao 45 via somatic embryogenesis. Acta Agron Sin, 2018, 30: 492-497 (in Chinese with English abstract).
[10] 罗晓丽, 姜艳丽, 肖娟丽, 武宗信, 张安红, 王志安, 吴家和.早熟棉体细胞胚胎发生和植株再生体系的建立. 西北植物学报, 2011, 31: 609-615.
Luo X L, Jiang Y L, Xiao J L, Wu Z X, Zhang A H, Wang Z A, Wu J H. Establishment of somatic cell embryogenesis and plant regeneration system of early cotton. Acta Bot Boreali-Occident Sin, 2011, 31: 609-615 (in Chinese with English abstract).
[11] 王永芳, 刁现民. 植物再生相关基因的QTL定位及克隆应用研究进展. 河北农业科学, 2010, 14(11): 85-88.
Wang Y F, Diao X M. Advances of QTL localization and cloning of genes related to regeneration ability of plant tissue culture. J Hebei Agric Sci, 2010, 14(11): 85-88 (in Chinese with English abstract).
[12] 张献龙, 孙济中, 刘金兰.陆地棉体细胞胚胎发生与植株再生. 遗传学报, 1991, 18: 461-467.
Zhang X L, Sun J Z, Liu J L. Somatic embryogenesis and plant regeneration in upland cotton. Acta Genet Sin, 1991, 18: 461-467 (in Chinese with English abstract).
[13] 董合忠. 不同基因型棉花下胚轴离体培养胚状体发生的研究. 莱阳农学院学报, 1991, 8(2):97-101.
Dong H Z. Cotton somatic embryogenesis of different genotypes. J Laiyang Agric Coll, 1991, 8(2): 97-101 (in Chinese with English abstract).
[14] Ge X Y, Xu J T, Yang Z E, Yang X F, Wang Y, Chen Y L, Wang P, Li F G. Efficient genotype-independent cotton genetic transformation and genome editing. J Integr Agric, 2022, 65: 907-917.
[15] Bolibok H, Rakoczy-Trojanowska M. Genetic mapping of QTLs for tissue-culture response in plants. Euphytica, 2006, 149: 73-83.
doi: 10.1007/s10681-005-9055-6
[16] Zhao L N, Zhou H J, Lu L X, Liu L L, Li X H, Lin Y J, Yu S B. Identification of quantitative trait loci controlling rice mature seed culturability using chromosomal segment substitution lines. Plant Cell Rep, 2009, 28: 247-56.
doi: 10.1007/s00299-008-0641-7 pmid: 19023575
[17] Jin S X, Zhang X L, Liang S G, Nie Y C, Guo X P, Huang C. Factors affecting transformation efficiency of embryogenic callus of upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult, 2005, 81: 229-237.
doi: 10.1007/s11240-004-5209-9
[18] Li J Y, Wang M J, Li Y J, Zhang Q H, Lindsey K, Daniell H, Jin S X, Zhang X L. Multi-omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation process. Plant Biotechnol J, 2019, 17: 435-450.
doi: 10.1111/pbi.12988 pmid: 29999579
[19] 李雪林, 王翠玲, 孟超敏. 高频体细胞胚胎发生的优异棉花种质材料筛选. 分子植物育种, 2012, 10: 683-688.
Li X L, Wang C L, Meng C M. Screening elite cotton germplasm with high frequency somatic embryogenesis. Mol Plant Breed, 2012, 10: 683-688 (in Chinese with English abstract).
[20] Tsukaya H. Mechanism of leaf-shape determination. Annu Rev Plant Biol, 2006, 57: 477-496.
pmid: 16669771
[21] Wang H F, Kong F J, Zhou C E. From genes to networks: The genetic control of leaf development. J Integr Plant Biol, 2021, 63: 1181-1196.
doi: 10.1111/jipb.13084
[22] Zhu Q H, Zhang J, Liu D X, Stiller W, Liu D J, Zhang Z S, Llewellyn D, Wilson L. Integrated mapping and characterization of the gene underlying the okra leaf trait in Gossypium hirsutum L. J Exp Bot, 2016, 67: 763-774.
doi: 10.1093/jxb/erv494
[23] Gelvin S B. Integration of Agrobacterium T-DNA into the plant genome. Annu Rev Genet, 2017, 51: 195-217.
doi: 10.1146/genet.2017.51.issue-1
[24] 李静, 张换样, 朱永红, 吴慎杰, 焦改丽. 农杆菌介导棉花遗传转化的影响因素. 南方农业, 2020, 14(8):8-12.
Li J, Zhang H Y, Zhu Y H, Wu S J, Jiao G L. Influencing factors of Agrobacterium tumefaciens-mediated genetic transformation in cotton. South China Agric, 2020, 14(8): 8-12 (in Chinese with English abstract).
[1] LI Hang, LIU Li, HUANG Qian, LIU Wen-Hao, SI Ai-Jun, KONG Xian-Hui, WANG Xu-Wen, ZHAO Fu-Xiang, MEI Yong-Jun, YU Yu. Identification and screening of salt tolerance of cotton germplasm resources at germination stage [J]. Acta Agronomica Sinica, 2024, 50(5): 1147-1157.
[2] LIU Cheng-Min, MEN Ya-Qi, QIN Du-Lin, YAN Xiao-Yu, ZHANG Le, MENG Hao, SU Xun-Ya, SUN Xue-Zhen, SONG Xian-Liang, MAO Li-Li. Effects of nitrogen application rate on cotton yield and nitrogen utilization under long-term straw return to the field [J]. Acta Agronomica Sinica, 2024, 50(4): 1043-1052.
[3] DAI Yu-Yang, YUE Ye, LIU Zhen-Yu, HE Run, LIU Yu-Ting, ZHANG Xiang, CHEN De-Hua, CHEN Yuan. Effects of low temperature on the expression of insecticidal protein in Bt cotton fibers and its physiological mechanism [J]. Acta Agronomica Sinica, 2024, 50(3): 709-720.
[4] KE Hui-Feng, SU Hong-Mei, SUN Zheng-Wen, GU Qi-Shen, YANG Jun, WANG Guo-Ning, XU Dong-Yong, WANG Hong-Zhe, WU Li-Qiang, ZHANG Yan, ZHANG Gui-Yin, MA Zhi-Ying, WANG Xing-Fen. Identification for yield and fiber quality traits and evaluation of molecular markers in modern cotton varieties [J]. Acta Agronomica Sinica, 2024, 50(2): 280-293.
[5] LI Zhi-Kun, JIA Wen-Hua, ZHU Wei, LIU Wei, MA Zong-Bin. Effects of nitrogen fertilizer and DPC combined application on temporal distribution of cotton yield and fiber quality [J]. Acta Agronomica Sinica, 2024, 50(2): 514-528.
[6] GUO Jia-Xin, YE Yang, GUO Hui-Juan, MIN Wei. Effects and variability analysis of different salt and alkali stresses on the proteome of cotton leaves [J]. Acta Agronomica Sinica, 2024, 50(1): 219-236.
[7] XIAO Sheng-Hua, LU Yan, LI An-Zi, QIN Yao-Bin, LIAO Ming-Jing, BI Zhao-Fu, ZHUO Gan-Feng, ZHU Yong-Hong, ZHU Long-Fu. Function analysis of an AP2/ERF transcription factor GhTINY2 in cotton negatively regulating salt tolerance [J]. Acta Agronomica Sinica, 2024, 50(1): 126-137.
[8] SHANG-GUAN Xiao-Xia, YANG Qin-Li, LI Huan-Li. Analysis of mutants developed by CRISPR/Cas9-based GhbHLH71 gene editing in cotton [J]. Acta Agronomica Sinica, 2024, 50(1): 138-148.
[9] TAN Zhi-Xin, XIE Liu-Wei, LI Hong-Ge, LI Fang-Jun, TIAN Xiao-Li, LI Zhao-Hu. Identification of cotton low potassium tolerance based on AHP-membership function method at cotyledonary stage [J]. Acta Agronomica Sinica, 2024, 50(1): 199-208.
[10] SUN Shang-Wen, SHU Hong-Mei, YANG Chang-Qin, ZHANG Guo-Wei, WANG Xiao-Jing, MENG Ya-Li, WANG You-Hua, LIU Rui-Xian. Mechanism of cyclanilide enhanced the defoliation efficiency of thidiazuron in cotton by regulating endogenous hormones under low temperature stress [J]. Acta Agronomica Sinica, 2024, 50(1): 187-198.
[11] LIU Tao-Fen, LUO Dan, ZHANG Qi-Peng, SUN Yuan-Yuan, LI Pei-Song, TIAN Jing-Shan, ZHANG Wang-Feng, XIANG Dao, ZHANG Ya-Li, YANG Ming-Feng, GOU Ling. Ethephon ripening affects boll weight and fiber quality of machine-harvested cotton [J]. Acta Agronomica Sinica, 2024, 50(1): 209-218.
[12] LI Yi-Yang, LI Yuan, ZHAO Zi-Xu, ZHANG Ding-Shun, DU Jia-Ning, WU Shu-Juan, SUN Si-Qi, CHEN Yuan, ZHANG Xiang, CHEN De-Hua, LIU Zhen-Yu. Effects of increased nitrogen on Bt protein expression and nitrogen metabolism in the leaf subtending to cotton boll [J]. Acta Agronomica Sinica, 2023, 49(9): 2505-2516.
[13] WAN Yi-Man, XIAO Sheng-Hui, BAI Yi-Chao, FAN Jia-Yin, WANG Yan, WU Chang-Ai. Establishment and optimization of a high-efficient hairy-root system in foxtail millet (Setaria italica L.) [J]. Acta Agronomica Sinica, 2023, 49(7): 1758-1768.
[14] XU Nai-Yin, WANG Yang, WANG Dan-Tao, NING He-Jia, YANG Xiao-Ni, QIAO Yin-Tao. Construction of cotton fiber quality index and weighted genotype by trait (WGT) biplot analysis [J]. Acta Agronomica Sinica, 2023, 49(5): 1262-1271.
[15] MENG Lu, DU Ming-Wei, LI Fang, QI Hai-Kun, LU Zheng-Ying, XU Dong-Yong, LI Cun-Dong, ZHANG Ming-Cai, TIAN Xiao-Li, LI Zhao-Hu. Relationship between cotton population, maturity, and the efficacy of harvest aids under high-density planting conditions in Central Hebei province, China [J]. Acta Agronomica Sinica, 2023, 49(4): 1028-1038.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!